control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
      SUBROUTINE AB08NY( FIRST, N, M, P, SVLMAX, ABCD, LDABCD, NINFZ,
     $                   NR, PR, DINFZ, NKRONL, INFZ, KRONL, TOL, IWORK,
     $                   DWORK, LDWORK, INFO )
C
C     PURPOSE
C
C     To extract from the (N+P)-by-(M+N) system pencil
C                  ( B  A-lambda*I )
C                  ( D      C      )
C     an (NR+PR)-by-(M+NR) "reduced" system pencil,
C                  ( Br Ar-lambda*I ),
C                  ( Dr     Cr      )
C     having the same transmission zeros, but with Dr of full row rank.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     FIRST   LOGICAL
C             Specifies if AB08NY is called first time, or it is called
C             for an already reduced system, with D of full column rank,
C             with the last M rows in upper triangular form:
C             FIRST = .TRUE.  :  first time called;
C             FIRST = .FALSE. :  not first time called.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The number of rows of the matrix B, the number of columns
C             of the matrix C, and the order of the square matrix A.
C             N >= 0.
C
C     M       (input) INTEGER
C             The number of columns of the matrices B and D.  M >= 0.
C             M <= P, if FIRST = .FALSE.
C
C     P       (input) INTEGER
C             The number of rows of the matrices C and D.  P >= 0.
C
C     SVLMAX  (input) DOUBLE PRECISION
C             An estimate of the largest singular value of the original
C             matrix ABCD (for instance, the Frobenius norm of ABCD).
C             SVLMAX >= 0.
C
C     ABCD    (input/output) DOUBLE PRECISION array, dimension
C             (LDABCD,M+N)
C             On entry, the leading (N+P)-by-(M+N) part of this array
C             must contain the compound matrix
C                      (  B   A  ),
C                      (  D   C  )
C             where A is an N-by-N matrix, B is an N-by-M matrix,
C             C is a P-by-N matrix, and D is a P-by-M matrix.
C             If FIRST = .FALSE., then D must be a full column rank
C             matrix, with the last M rows in an upper triangular form.
C             On exit, the leading (NR+PR)-by-(M+NR) part of this array
C             contains the reduced compound matrix
C                       (  Br  Ar ),
C                       (  Dr  Cr )
C             where Ar is an NR-by-NR matrix, Br is an NR-by-M matrix,
C             Cr is a PR-by-NR matrix, and Dr is a PR-by-M full row rank
C             left upper-trapezoidal matrix, with the first PR columns
C             in an upper triangular form.
C
C     LDABCD  INTEGER
C             The leading dimension of the array ABCD.
C             LDABCD >= MAX(1,N+P).
C
C     NINFZ   (input/output) INTEGER
C             On entry, the currently computed number of infinite zeros.
C             It should be initialized to zero on the first call.
C             NINFZ >= 0.
C             If FIRST = .FALSE., then NINFZ is not modified.
C             On exit, the number of infinite zeros.
C
C     NR      (output) INTEGER
C             The order of the reduced matrix Ar; also, the number of
C             rows of the reduced matrix Br and the number of columns of
C             the reduced matrix Cr.
C             If Dr is invertible, NR is also the number of finite Smith
C             zeros.
C
C     PR      (output) INTEGER
C             The normal rank of the transfer-function matrix of the
C             original system; also, the number of rows of the reduced
C             matrices Cr and Dr.
C
C     DINFZ   (output) INTEGER
C             The maximal multiplicity of infinite zeros.
C             DINFZ = 0 if FIRST = .FALSE. .
C
C     NKRONL  (output) INTEGER
C             The maximal dimension of left elementary Kronecker blocks.
C
C     INFZ    (output) INTEGER array, dimension (N)
C             INFZ(i) contains the number of infinite zeros of degree i,
C             where i = 1,2,...,DINFZ.
C             INFZ is not referenced if FIRST = .FALSE. .
C
C     KRONL   (output) INTEGER array, dimension (N+1)
C             KRONL(i) contains the number of left elementary Kronecker
C             blocks of dimension i-by-(i-1), where i = 1,2,...,NKRONL.
C
C     Tolerances
C
C     TOL     DOUBLE PRECISION
C             A tolerance used in rank decisions to determine the
C             effective rank, which is defined as the order of the
C             largest leading (or trailing) triangular submatrix in the
C             QR (or RQ) factorization with column (or row) pivoting
C             whose estimated condition number is less than 1/TOL.
C             NOTE that when SVLMAX > 0, the estimated ranks could be
C             less than those defined above (see SVLMAX).
