control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
      SUBROUTINE SB02PD( JOB, TRANA, UPLO, N, A, LDA, G, LDG, Q, LDQ, X,
     $                   LDX, RCOND, FERR, WR, WI, IWORK, DWORK, LDWORK,
     $                   INFO )
C
C     PURPOSE
C
C     To solve the real continuous-time matrix algebraic Riccati
C     equation
C
C        op(A)'*X + X*op(A) + Q - X*G*X = 0,
C
C     where op(A) = A or A' = A**T and G, Q are symmetric (G = G**T,
C     Q = Q**T). The matrices A, G and Q are N-by-N and the solution X
C     is an N-by-N symmetric matrix.
C
C     An error bound on the solution and a condition estimate are also
C     optionally provided.
C
C     It is assumed that the matrices A, G and Q are such that the
C     corresponding Hamiltonian matrix has N eigenvalues with negative
C     real parts.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     JOB     CHARACTER*1
C             Specifies the computation to be performed, as follows:
C             = 'X':  Compute the solution only;
C             = 'A':  Compute all: the solution, reciprocal condition
C                     number, and the error bound.
C
C     TRANA   CHARACTER*1
C             Specifies the option op(A):
C             = 'N':  op(A) = A    (No transpose);
C             = 'T':  op(A) = A**T (Transpose);
C             = 'C':  op(A) = A**T (Conjugate transpose = Transpose).
C
C     UPLO    CHARACTER*1
C             Specifies which triangle of the matrices G and Q is
C             stored, as follows:
C             = 'U':  Upper triangles of G and Q are stored;
C             = 'L':  Lower triangles of G and Q are stored.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrices A, G, Q, and X.  N >= 0.
C
C     A       (input) DOUBLE PRECISION array, dimension (LDA,N)
C             The leading N-by-N part of this array must contain the
C             coefficient matrix A of the equation.
C
C     LDA     INTEGER
C             The leading dimension of the array A.  LDA >= max(1,N).
C
C     G       (input) DOUBLE PRECISION array, dimension (LDG,N)
C             If UPLO = 'U', the leading N-by-N upper triangular part of
C             this array must contain the upper triangular part of the
C             matrix G.
C             If UPLO = 'L', the leading N-by-N lower triangular part of
C             this array must contain the lower triangular part of the
C             matrix G.
C
C     LDG     INTEGER
C             The leading dimension of the array G.  LDG >= max(1,N).
C
C     Q       (input) DOUBLE PRECISION array, dimension (LDQ,N)
C             If UPLO = 'U', the leading N-by-N upper triangular part of
C             this array must contain the upper triangular part of the
C             matrix Q.
C             If UPLO = 'L', the leading N-by-N lower triangular part of
C             this array must contain the lower triangular part of the
C             matrix Q.
C
C     LDQ     INTEGER
C             The leading dimension of the array Q.  LDQ >= max(1,N).
C
C     X       (output) DOUBLE PRECISION array, dimension (LDX,N)
C             If INFO = 0, INFO = 2, or INFO = 4, the leading N-by-N
C             part of this array contains the symmetric solution matrix
C             X of the algebraic Riccati equation.
C
C     LDX     INTEGER
C             The leading dimension of the array X.  LDX >= max(1,N).
C
C     RCOND   (output) DOUBLE PRECISION
C             If JOB = 'A', the estimate of the reciprocal condition
C             number of the Riccati equation.
C
C     FERR    (output) DOUBLE PRECISION
C             If JOB = 'A', the estimated forward error bound for the
C             solution X. If XTRUE is the true solution, FERR bounds the
C             magnitude of the largest entry in (X - XTRUE) divided by
C             the magnitude of the largest entry in X.
C
C     WR      (output) DOUBLE PRECISION array, dimension (N)
C     WI      (output) DOUBLE PRECISION array, dimension (N)
C             If JOB = 'A' and TRANA = 'N', WR and WI contain the real
C             and imaginary parts, respectively, of the eigenvalues of
C             the matrix A - G*X, i.e., the closed-loop system poles.
C             If JOB = 'A' and TRANA = 'T' or 'C', WR and WI contain the
C             real and imaginary parts, respectively, of the eigenvalues
C             of the matrix A - X*G, i.e., the closed-loop system poles.
