control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
      SUBROUTINE TG01QD( DICO, STDOM, JOBFI, N, M, P, ALPHA, A, LDA,
     $                   E, LDE, B, LDB, C, LDC, N1, N2, N3, ND, NIBLCK,
     $                   IBLCK, Q, LDQ, Z, LDZ, ALPHAR, ALPHAI, BETA,
     $                   TOL, IWORK, DWORK, LDWORK, INFO )
C
C     PURPOSE
C
C     To compute orthogonal transformation matrices Q and Z which
C     reduce the regular pole pencil A-lambda*E of the descriptor system
C     (A-lambda*E,B,C) to the generalized real Schur form with ordered
C     generalized eigenvalues. The pair (A,E) is reduced to the form
C
C                ( A1  *   *  )             ( E1  *   *  )
C       Q'*A*Z = ( 0   A2  *  ) ,  Q'*E*Z = ( 0   E2  *  ) ,         (1)
C                ( 0   0   A3 )             ( 0   0   E2 )
C
C     where the subpencils Ak-lambda*Ek, for k = 1, 2, 3, contain the
C     generalized eigenvalues which belong to certain domains of
C     interest.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     DICO    CHARACTER*1
C             Specifies the type of the descriptor system as follows:
C             = 'C':  continuous-time system;
C             = 'D':  discrete-time system.
C
C     STDOM   CHARACTER*1
C             Specifies the type of the domain of interest for the
C             generalized eigenvalues, as follows:
C             = 'S':  stability type domain (i.e., left part of complex
C                     plane or inside of a circle);
C             = 'U':  instability type domain (i.e., right part of complex
C                     plane or outside of a circle);
C             = 'N':  whole complex domain, excepting infinity.
C
C     JOBFI   CHARACTER*1
C             Specifies the type of generalized eigenvalues in the
C             leading diagonal block(s) as follows:
C             = 'F':  finite generalized eigenvalues are in the
C                     leading diagonal blocks (Af,Ef), and the resulting
C                     transformed pair has the form
C
C                              ( Af  *  )             ( Ef  *  )
C                     Q'*A*Z = (        ) ,  Q'*E*Z = (        ) ;
C                              ( 0   Ai )             ( 0   Ei )
C
C             = 'I':  infinite generalized eigenvalues are in the
C                     leading diagonal blocks (Ai,Ei), and the resulting
C                     transformed pair has the form
C
C                              ( Ai  *  )             ( Ei  *  )
C                     Q'*A*Z = (        ) ,  Q'*E*Z = (        ) .
C                              ( 0   Af )             ( 0   Ef )
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The number of rows of the matrix B, the number of columns
C             of the matrix C and the order of the square matrices A
C             and E.  N >= 0.
C
C     M       (input) INTEGER
C             The number of columns of the matrix B.  M >= 0.
C
C     P       (input) INTEGER
C             The number of rows of the matrix C.  P >= 0.
C
C     ALPHA   (input) DOUBLE PRECISION
C             The boundary of the domain of interest for the finite
C             generalized eigenvalues of the pair (A,E). For a
C             continuous-time system (DICO = 'C'), ALPHA is the boundary
C             value for the real parts of the generalized eigenvalues,
C             while for a discrete-time system (DICO = 'D'), ALPHA >= 0
C             represents the boundary value for the moduli of the
C             generalized eigenvalues.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading N-by-N part of this array must
C             contain the state dynamics matrix A.
C             On exit, the leading N-by-N part of this array contains
C             the matrix Q'*A*Z in real Schur form, with the elements
C             below the first subdiagonal set to zero.
C             If JOBFI = 'I', the N1-by-N1 pair (A1,E1) contains the
C             infinite spectrum, the N2-by-N2 pair (A2,E2) contains the
C             finite spectrum in the domain of interest, and the
C             N3-by-N3 pair (A3,E3) contains the finite spectrum ouside
C             of the domain of interest.
