control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
      SUBROUTINE TF01MX( N, M, P, NY, S, LDS, U, LDU, X, Y, LDY,
     $                   DWORK, LDWORK, INFO )
C
C     PURPOSE
C
C     To compute the output sequence of a linear time-invariant
C     open-loop system given by its discrete-time state-space model
C     with an (N+P)-by-(N+M) general system matrix S,
C
C            ( A  B )
C        S = (      ) .
C            ( C  D )
C
C     The initial state vector x(1) must be supplied by the user.
C
C     The input and output trajectories are stored as in the SLICOT
C     Library routine TF01MY.
C
C     ARGUMENTS
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrix A.  N >= 0.
C
C     M       (input) INTEGER
C             The number of system inputs.  M >= 0.
C
C     P       (input) INTEGER
C             The number of system outputs.  P >= 0.
C
C     NY      (input) INTEGER
C             The number of output vectors y(k) to be computed.
C             NY >= 0.
C
C     S       (input) DOUBLE PRECISION array, dimension (LDS,N+M)
C             The leading (N+P)-by-(N+M) part of this array must contain
C             the system matrix S.
C
C     LDS     INTEGER
C             The leading dimension of array S.  LDS >= MAX(1,N+P).
C
C     U       (input) DOUBLE PRECISION array, dimension (LDU,M)
C             The leading NY-by-M part of this array must contain the
C             input vector sequence u(k), for k = 1,2,...,NY.
C             Specifically, the k-th row of U must contain u(k)'.
C
C     LDU     INTEGER
C             The leading dimension of array U.  LDU >= MAX(1,NY).
C
C     X       (input/output) DOUBLE PRECISION array, dimension (N)
C             On entry, this array must contain the initial state vector
C             x(1) which consists of the N initial states of the system.
C             On exit, this array contains the final state vector
C             x(NY+1) of the N states of the system at instant NY+1.
C
C     Y       (output) DOUBLE PRECISION array, dimension (LDY,P)
C             The leading NY-by-P part of this array contains the output
C             vector sequence y(1),y(2),...,y(NY) such that the k-th
C             row of Y contains y(k)' (the outputs at instant k),
C             for k = 1,2,...,NY.
C
C     LDY     INTEGER
C             The leading dimension of array Y.  LDY >= MAX(1,NY).
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             LDWORK >= 0,        if MIN(N,P,NY) = 0;  otherwise,
C             LDWORK >= N+P,      if M = 0;
C             LDWORK >= 2*N+M+P,  if M > 0.
C             For better performance, LDWORK should be larger.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     Given an initial state vector x(1), the output vector sequence
C     y(1), y(2),..., y(NY) is obtained via the formulae
C
C        ( x(k+1) )     ( x(k) )
C        (        ) = S (      ) ,
C        (  y(k)  )     ( u(k) )
C
C     where each element y(k) is a vector of length P containing the
C     outputs at instant k, and k = 1,2,...,NY.
C
C     REFERENCES
C
C     [1] Luenberger, D.G.
C         Introduction to Dynamic Systems: Theory, Models and
C         Applications.
C         John Wiley & Sons, New York, 1979.
C
C     NUMERICAL ASPECTS
C
C     The algorithm requires approximately (N + M) x (N + P) x NY
C     multiplications and additions.
C
C     FURTHER COMMENTS
C
C     The implementation exploits data locality as much as possible,
C     given the workspace length.
C
C     CONTRIBUTOR
C
C     V. Sima, Katholieke Univ. Leuven, Belgium, Feb. 2002.
C
C     REVISIONS
C
C     -
C
C     KEYWORDS
C
C     Discrete-time system, multivariable system, state-space model,
C     state-space representation, time response.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      INTEGER           INFO, LDS, LDU, LDWORK, LDY, M, N, NY, P
C     .. Array Arguments ..
      DOUBLE PRECISION  DWORK(*), S(LDS,*), U(LDU,*), X(*), Y(LDY,*)
C     .. Local Scalars ..
      INTEGER           I, IC, IU, IW, IY, J, JW, K, N2M, N2P, NB, NF,
     $                  NM, NP, NS
C     .. External Functions ..
      INTEGER           ILAENV
      EXTERNAL          ILAENV
C     .. External Subroutines ..
      EXTERNAL          DCOPY, DGEMM, DGEMV, DLASET, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         MAX, MIN
C     .. Executable Statements ..
C
      INFO = 0
C
C     Test the input scalar arguments.