C             If the user sets TOL to be less than or equal to zero,
C             then the tolerance is taken as (N+P)*(N+M)*EPS, where EPS
C             is the machine precision (see LAPACK Library Routine
C             DLAMCH).  TOL < 1.
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (MAX(M,P))
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) returns the optimal value
C             of LDWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             LDWORK >= 1, if MIN(P, MAX(N,M)) = 0; otherwise,
C             LDWORK >= MAX( MIN(P,M) + M + MAX(2*M,N) - 1,
C                            MIN(P,N) + MAX(N + MAX( P, M), 3*P - 1 ) ).
C             For optimum performance LDWORK should be larger.
C
C             If LDWORK = -1, then a workspace query is assumed;
C             the routine only calculates the optimal size of the
C             DWORK array, returns this value as the first entry of
C             the DWORK array, and no error message related to LDWORK
C             is issued by XERBLA.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     REFERENCES
C
C     [1] Svaricek, F.
C         Computation of the Structural Invariants of Linear
C         Multivariable Systems with an Extended Version of the
C         Program ZEROS.
C         System & Control Letters, 6, pp. 261-266, 1985.
C
C     [2] Emami-Naeini, A. and Van Dooren, P.
C         Computation of Zeros of Linear Multivariable Systems.
C         Automatica, 18, pp. 415-430, 1982.
C
C     NUMERICAL ASPECTS
C
C     The algorithm is numerically backward stable and requires
C     0( (P+N)*(M+N)*N )  floating point operations.
C
C     FURTHER COMMENTS
C
C     The number of infinite zeros is computed (if FIRST = .TRUE.) as
C
C                   DINFZ
C        NINFZ =     Sum  (INFZ(i)*i .
C                    i=1
C
C     Note that each infinite zero of multiplicity k corresponds to an
C     infinite eigenvalue of multiplicity k+1.
C     The multiplicities of the infinite eigenvalues can be determined
C     from PR, DINFZ and INFZ(i), i = 1, ..., DINFZ, as follows:
C
C                     DINFZ
C     - there are PR - Sum (INFZ(i)) simple infinite eigenvalues;
C                      i=1
C
C     - there are INFZ(i) infinite eigenvalues with multiplicity i+1,
C       for i = 1, ..., DINFZ.
C
C     The left Kronecker indices are:
C
C     [ 0  0 ...  0  | 1  1  ...  1 |  .... | NKRONL  ...  NKRONL ]
C     |<- KRONL(1) ->|<- KRONL(2) ->|       |<-  KRONL(NKRONL)  ->|
C
C     CONTRIBUTOR
C
C     V. Sima, Katholieke Univ. Leuven, Belgium.
C     A. Varga, DLR Oberpfaffenhofen, Germany, May 1999.
C     Supersedes Release 3.0 routine AB08BX.
C
C     REVISIONS
C
C     A. Varga, DLR Oberpfaffenhofen, Germany, March 2002.
C     V. Sima, Dec. 2016, Jan. 2017, Feb. 2018.
C
C     KEYWORDS
C
C     Generalized eigenvalue problem, Kronecker indices, multivariable
C     system, orthogonal transformation, structural invariant.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      LOGICAL           FIRST
      INTEGER           DINFZ, INFO, LDABCD, LDWORK, M, N, NINFZ,
     $                  NKRONL, NR, P, PR
      DOUBLE PRECISION  SVLMAX, TOL
C     .. Array Arguments ..
      INTEGER           INFZ(*), IWORK(*), KRONL(*)
      DOUBLE PRECISION  ABCD(LDABCD,*), DWORK(*)
C     .. Local Scalars ..
      LOGICAL           LQUERY
      INTEGER           I, I1, ICOL, IRC, IROW, ITAU, JWORK, K, MN, MNR,
     $                  MNTAU, MP1, MPM, MPN, MUI, MUIM1, NBLCKS, PN,
     $                  RANK, RO, RO1, SIGMA, TAUI, WRKOPT
      DOUBLE PRECISION  RCOND
C     .. Local Arrays ..
      DOUBLE PRECISION  SVAL(3)
C     .. External Functions ..
      DOUBLE PRECISION  DLAMCH
      EXTERNAL          DLAMCH
C     .. External Subroutines ..
      EXTERNAL          DLAPMT, DLASET, DORMQR, DORMRQ, MB03OY, MB03PY,
     $                  MB04ID, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         DBLE, INT, MAX, MIN
C     .. Executable Statements ..
C
      INFO = 0
      PN   = P + N
      MN   = M + N
      MPN  = MIN( P, N )
      MPM  = MIN( P, M )
C
C     Test the input scalar arguments.