C             If JOBFI = 'F', the N1-by-N1 pair (A1,E1) contains the
C             finite spectrum in the domain of interest, the N2-by-N2
C             pair (A2,E2) contains the finite spectrum ouside of the
C             domain of interest, and the N3-by-N3 pair (A3,E3) contains
C             the infinite spectrum.
C             Ai has a block structure as in (2), where A0,0 is ND-by-ND
C             and Ai,i is IBLCK(i)-by-IBLCK(i), for i = 1, ..., NIBLCK.
C             The domain of interest for the pair (Af,Ef), containing
C             the finite generalized eigenvalues, is defined by the
C             parameters ALPHA, DICO and STDOM as follows:
C               For DICO = 'C':
C                  Real(eig(Af,Ef)) < ALPHA if STDOM = 'S';
C                  Real(eig(Af,Ef)) > ALPHA if STDOM = 'U'.
C               For DICO = 'D':
C                  Abs(eig(Af,Ef))  < ALPHA if STDOM = 'S';
C                  Abs(eig(Af,Ef))  > ALPHA if STDOM = 'U'.
C
C     LDA     INTEGER
C             The leading dimension of the array A.  LDA >= MAX(1,N).
C
C     E       (input/output) DOUBLE PRECISION array, dimension (LDE,N)
C             On entry, the leading N-by-N part of this array must
C             contain the descriptor matrix E.
C             On exit, the leading N-by-N part of this array contains
C             the matrix Q'*E*Z in upper triangular form, with the
C             elements below the diagonal set to zero. Its structure
C             corresponds to the block structure of the matrix Q'*A*Z
C             (see description of A).
C
C     LDE     INTEGER
C             The leading dimension of the array E.  LDE >= MAX(1,N).
C
C     B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C             On entry, the leading N-by-M part of this array must
C             contain the input matrix B.
C             On exit, the leading N-by-M part of this array contains
C             the transformed input matrix Q'*B.
C
C     LDB     INTEGER
C             The leading dimension of the array B.  LDB >= MAX(1,N).
C
C     C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C             On entry, the leading P-by-N part of this array must
C             contain the output matrix C.
C             On exit, the leading P-by-N part of this array contains
C             the transformed output matrix C*Z.
C
C     LDC     INTEGER
C             The leading dimension of the array C.  LDC >= MAX(1,P).
C
C     N1      (output) INTEGER
C     N2      (output) INTEGER
C     N3      (output) INTEGER
C             The number of the generalized eigenvalues of the pairs
C             (A1,E1), (A2,E2) and (A3,E3), respectively.
C
C     ND      (output) INTEGER.
C             The number of non-dynamic infinite eigenvalues of the
C             pair (A,E). Note: N-ND is the rank of the matrix E.
C
C     NIBLCK  (output) INTEGER
C             If ND > 0, the number of infinite blocks minus one.
C             If ND = 0, then NIBLCK = 0.
C
C     IBLCK   (output) INTEGER array, dimension (N)
C             IBLCK(i) contains the dimension of the i-th block in the
C             staircase form (2), where i = 1,2,...,NIBLCK.
C
C     Q       (output) DOUBLE PRECISION array, dimension (LDQ,N)
C             The leading N-by-N part of this array contains the
C             orthogonal matrix Q, where Q' is the product of orthogonal
C             transformations applied to A, E, and B on the left.
C
C     LDQ     INTEGER
C             The leading dimension of the array Q.  LDQ >= MAX(1,N).
C
C     Z       (output) DOUBLE PRECISION array, dimension (LDZ,N)
C             The leading N-by-N part of this array contains the
C             orthogonal matrix Z, which is the product of orthogonal
C             transformations applied to A, E, and C on the right.
C
C     LDZ     INTEGER
C             The leading dimension of the array Z.  LDZ >= MAX(1,N).
C
C     ALPHAR  (output) DOUBLE PRECISION array, dimension (N)
C     ALPHAI  (output) DOUBLE PRECISION array, dimension (N)
C     BETA    (output) DOUBLE PRECISION array, dimension (N)
C             On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j = 1, ..., N,
C             are the generalized eigenvalues.