C
      NP = N  + P
      NM = N  + M
      IW = NM + NP
      IF( N.LT.0 ) THEN
         INFO = -1
      ELSE IF( M.LT.0 ) THEN
         INFO = -2
      ELSE IF( P.LT.0 ) THEN
         INFO = -3
      ELSE IF( NY.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDS.LT.MAX( 1, NP ) ) THEN
         INFO = -6
      ELSE IF( LDU.LT.MAX( 1, NY ) ) THEN
         INFO = -8
      ELSE IF( LDY.LT.MAX( 1, NY ) ) THEN
         INFO = -11
      ELSE
         IF( MIN( N, P, NY ).EQ.0 ) THEN
            JW = 0
         ELSE IF( M.EQ.0 ) THEN
            JW = NP
         ELSE
            JW = IW
         END IF
         IF( LDWORK.LT.JW )
     $      INFO = -13
      END IF
C
      IF ( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'TF01MX', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF ( MIN( NY, P ).EQ.0 ) THEN
         RETURN
      ELSE IF ( N.EQ.0 ) THEN
C
C        Non-dynamic system: compute the output vectors.
C
         IF ( M.EQ.0 ) THEN
            CALL DLASET( 'Full', NY, P, ZERO, ZERO, Y, LDY )
         ELSE
            CALL DGEMM( 'No transpose', 'Transpose', NY, P, M, ONE,
     $                  U, LDU, S, LDS, ZERO, Y, LDY )
         END IF
         RETURN
      END IF
C
C     Determine the block size (taken as for LAPACK routine DGETRF).
C
      NB = ILAENV( 1, 'DGETRF', ' ', NY, MAX( M, P ), -1, -1 )
C
C     Find the number of state vectors, extended with inputs (if M > 0)
C     and outputs, that can be accommodated in the provided workspace.
C
      NS  = MIN( LDWORK/JW, NB*NB/JW, NY )
      N2P = N + NP
C
      IF ( M.EQ.0 ) THEN
C
C        System with no inputs.
C        Workspace: need   N + P;
C                   prefer larger.
C
         IF( NS.LE.1 .OR. NY*P.LE.NB*NB ) THEN
            IY = N + 1
C
C           LDWORK < 2*(N+P), or small problem.
C           One row of array Y is computed for each loop index value.
C
            DO 10 I = 1, NY
C
C              Compute
C
C              /x(i+1)\    /A\
C              |      | =  | | * x(i).
C              \ y(i) /    \C/
C
               CALL DGEMV( 'NoTranspose', NP, N, ONE, S, LDS, X, 1,
     $                     ZERO, DWORK, 1 )
               CALL DCOPY( N, DWORK, 1, X, 1 )
               CALL DCOPY( P, DWORK(IY), 1, Y(I,1), LDY )
   10       CONTINUE
C
         ELSE
C
C           LDWORK >= 2*(N+P), and large problem.
C           NS rows of array Y are computed before being saved.
C
            NF = ( NY/NS )*NS
            CALL DCOPY( N, X, 1, DWORK, 1 )
C
            DO 40 I = 1, NF, NS
C
C              Compute the current NS extended state vectors in the
C              workspace:
C
C              /x(i+1)\    /A\
C              |      | =  | | * x(i),  i = 1 : ns - 1.
C              \ y(i) /    \C/
C
               DO 20 IC = 1, ( NS - 1 )*NP, NP
                  CALL DGEMV( 'No transpose', NP, N, ONE, S, LDS,
     $                        DWORK(IC), 1, ZERO, DWORK(IC+NP), 1 )
   20          CONTINUE
C
C              Prepare the next iteration.
C
               CALL DGEMV( 'No transpose', NP, N, ONE, S, LDS,
     $                     DWORK((NS-1)*NP+1), 1, ZERO, DWORK, 1 )
C
C              Transpose the NS output vectors in the corresponding part
C              of Y (column-wise).
C
               DO 30 J = 1, P
                  CALL DCOPY( NS-1, DWORK(N2P+J), NP, Y(I,J), 1 )
                  Y(I+NS-1,J) = DWORK(N+J)
   30          CONTINUE
C
   40       CONTINUE
C
            NS = NY - NF
C
            IF ( NS.GT.1 ) THEN
C
C              Compute similarly the last NS output vectors.
C
               DO 50 IC = 1, ( NS - 1 )*NP, NP
                  CALL DGEMV( 'No transpose', NP, N, ONE, S, LDS,
     $                        DWORK(IC), 1, ZERO, DWORK(IC+NP), 1 )
   50          CONTINUE
C
               CALL DGEMV( 'No transpose', NP, N, ONE, S, LDS,
     $                     DWORK((NS-1)*NP+1), 1, ZERO, DWORK, 1 )
C
               DO 60 J = 1, P
                  CALL DCOPY( NS-1, DWORK(N2P+J), NP, Y(NF+1,J), 1 )
                  Y(NF+NS,J) = DWORK(N+J)
   60          CONTINUE
C
            ELSE IF ( NS.EQ.1 ) THEN
C
C              Compute similarly the last NS = 1 output vectors.
C
               CALL DCOPY( N, DWORK, 1, DWORK(NP+1), 1 )
               CALL DGEMV( 'No transpose', NP, N, ONE, S, LDS,
     $                     DWORK(NP+1), 1, ZERO, DWORK, 1 )
               CALL DCOPY( P, DWORK(N+1), 1, Y(NF+1,1), LDY )
C
            END IF
C
C           Set the final state vector.