C
      IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( M.LT.0 .OR. (.NOT.FIRST .AND. M.GT.P ) ) THEN
         INFO = -3
      ELSE IF( P.LT.0 ) THEN
         INFO = -4
      ELSE IF( SVLMAX.LT.ZERO ) THEN
         INFO = -5
      ELSE IF( LDABCD.LT.MAX( 1, PN ) ) THEN
         INFO = -7
      ELSE IF( NINFZ.LT.0 .OR. ( FIRST .AND. NINFZ.GT.0 ) ) THEN
         INFO = -8
      ELSE IF( TOL.GE.ONE ) THEN
         INFO = -15
      ELSE
         LQUERY = ( LDWORK.EQ.-1 )
         IF( MIN( P, MAX( N, M ) ).EQ.0 ) THEN
            JWORK = 1
         ELSE
            JWORK = MAX( MPM + M + MAX( 2*M, N ) - 1,
     $                   MPN + MAX( N + MAX( P, M) , 3*P - 1 ) )
         END IF
         IF( LQUERY ) THEN
            IF( M.GT.0 ) THEN
               CALL MB04ID( P, MPM, M-1, N, ABCD, LDABCD, ABCD, LDABCD,
     $                      DWORK, DWORK, -1, INFO )
               WRKOPT = MAX( JWORK, MPM + INT( DWORK(1) ) )
               CALL DORMQR( 'Left', 'Transpose', P, N, MPM, ABCD,
     $                      LDABCD, DWORK, ABCD, LDABCD, DWORK, -1,
     $                      INFO )
               WRKOPT = MAX( WRKOPT, MPM + INT( DWORK(1) ) )
            ELSE
               WRKOPT = JWORK
            END IF
            CALL DORMRQ( 'Right', 'Transpose', PN, N, MPN, ABCD, LDABCD,
     $                   DWORK, ABCD, LDABCD, DWORK, -1, INFO )
            WRKOPT = MAX( WRKOPT, MPN + INT( DWORK(1) ) )
            CALL DORMRQ( 'Left', 'NoTranspose', N, MN, MPN, ABCD,
     $                   LDABCD, DWORK, ABCD, LDABCD, DWORK, -1, INFO )
            WRKOPT = MAX( WRKOPT, MPN + INT( DWORK(1) ) )
         ELSE IF( LDWORK.LT.JWORK ) THEN
            INFO = -18
         END IF
      END IF
C
      IF ( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'AB08NY', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         DWORK(1) = WRKOPT
         RETURN
      END IF
C
C     Initialize output variables.
C
      PR = P
      NR = N
C
      DINFZ  = 0
      NKRONL = 0
C
C     Quick return if possible.
C
      IF( P.EQ.0 ) THEN
         DWORK(1) = ONE
         RETURN
      END IF
C
      IF( MAX( N, M ).EQ.0 ) THEN
         PR       = 0
         NKRONL   = 1
         KRONL(1) = P
         DWORK(1) = ONE
         RETURN
      END IF
C
      WRKOPT = 1
      RCOND  = TOL
      IF( RCOND.LE.ZERO ) THEN
C
C        Use the default tolerance in rank determination.
C
         RCOND = DBLE( PN*MN )*DLAMCH( 'EPSILON' )
      END IF
C
C     The D matrix is (RO+SIGMA)-by-M, where RO = P - SIGMA and
C     SIGMA = 0, for FIRST = .TRUE., and SIGMA = M, for FIRST = .FALSE..
C     The leading (RO+SIGMA)-by-SIGMA submatrix of D has full column
C     rank, with the trailing SIGMA-by-SIGMA submatrix upper triangular.
C
      IF( FIRST ) THEN
         SIGMA = 0
      ELSE
         SIGMA = M
      END IF
      RO  = P - SIGMA
      MP1 = M + 1
      MUI = 0
C
      NBLCKS = 0
      ITAU   = 1
C
   10 CONTINUE
C
C     Main reduction loop:
C
C            M   NR                  M     NR
C      NR  [ B   A ]           NR  [ B     A ]
C      PR  [ D   C ]  -->    SIGMA [ RD   C1 ]   (SIGMA = rank(D) =
C                             TAU  [ 0    C2 ]    row size of RD)
C
C                                    M   NR-MUI MUI
C                           NR-MUI [ B1   A11   A12 ]
C                     -->     MUI  [ B2   A21   A22 ]  (MUI = rank(C2) =
C                            SIGMA [ RD   C11   C12 ]   col size of LC)
C                             TAU  [ 0     0    LC  ]
C
C                                    M   NR-MUI
C                           NR-MUI [ B1   A11 ]     NR := NR - MUI
C                                  [----------]     PR := MUI + SIGMA
C                     -->     MUI  [ B2   A21 ]      D := [B2;RD]
C                            SIGMA [ RD   C11 ]      C := [A21;C11]
C
      IF ( PR.EQ.0 )
     $   GO TO 20
C
C     (Note: Comments in the code beginning "Workspace:" describe the
C     minimal amount of real workspace needed at that point in the
C     code, as well as the preferred amount for good performance.)
