control_systems_torbox 0.2.1

Control systems toolbox
Documentation
      SUBROUTINE MB03DZ( A, LDA, B, LDB, CO1, SI1, CO2, SI2 )
C
C     PURPOSE
C
C     To compute unitary matrices Q1 and Q2 for a complex 2-by-2 regular
C     pencil aA - bB with A, B upper triangular, such that
C     Q2' (aA - bB) Q1 is still upper triangular but the eigenvalues are
C     in reversed order. The matrices Q1 and Q2 are represented by
C
C          (  CO1  SI1  )       (  CO2  SI2  )
C     Q1 = (            ), Q2 = (            ).
C          ( -SI1' CO1  )       ( -SI2' CO2  )
C
C     The notation M' denotes the conjugate transpose of the matrix M.
C
C     ARGUMENTS
C
C     Input/Output Parameters
C
C     A       (input) COMPLEX*16 array, dimension (LDA, 2)
C             On entry, the leading 2-by-2 upper triangular part of
C             this array must contain the matrix A of the pencil.
C             The (2,1) entry is not referenced.
C
C     LDA     INTEGER
C             The leading dimension of the array A.  LDA >= 2.
C
C     B       (input) COMPLEX*16 array, dimension (LDB, 2)
C             On entry, the leading 2-by-2 upper triangular part of
C             this array must contain the matrix B of the pencil.
C             The (2,1) entry is not referenced.
C
C     LDB     INTEGER
C             The leading dimension of the array B.  LDB >= 2.
C
C     CO1     (output) DOUBLE PRECISION
C             The upper left element of the unitary matrix Q1.
C
C     SI1     (output) COMPLEX*16
C             The upper right element of the unitary matrix Q1.
C
C     CO2     (output) DOUBLE PRECISION
C             The upper left element of the unitary matrix Q2.
C
C     SI2     (output) COMPLEX*16
C             The upper right element of the unitary matrix Q2.
C
C     METHOD
C
C     The algorithm uses unitary transformations as described on page 42
C     in [1].
C
C     REFERENCES
C
C     [1] Benner, P., Byers, R., Mehrmann, V. and Xu, H.
C         Numerical Computation of Deflating Subspaces of Embedded
C         Hamiltonian Pencils.
C         Tech. Rep. SFB393/99-15, Technical University Chemnitz,
C         Germany, June 1999.
C
C     NUMERICAL ASPECTS
C
C     The algorithm is numerically backward stable.
C
C     CONTRIBUTOR
C
C     Matthias Voigt, Fakultaet fuer Mathematik, Technische Universitaet
C     Chemnitz, January 26, 2009.
C
C     REVISIONS
C
C     V. Sima, Aug. 2009 (SLICOT version of the routine ZBTUEX).
C     V. Sima, Nov. 2009, Nov. 2010, Dec. 2010.
C     M. Voigt, Jan. 2012. 
C
C     KEYWORDS
C
C     Eigenvalue exchange, matrix pencil, upper triangular matrix.
C
C     ******************************************************************
C
C     .. Scalar Arguments ..
      INTEGER            LDA, LDB
      DOUBLE PRECISION   CO1, CO2
      COMPLEX*16         SI1, SI2
C
C     .. Array Arguments ..
      COMPLEX*16         A( LDA, * ), B( LDB, * )
C
C     .. Local Scalars ..
      COMPLEX*16         D, G, TMP
C
C     .. External Subroutines ..
      EXTERNAL           ZLARTG
C
C     .. Executable Statements ..
C
C     For efficiency, the input arguments are not tested.
C
C     Computations.
C
      G = A( 1, 1 )*B( 2, 2 ) - A( 2, 2 )*B( 1, 1 )
      D = A( 1, 2 )*B( 2, 2 ) - A( 2, 2 )*B( 1, 2 )
      CALL ZLARTG( D, G, CO1, SI1, TMP )
      D = A( 1, 2 )*B( 1, 1 ) - A( 1, 1 )*B( 1, 2 )
      CALL ZLARTG( D, G, CO2, SI2, TMP )
C
      RETURN
C *** Last line of MB03DZ ***
      END