C             ALPHAR(j) + ALPHAI(j)*i, and BETA(j), j = 1, ..., N, are
C             the diagonals of the complex Schur form (S,T) that would
C             result if the 2-by-2 diagonal blocks of the real Schur
C             form of (A,E) were further reduced to triangular form
C             using 2-by-2 complex unitary transformations.
C             If ALPHAI(j) is zero, then the j-th eigenvalue is real;
C             if positive, then the j-th and (j+1)-st eigenvalues are a
C             complex conjugate pair, with ALPHAI(j+1) negative.
C
C     Tolerances
C
C     TOL     DOUBLE PRECISION
C             A tolerance used in rank decisions to determine the
C             effective rank, which is defined as the order of the
C             largest leading (or trailing) triangular submatrix in the
C             QR factorization with column pivoting whose estimated
C             condition number is less than 1/TOL.  If the user sets
C             TOL <= 0, then an implicitly computed, default tolerance
C             TOLDEF = N**2*EPS,  is used instead, where EPS is the
C             machine precision (see LAPACK Library routine DLAMCH).
C             TOL < 1.
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (N)
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) returns the optimal value
C             of LDWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.  LDWORK >= 1, and if N = 0,
C             LDWORK >= 4*N,    if STDOM = 'N';
C             LDWORK >= 4*N+16, if STDOM = 'S' or 'U'.
C             For optimum performance LDWORK should be larger.
C
C             If LDWORK = -1, then a workspace query is assumed; the
C             routine only calculates the optimal size of the DWORK
C             array, returns this value as the first entry of the DWORK
C             array, and no error message related to LDWORK is issued by
C             XERBLA.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = 1:  the pencil A-lambda*E is not regular;
C             = 2:  the QZ algorithm failed to compute all generalized
C                   eigenvalues of the pair (A,E);
C             = 3:  a failure occured during the ordering of the
C                   generalized real Schur form of the pair (A,E).
C
C     METHOD
C
C     The separation of the finite and infinite parts is based on the
C     reduction algorithm of [1].
C     If JOBFI = 'F', the matrices of the pair (Ai,Ei), containing the
C     infinite generalized eigenvalues, have the form
C
C           ( A0,0  A0,k ... A0,1 )         ( 0  E0,k ... E0,1 )
C      Ai = (  0    Ak,k ... Ak,1 ) ,  Ei = ( 0   0   ... Ek,1 ) ;   (2)
C           (  :     :    .    :  )         ( :   :    .    :  )
C           (  0     0   ... A1,1 )         ( 0   0   ...   0  )
C
C     if JOBFI = 'I', the matrices Ai and Ei have the form
C
C           ( A1,1 ... A1,k  A1,0 )         ( 0 ... E1,k  E1,0 )
C      Ai = (  :    .    :    :   ) ,  Ei = ( :  .    :    :   ) ,   (3)
C           (  :   ... Ak,k  Ak,0 )         ( : ...   0   Ek,0 )
C           (  0   ...   0   A0,0 )         ( 0 ...   0     0  )
C
C     where Ai,i , for i = 0, 1, ..., k, are nonsingular upper
C     triangular matrices, and A0,0 corresponds to the non-dynamic
C     infinite modes of the system.
C
C     REFERENCES
C
C     [1] Misra, P., Van Dooren, P., and Varga, A.
C         Computation of structural invariants of generalized
C         state-space systems.
C         Automatica, 30, pp. 1921-1936, 1994.
C
C     NUMERICAL ASPECTS
C                                     3
C     The algorithm requires about 25N  floating point operations.
C
C     FURTHER COMMENTS
C
C     The number of infinite poles is computed as
C
C                   NIBLCK
C        NINFP =     Sum  IBLCK(i) = N - ND - NF,
C                    i=1
C
C     where NF is the number of finite generalized eigenvalues.
C     The multiplicities of infinite poles can be computed as follows:
C     there are IBLCK(k)-IBLCK(k+1) infinite poles of multiplicity k,
C     for k = 1, ..., NIBLCK, where IBLCK(NIBLCK+1) = 0.
C     Note that each infinite pole of multiplicity k corresponds to an
C     infinite eigenvalue of multiplicity k+1.