C             If JOB = 'X', these arrays are not referenced.
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (LIWORK), where
C             LIWORK >= 2*N,          if JOB = 'X';
C             LIWORK >= max(2*N,N*N), if JOB = 'A'.
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0 or INFO = 2, DWORK(1) contains the
C             optimal value of LDWORK. If JOB = 'A', then DWORK(2:N*N+1)
C             and DWORK(N*N+2:2*N*N+1) contain a real Schur form of the
C             closed-loop system matrix, Ac = A - G*X (if TRANA = 'N')
C             or Ac = A - X*G (if TRANA = 'T' or 'C'), and the
C             orthogonal matrix which reduced Ac to real Schur form,
C             respectively.
C
C     LDWORK  INTEGER
C             The dimension of the array DWORK.
C             LDWORK >= 4*N*N + 8*N + 1,               if JOB = 'X';
C             LDWORK >= max( 4*N*N + 8*N + 1, 6*N*N ), if JOB = 'A'.
C             For good performance, LDWORK should be larger, e.g.,
C             LDWORK >= 4*N*N + 6*N +( 2*N+1 )*NB,     if JOB = 'X',
C             where NB is the optimal blocksize.
C
C             If LDWORK = -1, then a workspace query is assumed;
C             the routine only calculates the optimal size of the
C             DWORK array, returns this value as the first entry of
C             the DWORK array, and no error message related to LDWORK
C             is issued by XERBLA.
C
C     Error indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = 1:  the Hamiltonian matrix has eigenvalues on the
C                   imaginary axis, so the solution and error bounds
C                   could not be computed;
C             = 2:  the iteration for the matrix sign function failed to
C                   converge after 50 iterations, but an approximate
C                   solution and error bounds (if JOB = 'A') have been
C                   computed;
C             = 3:  the system of linear equations for the solution is
C                   singular to working precision, so the solution and
C                   error bounds could not be computed;
C             = 4:  the matrix A-G*X (or A-X*G) cannot be reduced to
C                   Schur canonical form and condition number estimate
C                   and forward error estimate have not been computed.
C
C     METHOD
C
C     The Riccati equation is solved by the matrix sign function
C     approach [1], [2], implementing a scaling which enhances the
C     numerical stability [4].
C
C     REFERENCES
C
C     [1] Bai, Z., Demmel, J., Dongarra, J., Petitet, A., Robinson, H.,
C         and Stanley, K.
C         The spectral decomposition of nonsymmetric matrices on
C         distributed memory parallel computers.
C         SIAM J. Sci. Comput., vol. 18, pp. 1446-1461, 1997.
C
C     [2] Byers, R., He, C., and Mehrmann, V.
C         The matrix sign function method and the computation of
C         invariant subspaces.
C         SIAM J. Matrix Anal. Appl., vol. 18, pp. 615-632, 1997.
C
C     [3] Higham, N.J.
C         Perturbation theory and backward error for AX-XB=C.
C         BIT, vol. 33, pp. 124-136, 1993.
C
C     [4] Petkov, P.Hr., Konstantinov, M.M., and Mehrmann, V.,
C         DGRSVX and DMSRIC: Fortran 77 subroutines for solving
C         continuous-time matrix algebraic Riccati equations with
C         condition and accuracy estimates.
C         Preprint SFB393/98-16, Fak. f. Mathematik, Technical
C         University Chemnitz, May 1998.
C
C     NUMERICAL ASPECTS
C
C     The solution accuracy can be controlled by the output parameter
C     FERR.
C
C     FURTHER COMMENTS
C
C     The condition number of the Riccati equation is estimated as
C
C     cond = ( norm(Theta)*norm(A) + norm(inv(Omega))*norm(Q) +
C                 norm(Pi)*norm(G) ) / norm(X),
C
C     where Omega, Theta and Pi are linear operators defined by
C
C     Omega(W) = op(Ac)'*W + W*op(Ac),
C     Theta(W) = inv(Omega(op(W)'*X + X*op(W))),
C        Pi(W) = inv(Omega(X*W*X)),
C
C     and the matrix Ac (the closed-loop system matrix) is given by
C        Ac = A - G*X, if TRANA = 'N', or
C        Ac = A - X*G, if TRANA = 'T' or 'C'.