C
      RO1  = RO
      MNR  = M + NR
C
      IF ( M.GT.0 ) THEN
C
C        Compress columns of D; first, exploit the trapezoidal shape of
C        the (RO+SIGMA)-by-SIGMA matrix in the first SIGMA columns of D;
C        compress the first SIGMA columns without column pivoting:
C
C              ( x x x x x )       ( x x x x x )
C              ( x x x x x )       ( 0 x x x x )
C              ( x x x x x )  - >  ( 0 0 x x x )
C              ( 0 x x x x )       ( 0 0 0 x x )
C              ( 0 0 x x x )       ( 0 0 0 x x )
C
C        where SIGMA = 3 and RO = 2.
C
         IROW = NR + 1
         IF ( SIGMA.GT.0 ) THEN
            JWORK = ITAU + SIGMA
C
C           Compress rows of D.  First, exploit the triangular shape.
C           Workspace: need   min(P,M) + M+N-1;
C                      prefer larger.
C
            CALL MB04ID( RO+SIGMA, SIGMA, SIGMA-1, MNR-SIGMA,
     $                   ABCD(IROW,1), LDABCD, ABCD(IROW,SIGMA+1),
     $                   LDABCD, DWORK(ITAU), DWORK(JWORK),
     $                   LDWORK-JWORK+1, INFO )
            CALL DLASET( 'Lower', RO+SIGMA-1, SIGMA, ZERO, ZERO,
     $                   ABCD(IROW+1,1), LDABCD )
            WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) ) + JWORK - 1 )
         END IF
C
         IF( FIRST ) THEN
C
C           Continue with Householder with column pivoting.
C
C              ( x x x x x )       ( x x x x x )
C              ( 0 x x x x )       ( 0 x x x x )
C              ( 0 0 x x x )  ->   ( 0 0 x x x )
C              ( 0 0 0 x x )       ( 0 0 0 x x )
C              ( 0 0 0 x x )       ( 0 0 0 0 0 )
C
C           Workspace: need   min(P,M) + 3*M-1.
C           Int.work.  need   M.
C
            JWORK = ITAU + MIN( RO1, M-SIGMA )
C
            IROW = MIN( NR+SIGMA+1, PN )
            ICOL = MIN( SIGMA+1,M )
            CALL MB03OY( RO1, M-SIGMA, ABCD(IROW,ICOL), LDABCD, RCOND,
     $                   SVLMAX, RANK, SVAL, IWORK, DWORK(ITAU),
     $                   DWORK(JWORK), INFO )
            WRKOPT = MAX( WRKOPT, JWORK + 3*( M-SIGMA ) - 1 )
C
C           Apply the column permutations to B and part of D.
C
            CALL DLAPMT( .TRUE., NR+SIGMA, M-SIGMA, ABCD(1,ICOL),
     $                   LDABCD, IWORK )
C
            IF ( RANK.GT.0 ) THEN
C
C              Apply the Householder transformations to the submatrix C.
C              Workspace: need   min(P,M) + N.
C                         prefer min(P,M) + N*NB.
C
               CALL DORMQR( 'Left', 'Transpose', RO1, NR, RANK,
     $                      ABCD(IROW,ICOL), LDABCD, DWORK(ITAU),
     $                      ABCD(IROW,MP1),  LDABCD, DWORK(JWORK),
     $                      LDWORK-JWORK+1, INFO )
               WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) ) + JWORK - 1 ) 
               CALL DLASET( 'Lower', RO1-1, MIN( RO1-1, RANK ), ZERO,
     $                      ZERO, ABCD(MIN( PN, IROW+1 ),ICOL), LDABCD )
               RO1 = RO1 - RANK
            END IF
         END IF
C
C        Terminate if Dr has maximal row rank.
C
         IF( RO1.EQ.0 )
     $      GO TO 30
C
      END IF
C
C     Update SIGMA.