C
C     CONTRIBUTOR
C
C     A. Varga, German Aerospace Center,
C     DLR Oberpfaffenhofen, October 2002.
C     Based on the RASP routine SRSFOD.
C
C     REVISIONS
C
C     V. Sima, Dec. 2016, June 2017.
C
C     KEYWORDS
C
C     Deflating subspace, orthogonal transformation,
C     generalized real Schur form, equivalence transformation.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION ZERO, ONE
      PARAMETER        ( ZERO = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      CHARACTER        DICO, JOBFI, STDOM
      INTEGER          INFO, LDA, LDB, LDC, LDE, LDQ, LDWORK, LDZ, M, N,
     $                 N1, N2, N3, ND, NIBLCK, P
      DOUBLE PRECISION ALPHA, TOL
C     .. Array Arguments ..
      INTEGER          IBLCK( * ), IWORK(*)
      DOUBLE PRECISION A(LDA,*), ALPHAI(*), ALPHAR(*), B(LDB,*),
     $                 BETA(*), C(LDC,*), DWORK(*), E(LDE,*), Q(LDQ,*),
     $                 Z(LDZ,*)
C     .. Local Scalars ..
      LOGICAL          DISCR, LQUERY, ORDER, REDIF, STAB
      INTEGER          I, LW, MINWRK, NB, NBC, NC, NDIM, NF, NI, NLOW,
     $                 NR, NSUP, WRKOPT
C     .. External Functions ..
      LOGICAL          LSAME
      EXTERNAL         LSAME
C     .. External Subroutines ..
      EXTERNAL         DGEMM, DGEQRF, DLACPY, MB03QG, MB03QV, TG01MD,
     $                 XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC        INT, MAX, MIN
C
C     .. Executable Statements ..
C
      INFO  = 0
      DISCR = LSAME( DICO,  'D' )
      REDIF = LSAME( JOBFI, 'I' )
      STAB  = LSAME( STDOM, 'S' )
      ORDER = STAB .OR. LSAME( STDOM, 'U' )
C
C     Check input scalar arguments.
C
      IF(      .NOT.DISCR .AND. .NOT.LSAME( DICO,  'C' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.ORDER .AND. .NOT.LSAME( STDOM, 'N' ) ) THEN
         INFO = -2
      ELSE IF( .NOT.REDIF .AND. .NOT.LSAME( JOBFI, 'F' ) ) THEN
         INFO = -3
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( M.LT.0 ) THEN
         INFO = -5
      ELSE IF( P.LT.0 ) THEN
         INFO = -6
      ELSE IF( DISCR .AND. ALPHA.LT.ZERO ) THEN
         INFO = -7
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -9
      ELSE IF( LDE.LT.MAX( 1, N ) ) THEN
         INFO = -11
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -13
      ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
         INFO = -15
      ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
         INFO = -23
      ELSE IF( LDZ.LT.MAX( 1, N ) ) THEN
         INFO = -25
      ELSE IF( TOL.GE.ONE ) THEN
         INFO = -29
      ELSE
         IF( N.EQ.0 ) THEN
            MINWRK = 1
         ELSE IF( ORDER ) THEN
            MINWRK = 4*N + 16
         ELSE
            MINWRK = 4*N
         END IF
         LQUERY = LDWORK.EQ.-1
C
C        Estimate the optimal block size.