C
C     The program estimates the quantities
C
C     sep(op(Ac),-op(Ac)') = 1 / norm(inv(Omega)),
C
C     norm(Theta) and norm(Pi) using 1-norm condition estimator.
C
C     The forward error bound is estimated using a practical error bound
C     similar to the one proposed in [3].
C
C     CONTRIBUTOR
C
C     P. Petkov, Tech. University of Sofia, March 2000.
C
C     REVISIONS
C
C     V. Sima, Katholieke Univ. Leuven, Belgium, June 2000; Aug. 2011.
C
C     KEYWORDS
C
C     Algebraic Riccati equation, continuous-time system,
C     optimal control, optimal regulator.
C
C     ******************************************************************
C
C     .. Parameters ..
      INTEGER            MAXIT
      PARAMETER          ( MAXIT = 50 )
      DOUBLE PRECISION   ZERO, HALF, ONE, TWO, TEN
      PARAMETER          ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0,
     $                     TWO  = 2.0D+0, TEN  = 10.0D+0 )
C     ..
C     .. Scalar Arguments ..
      CHARACTER          JOB, TRANA, UPLO
      INTEGER            INFO, LDA, LDG, LDQ, LDWORK, LDX, N
      DOUBLE PRECISION   FERR, RCOND
C     ..
C     .. Array Arguments ..
      INTEGER            IWORK( * )
      DOUBLE PRECISION   A( LDA, * ), DWORK( * ), G( LDG, * ),
     $                   Q( LDQ, * ), WI( * ), WR( * ), X( LDX, * )
C     ..
C     .. Local Scalars ..
      LOGICAL            ALL, LOWER, LQUERY, NOTRNA
      CHARACTER          EQUED, LOUP
      INTEGER            I, IAF, IB, IBR, IC, IFR, IJ, IJ1, IJ2, INFO2,
     $                   INI, IR, ISCL, ISV, IT, ITAU, ITER, IU, IWRK,
     $                   J, JI, LWAMAX, MINWRK, N2, SDIM
      DOUBLE PRECISION   CONV, GNORM2, EPS, HNORM, HINNRM, QNORM2,
     $                   SCALE, SEP, TEMP, TOL
C     ..
C     .. Local Arrays ..
      LOGICAL            BWORK( 1 )
C     ..
C     .. External Functions ..
      LOGICAL            LSAME, SELECT
      DOUBLE PRECISION   DLAMCH, DLANSY
      EXTERNAL           DLAMCH, DLANSY, LSAME, SELECT
C     ..
C     .. External Subroutines ..
      EXTERNAL           DCOPY, DGEES, DGEQP3, DGESVX, DLACPY, DLASCL,
     $                   DLASET, DORMQR, DSCAL, DSWAP, DSYMM, DSYTRF,
     $                   DSYTRI, MA02AD, MA02ED, SB02QD, XERBLA
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC          DBLE, INT, MAX, SQRT
C     ..
C     .. Executable Statements ..
C
C     Decode and Test input parameters.
C
      ALL    = LSAME( JOB,   'A' )
      NOTRNA = LSAME( TRANA, 'N' )
      LOWER  = LSAME( UPLO,  'L' )
      LQUERY = LDWORK.EQ.-1
C
      INFO = 0
      IF( .NOT.ALL .AND. .NOT.LSAME( JOB, 'X' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.LSAME( TRANA, 'T' ) .AND.
     $         .NOT.LSAME( TRANA, 'C' ) .AND. .NOT.NOTRNA ) THEN
         INFO = -2
      ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
         INFO = -3
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -6
      ELSE IF( LDG.LT.MAX( 1, N ) ) THEN
         INFO = -8
      ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
         INFO = -10
      ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
         INFO = -12
      ELSE
C
C        Compute workspace.