C
      SIGMA  = PR - RO1
C
      NBLCKS = NBLCKS + 1
      TAUI   = RO1
C
      IF ( NR.LE.0 ) THEN
         PR   = SIGMA
         RANK = 0
      ELSE
C
C        Compress the columns of C using RQ factorization with row
C        pivoting, P * C = R * Q.
C        The current C is the TAUI-by-NR matrix delimited by rows
C        IRC+1 to IRC+TAUI and columns M+1 to M+NR of ABCD.
C        The rank of the current C is computed in MUI.
C        Workspace: need   min(P,N) + 3*P-1.
C        Int.work.  need   P.
C
         IRC   = NR  + SIGMA
         I1    = IRC + 1
         MNTAU = MIN( TAUI, NR )
         JWORK = ITAU + MNTAU
C
         CALL MB03PY( TAUI, NR, ABCD(I1,MP1), LDABCD, RCOND, SVLMAX,
     $                RANK, SVAL, IWORK, DWORK(ITAU), DWORK(JWORK),
     $                INFO )
         WRKOPT = MAX( WRKOPT, JWORK + 3*TAUI - 1 )
C
         IF ( RANK.GT.0 ) THEN
            IROW = I1 + TAUI - RANK
C
C           Apply Q' to the first NR columns of [A; C1] from the right.
C           Workspace: need   min(P,N) +  N + SIGMA; SIGMA <= P;
C                      prefer min(P,N) + (N + SIGMA)*NB.
C
            CALL DORMRQ( 'Right', 'Transpose', IRC, NR, RANK,
     $                   ABCD(IROW,MP1), LDABCD, DWORK(MNTAU-RANK+1),
     $                   ABCD(1,MP1), LDABCD, DWORK(JWORK),
     $                   LDWORK-JWORK+1, INFO )
            WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) ) + JWORK - 1 )
C
C           Apply Q to the first NR rows and M + NR columns of [ B  A ]
C           from the left.
C           Workspace: need   min(P,N) +  M + N;
C                      prefer min(P,N) + (M + N)*NB.
C
            CALL DORMRQ( 'Left', 'NoTranspose', NR, MNR, RANK,
     $                   ABCD(IROW,MP1), LDABCD, DWORK(MNTAU-RANK+1),
     $                   ABCD, LDABCD, DWORK(JWORK), LDWORK-JWORK+1,
     $                   INFO )
            WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) ) + JWORK - 1 )
C
            CALL DLASET( 'Full', RANK, NR-RANK, ZERO, ZERO,
     $                   ABCD(IROW,MP1), LDABCD )
            IF ( RANK.GT.1 )
     $         CALL DLASET( 'Lower', RANK-1, RANK-1, ZERO, ZERO,
     $                      ABCD(IROW+1,MP1+NR-RANK), LDABCD )
         END IF
      END IF
C
   20 CONTINUE
      MUI = RANK
      NR  = NR    - MUI
      PR  = SIGMA + MUI
C
C     Set number of left Kronecker blocks of order (i-1)-by-i.
C
      KRONL(NBLCKS) = TAUI - MUI
C
C     Set number of infinite divisors of order i-1.
C
      IF( FIRST .AND. NBLCKS.GT.1 )
     $   INFZ(NBLCKS-1) = MUIM1 - TAUI
      MUIM1 = MUI
      RO    = MUI
C
C     Continue reduction if rank of current C is positive.
C
      IF( MUI.GT.0 )
     $   GO TO 10
C
C     Determine the maximal degree of infinite zeros and the number of
C     infinite zeros.
C
   30 CONTINUE
      IF( FIRST ) THEN
         IF( MUI.EQ.0 ) THEN
            DINFZ = MAX( 0, NBLCKS - 1 )
         ELSE
            DINFZ = NBLCKS
            INFZ(NBLCKS) = MUI
         END IF
         K = DINFZ
C
         DO 40 I = K, 1, -1
            IF( INFZ(I).NE.0 )
     $         GO TO 50
            DINFZ = DINFZ - 1
   40    CONTINUE
C
   50    CONTINUE
C
         DO 60 I = 1, DINFZ
            NINFZ = NINFZ + INFZ(I)*I
   60    CONTINUE
C
      END IF
C
C     Determine the maximal order of left elementary Kronecker blocks.
C
      NKRONL = NBLCKS
C
      DO 70 I = NBLCKS, 1, -1
         IF( KRONL(I).NE.0 )
     $      GO TO 80
         NKRONL = NKRONL - 1
   70 CONTINUE
C
   80 CONTINUE
C
      DWORK(1) = WRKOPT
      RETURN
C *** Last line of AB08NY ***
      END