C
         CALL DGEQRF( N, MAX( M, P ), A, LDA, DWORK, DWORK, -1, INFO )
         NB = INT( DWORK(1) )/MAX( 1, M, P )
         LW = MIN( NB*NB, N*MAX( M, P ) )
C
         IF( LQUERY ) THEN
            CALL TG01MD( JOBFI, N, 0, 0, A, LDA, E, LDE, B, LDB, C, LDC,
     $                   ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, NF, ND,
     $                   NIBLCK, IBLCK, TOL, IWORK, DWORK, -1, INFO )
            WRKOPT = MAX( MINWRK, LW, INT( DWORK(1) ) )
            IF( ORDER ) THEN
               NLOW = 1
               NSUP = N
               CALL MB03QG( DICO, STDOM, 'Update', 'Update', N, NLOW,
     $                      NSUP, ALPHA, A, LDA, E, LDE, Q, LDQ, Z, LDZ,
     $                      NDIM, DWORK, -1, INFO )
               WRKOPT = MAX( WRKOPT, INT( DWORK(1) ) )
            END IF
         ELSE IF( LDWORK.LT.MINWRK ) THEN
            INFO = -32
         END IF
      END IF
C
      IF( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'TG01QD', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         DWORK(1) = WRKOPT
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF( N.EQ.0 ) THEN
         N1 = 0
         N2 = 0
         N3 = 0
         ND = 0
         NIBLCK   = 0
         DWORK(1) = ONE
         RETURN
      END IF
C
C     Finite-infinite separation in generalized real Schur form.
C
C     Workspace:  need   4*N;
C                 prefer larger.
C
      CALL TG01MD( JOBFI, N, 0, 0, A, LDA, E, LDE, B, LDB, C, LDC,
     $             ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, NF, ND, NIBLCK,
     $             IBLCK, TOL, IWORK, DWORK, LDWORK, INFO )
C
      IF( INFO.NE.0 )
     $   RETURN
C
      WRKOPT = MAX( MINWRK, INT( DWORK(1) ) )
C
      NI = N - NF
      IF( ORDER ) THEN
         IF( REDIF ) THEN
            NLOW = NI + 1
            NSUP = N
         ELSE
            NLOW = 1
            NSUP = MAX( 1, NF )
         END IF
C
C        Separate the spectrum of (A,E). The leading NDIM-by-NDIM subpencil
C        of Af-lambda*Ef corresponds to the generalized eigenvalues in the
C        domain of interest.
C
C        Workspace:  need   4*N+16.
C
         CALL MB03QG( DICO, STDOM, 'Update', 'Update', N, NLOW, NSUP,
     $                ALPHA, A, LDA, E, LDE, Q, LDQ, Z, LDZ, NDIM,
     $                DWORK, LDWORK, INFO )
         IF( INFO.NE.0 ) THEN
            INFO = 3
            RETURN
         END IF
C
         WRKOPT = MAX( WRKOPT, INT( DWORK(1) ) )
C
         IF( REDIF ) THEN
            N1 = NI
            N2 = NDIM
            N3 = N - N1 - N2
         ELSE
            N1 = NDIM
            N3 = NI
            N2 = N - N1 - N3
         END IF
C
C        Compute the generalized eigenvalues.
C
         CALL MB03QV( N, A, LDA, E, LDE, ALPHAR, ALPHAI, BETA, INFO )
      ELSE
         IF( REDIF ) THEN
            N1 = NI
            N3 = NF
         ELSE
            N1 = NF
            N3 = NI
         END IF
         N2 = 0
      END IF
C
C     Apply the transformation: B <-- Q'*B.
C
      NBC = MAX( 1, MIN( LDWORK/N, M ) )
      DO 10 I = 1, M, NBC
         NC = MIN( NBC, M-I+1 )
         CALL DGEMM( 'Transpose', 'No transpose', N, NC, N, ONE, Q, LDQ,
     $               B(1,I), LDB, ZERO, DWORK, N )
         CALL DLACPY( 'All', N, NC, DWORK, N, B(1,I), LDB )
   10 CONTINUE
C
C     Apply the transformation: C <-- C*Z.
C
      NBC = MAX( 1, MIN( LDWORK/N, P ) )
      DO 20 I = 1, P, NBC
         NR = MIN( NBC, P-I+1 )
         CALL DGEMM( 'No Transpose', 'No transpose', NR, N, N, ONE,
     $              C(I,1), LDC, Z, LDZ, ZERO, DWORK, NR )
         CALL DLACPY( 'All', NR, N, DWORK, NR, C(I,1), LDC )
   20 CONTINUE
C
      DWORK( 1 ) = MAX( WRKOPT, LW )
C
      RETURN
C *** Last line of TG01QD ***
      END