C
         N2 = 2*N
         IF( ALL ) THEN
            MINWRK = MAX( N2*N2 + 8*N + 1, 6*N*N )
         ELSE
            MINWRK = N2*N2 + 8*N + 1
         END IF
         ITAU = N2*N2
         IWRK = ITAU + N2
         IF ( LQUERY ) THEN
            CALL DSYTRF( UPLO, N2, DWORK, N2, IWORK, DWORK, -1, INFO2 )
            LWAMAX = INT( DWORK( 1 ) )
            CALL DGEQP3( N2, N2, DWORK, N2, IWORK, DWORK, DWORK, -1,
     $                   INFO2 )
            LWAMAX = MAX( INT( DWORK( 1 ) ), LWAMAX )
            CALL DORMQR( 'L', 'N', N2, N, N, DWORK, N2, DWORK, DWORK,
     $                   N2, DWORK, -1, INFO2 )
            LWAMAX = MAX( IWRK + MAX( INT( DWORK( 1 ) ), LWAMAX ),
     $                    MINWRK )
            IF( ALL ) THEN
               CALL DGEES( 'V', 'N', SELECT, N, DWORK, N, SDIM, WR, WI,
     $                     DWORK, N, DWORK, -1, BWORK, INFO2 )
               LWAMAX = MAX( N2*N + INT( DWORK( 1 ) ), LWAMAX )
               CALL SB02QD( 'B', 'F', TRANA, UPLO, 'O', N, A, LDA,
     $                      DWORK, N, DWORK, N, G, LDG, Q, LDQ, X, LDX,
     $                      SEP, RCOND, FERR, IWORK, DWORK, -1, INFO2 )
               LWAMAX = MAX( N2*N + INT( DWORK( 1 ) ), LWAMAX )
            END IF
         END IF
         IF( LDWORK.LT.MINWRK .AND. .NOT.LQUERY )
     $      INFO = -19
      END IF
C
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SB02PD', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         DWORK(1) = LWAMAX
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF( N.EQ.0 ) THEN
         IF( ALL ) THEN
            RCOND = ONE
            FERR  = ZERO
         END IF
         DWORK(1) = ONE
         RETURN
      END IF
C
C     Set tol.
C
      EPS = DLAMCH( 'P' )
      TOL = TEN*DBLE( N )*EPS
C
C     Compute the square-roots of the norms of the matrices Q and G .
C
      QNORM2 = SQRT( DLANSY( '1', UPLO, N, Q, LDQ, DWORK ) )
      GNORM2 = SQRT( DLANSY( '1', UPLO, N, G, LDG, DWORK ) )
C
C     Construct the lower (if UPLO = 'L') or upper (if UPLO = 'U')
C     triangle of the symmetric block-permuted Hamiltonian matrix.
C     During iteration, both the current iterate corresponding to the
C     Hamiltonian matrix, and its inverse are needed. To reduce the
C     workspace length, the transpose of the triangle specified by UPLO
C     of the current iterate H is saved in the opposite triangle,
C     suitably shifted with one column, and then the inverse of H
C     overwrites H. The triangles of the saved iterate and its inverse
C     are stored together in an 2*N-by-(2*N+1) matrix. For instance, if
C     UPLO = 'U', then the upper triangle is built starting from the
C     location 2*N+1 of the array DWORK, so that its transpose can be
C     stored in the lower triangle of DWORK.
C     Workspace: need   4*N*N,        if UPLO = 'L';
C                       4*N*N + 2*N,  if UPLO = 'U'.
C
      IF ( LOWER ) THEN
         INI  = 0
         ISV  = N2
         LOUP = 'U'
C
         DO 40 J = 1, N
            IJ = ( J - 1 )*N2 + J
C
            DO 10 I = J, N
               DWORK(IJ) = -Q(I,J)
               IJ = IJ + 1
   10       CONTINUE
C
            IF( NOTRNA ) THEN
C
               DO 20 I = 1, N
                  DWORK( IJ ) = -A( I, J )
                  IJ = IJ + 1
   20          CONTINUE
C
            ELSE
C
               DO 30 I = 1, N
                  DWORK( IJ ) = -A( J, I )
                  IJ = IJ + 1
   30          CONTINUE
C
            END IF
   40    CONTINUE
C
         DO 60 J = 1, N
            IJ = ( N + J - 1 )*N2 + N + J
C
            DO 50 I = J, N
               DWORK( IJ ) = G( I, J )
               IJ = IJ + 1
   50       CONTINUE
C
   60    CONTINUE
C
      ELSE
         INI  = N2
         ISV  = 0
         LOUP = 'L'
C
         DO 80 J = 1, N
            IJ = J*N2 + 1
C
            DO 70 I = 1, J
               DWORK(IJ) = -Q(I,J)
               IJ = IJ + 1
   70       CONTINUE
C
   80    CONTINUE
C
         DO 120 J = 1, N
            IJ = ( N + J )*N2 + 1
C
            IF( NOTRNA ) THEN
C
               DO 90 I = 1, N
                  DWORK( IJ ) = -A( J, I )
                  IJ = IJ + 1
   90          CONTINUE
C
            ELSE
C
               DO 100 I = 1, N
                  DWORK( IJ ) = -A( I, J )
                  IJ = IJ + 1
  100          CONTINUE
C
            END IF
C
            DO 110 I = 1, J
               DWORK( IJ ) = G( I, J )
               IJ = IJ + 1
  110       CONTINUE
C
  120    CONTINUE
C
      END IF
C
C     Block-scaling.