C
            CALL DCOPY( N, DWORK, 1, X, 1 )
C
         END IF
C
      ELSE
C
C        General case.
C        Workspace: need   2*N + M + P;
C                   prefer larger.
C
         CALL DCOPY( N, X, 1, DWORK, 1 )
C
         IF( NS.LE.1 .OR. NY*( M + P ).LE.NB*NB ) THEN
            IU = N  + 1
            JW = IU + M
            IY = JW + N
C
C           LDWORK < 2*(2*N+M+P), or small problem.
C           One row of array Y is computed for each loop index value.
C
            DO 70 I = 1, NY
C
C              Compute
C
C              /x(i+1)\    /A, B\   /x(i)\
C              |      | =  |    | * |    | .
C              \ y(i) /    \C, D/   \u(i)/
C
               CALL DCOPY( M, U(I,1), LDU, DWORK(IU), 1 )
               CALL DGEMV( 'NoTranspose', NP, NM, ONE, S, LDS, DWORK, 1,
     $                     ZERO, DWORK(JW), 1 )
               CALL DCOPY( N, DWORK(JW), 1, DWORK, 1 )
               CALL DCOPY( P, DWORK(IY), 1, Y(I,1), LDY )
   70       CONTINUE
C
         ELSE
C
C           LDWORK >= 2*(2*N+M+P), and large problem.
C           NS rows of array Y are computed before being saved.
C
            NF  = ( NY/NS )*NS
            N2M = N + NM
C
            DO 110 I = 1, NF, NS
               JW = 1
C
C              Compute the current NS extended state vectors in the
C              workspace:
C
C              /x(i+1)\    /A, B\   /x(i)\
C              |      | =  |    | * |    | ,  i = 1 : ns - 1.
C              \ y(i) /    \C, D/   \u(i)/
C
               DO 80 J = 1, M
                  CALL DCOPY( NS, U(I,J), 1, DWORK(N+J), IW )
   80          CONTINUE
C
               DO 90 K = 1, NS - 1
                  CALL DGEMV( 'No transpose', NP, NM, ONE, S, LDS,
     $                        DWORK(JW), 1, ZERO, DWORK(JW+NM), 1 )
                  JW = JW + NM
                  CALL DCOPY( N, DWORK(JW), 1, DWORK(JW+NP), 1 )
                  JW = JW + NP
   90          CONTINUE
C
C              Prepare the next iteration.
C
               CALL DGEMV( 'No transpose', NP, NM, ONE, S, LDS,
     $                     DWORK(JW), 1, ZERO, DWORK(JW+NM), 1 )
               CALL DCOPY( N, DWORK(JW+NM), 1, DWORK, 1 )
C
C              Transpose the NS output vectors in the corresponding part
C              of Y (column-wise).
C
               DO 100 J = 1, P
                  CALL DCOPY( NS, DWORK(N2M+J), IW, Y(I,J), 1 )
  100          CONTINUE
C
  110       CONTINUE
C
            NS = NY - NF
C
            IF ( NS.GT.1 ) THEN
               JW = 1
C
C              Compute similarly the last NS output vectors.
C
               DO 120 J = 1, M
                  CALL DCOPY( NS, U(NF+1,J), 1, DWORK(N+J), IW )
  120          CONTINUE
C
               DO 130 K = 1, NS - 1
                  CALL DGEMV( 'No transpose', NP, NM, ONE, S, LDS,
     $                        DWORK(JW), 1, ZERO, DWORK(JW+NM), 1 )
                  JW = JW + NM
                  CALL DCOPY( N, DWORK(JW), 1, DWORK(JW+NP), 1 )
                  JW = JW + NP
  130          CONTINUE
C
               CALL DGEMV( 'No transpose', NP, NM, ONE, S, LDS,
     $                     DWORK(JW), 1, ZERO, DWORK(JW+NM), 1 )
               CALL DCOPY( N, DWORK(JW+NM), 1, DWORK, 1 )
C
               DO 140 J = 1, P
                  CALL DCOPY( NS, DWORK(N2M+J), IW, Y(NF+1,J), 1 )
  140          CONTINUE
C
            ELSE IF ( NS.EQ.1 ) THEN
C
C              Compute similarly the last NS = 1 output vectors.
C
               CALL DCOPY( N, DWORK, 1, DWORK(NP+1), 1 )
               CALL DCOPY( M, U(NF+1,1), LDU, DWORK(N2P+1), 1 )
               CALL DGEMV( 'No transpose', NP, NM, ONE, S, LDS,
     $                     DWORK(NP+1), 1, ZERO, DWORK, 1 )
               CALL DCOPY( P, DWORK(N+1), 1, Y(NF+1,1), LDY )
C
            END IF
C
         END IF
C
C        Set the final state vector.
C
         CALL DCOPY( N, DWORK, 1, X, 1 )
C
      END IF
C
      RETURN
C *** Last line of TF01MX ***
      END