C
      ISCL = 0
      IF( QNORM2.GT.GNORM2 .AND. GNORM2.GT.ZERO ) THEN
         CALL DLASCL( UPLO, 0, 0, QNORM2, GNORM2, N, N, DWORK( INI+1 ),
     $                N2, INFO2 )
         CALL DLASCL( UPLO, 0, 0, GNORM2, QNORM2, N, N,
     $                DWORK( N2*N+N+INI+1 ), N2, INFO2 )
         ISCL = 1
      END IF
C
C     Compute the matrix sign function.
C
      DO 230 ITER = 1, MAXIT
C
C        Save the transpose of the corresponding triangle of the
C        current iterate in the free locations of the shifted opposite
C        triangle.
C        Workspace: need   4*N*N + 2*N.
C
         IF( LOWER ) THEN
C
            DO 130 I = 1, N2
               CALL DCOPY( I, DWORK( I ), N2, DWORK( I*N2+1 ), 1 )
  130       CONTINUE
C
         ELSE
C
            DO 140 I = 1, N2
               CALL DCOPY( I, DWORK( I*N2+1 ), 1, DWORK( I ), N2 )
  140       CONTINUE
C
         END IF
C
C        Store the norm of the Hamiltonian matrix.
C
         HNORM = DLANSY( 'F', UPLO, N2, DWORK( INI+1 ), N2, DWORK )
C
C        Compute the inverse of the block-permuted Hamiltonian matrix.
C        Workspace: need   4*N*N + 2*N + 1;
C                   prefer 4*N*N + 2*N + 2*N*NB.
C
         CALL DSYTRF( UPLO, N2, DWORK( INI+1 ), N2, IWORK,
     $                DWORK( IWRK+1 ), LDWORK-IWRK, INFO2 )
         IF( INFO2.GT.0 ) THEN
            INFO = 1
            RETURN
         END IF
         LWAMAX = MAX( LWAMAX, IWRK + INT( DWORK( IWRK+1 ) ) )
C
C        Workspace: need   4*N*N + 4*N.
C
         CALL DSYTRI( UPLO, N2, DWORK( INI+1 ), N2, IWORK,
     $                DWORK( IWRK+1 ), INFO2 )
C
C        Block-permutation of the inverse matrix.
C
         IF( LOWER ) THEN
C
            DO 160 J = 1, N
               IJ2 = ( N + J - 1 )*N2 + N + J
C
               DO 150 IJ1 = ( J - 1 )*N2 + J, ( J - 1 )*N2 + N
                  TEMP = DWORK( IJ1 )
                  DWORK( IJ1 ) = -DWORK( IJ2 )
                  DWORK( IJ2 ) = -TEMP
                  IJ2 = IJ2 + 1
  150          CONTINUE
C
               CALL DSWAP( J-1, DWORK( N+J ), N2, DWORK( (J-1)*N2+N+1 ),
     $                     1 )
  160       CONTINUE
C
         ELSE
C
            DO 180 J = 1, N
               IJ2 = ( N + J )*N2 + N + 1
C
               DO 170 IJ1 = J*N2 + 1, J*N2 + J
                  TEMP = DWORK( IJ1 )
                  DWORK( IJ1 ) = -DWORK( IJ2 )
                  DWORK( IJ2 ) = -TEMP
                  IJ2 = IJ2 + 1
  170          CONTINUE
C
               CALL DSWAP( J-1, DWORK( (N+1)*N2+J ), N2,
     $                     DWORK( (N+J)*N2+1 ), 1 )
  180       CONTINUE
C
         END IF
C
C        Scale the Hamiltonian matrix and its inverse and compute
C        the next iterate.
C
         HINNRM = DLANSY( 'F', UPLO, N2, DWORK( INI+1 ), N2, DWORK )
         SCALE  = SQRT( HINNRM / HNORM )
C
         IF( LOWER ) THEN
C
            DO 200 J = 1, N2
               JI = ( J - 1 )*N2 + J
C
               DO 190 IJ = JI, J*N2
                  JI = JI + N2
                  DWORK( IJ ) = ( DWORK( IJ ) / SCALE +
     $                            DWORK( JI )*SCALE ) / TWO
                  DWORK( JI ) =   DWORK( JI ) - DWORK( IJ )
  190          CONTINUE
C
  200       CONTINUE
C
         ELSE
C
            DO 220 J = 1, N2
               JI = J
C
               DO 210 IJ = J*N2 + 1, J*N2 + J
                  DWORK( IJ ) = ( DWORK( IJ ) / SCALE +
     $                            DWORK( JI )*SCALE ) / TWO
                  DWORK( JI ) =   DWORK( JI ) - DWORK( IJ )
                  JI = JI + N2
  210          CONTINUE
C
  220       CONTINUE
C
         END IF
C
C        Test for convergence.
C
         CONV = DLANSY( 'F', LOUP, N2, DWORK( ISV+1 ), N2, DWORK )
         IF( CONV.LE.TOL*HNORM ) GO TO 240
  230 CONTINUE
C
C     No convergence after MAXIT iterations, but an approximate solution
C     has been found.
C
      INFO = 2
C
  240 CONTINUE
C
C     If UPLO = 'U', shift the upper triangle one column to the left.
C
      IF( .NOT.LOWER )
     $   CALL DLACPY( 'U', N2, N2, DWORK( INI+1 ), N2, DWORK, N2 )
C
C     Divide the triangle elements by -2 and then fill-in the other
C     triangle by symmetry.
C
      IF( LOWER ) THEN
C
         DO 250 I = 1, N2
            CALL DSCAL( N2-I+1, -HALF, DWORK( (I-1)*N2+I ), 1 )
  250    CONTINUE
C
      ELSE
C
         DO 260 I = 1, N2
            CALL DSCAL( I, -HALF, DWORK( (I-1)*N2+1 ), 1 )
  260    CONTINUE
C
      END IF
      CALL MA02ED( UPLO, N2, DWORK, N2 )
C
C     Back block-permutation.
C
      DO 280 J = 1, N2
C
         DO 270 I = ( J - 1 )*N2 + 1, ( J - 1 )*N2 + N
            TEMP = DWORK( I )
            DWORK( I )   = -DWORK( I+N )
            DWORK( I+N ) = TEMP
  270    CONTINUE
C
  280 CONTINUE
C
C     Compute the QR decomposition of the projector onto the stable
C     invariant subspace.
C     Workspace: need   4*N*N + 8*N + 1.
C                prefer 4*N*N + 6*N + ( 2*N+1 )*NB.
C
      DO 290 I = 1, N2
         IWORK( I ) = 0
         DWORK( ( I-1 )*N2 + I ) = DWORK( ( I-1 )*N2 + I ) + HALF
  290 CONTINUE
C
      CALL DGEQP3( N2, N2, DWORK, N2, IWORK, DWORK( ITAU+1 ),
     $             DWORK( IWRK+1 ), LDWORK-IWRK, INFO2 )
      LWAMAX = MAX( LWAMAX, IWRK + INT( DWORK( IWRK+1 ) ) )
C
C     Accumulate the orthogonal transformations. Note that only the
C     first N columns of the array DWORK, returned by DGEQP3, are
C     needed, so that the last N columns of DWORK are used to get the
C     orthogonal basis for the stable invariant subspace.
C     Workspace: need   4*N*N + 3*N.
C                prefer 4*N*N + 2*N + N*NB.
C
      IB  = N*N
      IAF = N2*N
      CALL DLASET( 'F', N2, N, ZERO, ONE, DWORK( IAF+1 ), N2 )
      CALL DORMQR( 'L', 'N', N2, N, N, DWORK, N2, DWORK( ITAU+1 ),
     $             DWORK( IAF+1 ), N2, DWORK( IWRK+1 ), LDWORK-IWRK,
     $             INFO2 )
      LWAMAX = MAX( LWAMAX, IWRK + INT( DWORK( IWRK+1 ) ) )
C
C     Store the matrices V11 and V21' .
C
      CALL DLACPY( 'F', N, N, DWORK( IAF+1 ), N2, DWORK, N )
      CALL MA02AD( 'F', N, N, DWORK( IAF+N+1 ), N2, DWORK( IB+1 ), N )
C
      IR   = IAF + IB
      IC   = IR  + N
      IFR  = IC  + N
      IBR  = IFR + N
      IWRK = IBR + N
C
C     Compute the solution matrix X .
C     Workspace: need   3*N*N + 8*N.
C
      CALL DGESVX( 'E', 'T', N, N, DWORK, N, DWORK( IAF+1 ), N,
     $             IWORK, EQUED, DWORK( IR+1 ), DWORK( IC+1 ),
     $             DWORK( IB+1 ), N, X, LDX, RCOND, DWORK( IFR+1 ),
     $             DWORK( IBR+1 ), DWORK( IWRK+1 ), IWORK( N+1 ),
     $             INFO2 )
      IF( INFO2.GT.0 ) THEN
         INFO = 3
         RETURN
      END IF
C
C     Symmetrize the solution.
C
      DO 310 I = 1, N - 1
C
         DO 300 J = I + 1, N
            TEMP = ( X( I, J ) + X( J, I ) ) / TWO
            X( I, J ) = TEMP
            X( J, I ) = TEMP
  300    CONTINUE
C
  310 CONTINUE
C
C     Undo scaling for the solution matrix.
C
      IF( ISCL.EQ.1 ) THEN
         CALL DLASCL( 'G', 0, 0, GNORM2, QNORM2, N, N, X, LDX, INFO2 )
      END IF
C
      IF( ALL ) THEN
C
C        Compute the estimates of the reciprocal condition number and
C        error bound.
C        Workspace usage.
C
         IT   = 0
         IU   = IT + N*N
         IWRK = IU + N*N
C
         CALL DLACPY( 'Full', N, N, A, LDA, DWORK( IT+1 ), N )
         IF( NOTRNA ) THEN
C
C           Compute Ac = A-G*X .
C
            CALL DSYMM( 'L', UPLO, N, N, -ONE, G, LDG, X, LDX, ONE,
     $                  DWORK( IT+1 ), N )
         ELSE
C
C           Compute Ac = A-X*G .
C
            CALL DSYMM( 'R', UPLO, N, N, -ONE, G, LDG, X, LDX, ONE,
     $                  DWORK( IT+1 ), N )
         END IF
C
C        Compute the Schur factorization of Ac .
C        Workspace: need   2*N*N + 5*N;
C                   prefer larger.
C
         CALL DGEES( 'V', 'N', SELECT, N, DWORK( IT+1 ), N, SDIM, WR,
     $               WI, DWORK( IU+1 ), N, DWORK( IWRK+1 ), LDWORK-IWRK,
     $               BWORK, INFO2 )
         IF( INFO2.GT.0 ) THEN
            INFO = 4
            RETURN
         END IF
         LWAMAX = MAX( LWAMAX, IWRK + INT( DWORK( IWRK+1 ) ) )
C
C        Estimate the reciprocal condition number and the forward error.
C        Workspace: need   6*N*N;
C                   prefer larger.
C
         CALL SB02QD( 'B', 'F', TRANA, UPLO, 'O', N, A, LDA,
     $                DWORK( IT+1 ), N, DWORK( IU+1 ), N, G, LDG, Q,
     $                LDQ, X, LDX, SEP, RCOND, FERR, IWORK,
     $                DWORK( IWRK+1 ), LDWORK-IWRK, INFO2 )
         LWAMAX = MAX( LWAMAX, IWRK + INT( DWORK( IWRK+1 ) ) )
      END IF
C
      DWORK( 1 ) = DBLE( LWAMAX )
      RETURN
C *** Last line of SB02PD
      END