control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
      SUBROUTINE SB02ND( DICO, FACT, UPLO, JOBL, N, M, P, A, LDA, B,
     $                   LDB, R, LDR, IPIV, L, LDL, X, LDX, RNORM, F,
     $                   LDF, OUFACT, IWORK, DWORK, LDWORK, INFO )
C
C     PURPOSE
C
C     To compute the optimal feedback matrix F for the problem of
C     optimal control given by
C
C                        -1
C          F = (R + B'XB)  (B'XA + L')                           (1)
C
C     in the discrete-time case and
C
C               -1
C          F = R  (B'X + L')                                     (2)
C
C     in the continuous-time case, where A, B and L are N-by-N, N-by-M
C     and N-by-M matrices respectively; R and X are M-by-M and N-by-N
C     symmetric matrices respectively.
C
C     Optionally, matrix R may be specified in a factored form, and L
C     may be zero.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     DICO    CHARACTER*1
C             Specifies the equation from which F is to be determined,
C             as follows:
C             = 'D':  Equation (1), discrete-time case;
C             = 'C':  Equation (2), continuous-time case.
C
C     FACT    CHARACTER*1
C             Specifies how the matrix R is given (factored or not), as
C             follows:
C             = 'N':  Array R contains the matrix R;
C             = 'D':  Array R contains a P-by-M matrix D, where R = D'D;
C             = 'C':  Array R contains the Cholesky factor of R;
C             = 'U':  Array R contains the symmetric indefinite UdU' or
C                     LdL' factorization of R. This option is not
C                     available for DICO = 'D'.
C
C     UPLO    CHARACTER*1
C             Specifies which triangle of the possibly factored matrix R
C             (or R + B'XB, on exit) is or should be stored, as follows:
C             = 'U':  Upper triangle is stored;
C             = 'L':  Lower triangle is stored.
C
C     JOBL    CHARACTER*1
C             Specifies whether or not the matrix L is zero, as follows:
C             = 'Z':  L is zero;
C             = 'N':  L is nonzero.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrices A and X.  N >= 0.
C             No computations are performed if MIN(N,M) = 0.
C
C     M       (input) INTEGER
C             The number of system inputs.  M >= 0.
C
C     P       (input) INTEGER
C             The number of rows of the matrix D.
C             P >= M for DICO = 'C';
C             P >= 0 for DICO = 'D'.
C             This parameter must be specified only for FACT = 'D'.
C
C     A       (input) DOUBLE PRECISION array, dimension (LDA,N)
C             If DICO = 'D', the leading N-by-N part of this array must
C             contain the state matrix A of the system.
C             If DICO = 'C', this array is not referenced.
C
C     LDA     INTEGER
C             The leading dimension of array A.
C             LDA >= MAX(1,N) if DICO = 'D';
C             LDA >= 1        if DICO = 'C'.
C
C     B       (input/worksp.) DOUBLE PRECISION array, dimension (LDB,M)
C             The leading N-by-M part of this array must contain the
C             input matrix B of the system.
C             If DICO = 'D' and FACT = 'D' or 'C', the contents of this
C             array is destroyed. Specifically, if, on exit,
C             OUFACT(2) = 1, this array contains chol(X)*B, and if
C             OUFACT(2) = 2 and INFO < M+2, but INFO >= 0, its trailing
C             part (in the first N rows) contains the submatrix of
C             sqrt(V)*U'B corresponding to the non-negligible, positive
C             eigenvalues of X, where V and U are the matrices with the
C             eigenvalues and eigenvectors of X.
C             Otherwise, B is unchanged on exit.
C
C     LDB     INTEGER
C             The leading dimension of array B.  LDB >= MAX(1,N).
C
C     R       (input/output) DOUBLE PRECISION array, dimension (LDR,M)
C             On entry, if FACT = 'N', the leading M-by-M upper
C             triangular part (if UPLO = 'U') or lower triangular part
C             (if UPLO = 'L') of this array must contain the upper
C             triangular part or lower triangular part, respectively,
C             of the symmetric input weighting matrix R.
C             On entry, if FACT = 'D', the leading P-by-M part of this
C             array must contain the direct transmission matrix D of the
C             system.
C             On entry, if FACT = 'C', the leading M-by-M upper
C             triangular part (if UPLO = 'U') or lower triangular part
C             (if UPLO = 'L') of this array must contain the Cholesky
C             factor of the positive definite input weighting matrix R
C             (as produced by LAPACK routine DPOTRF).
C             On entry, if DICO = 'C' and FACT = 'U', the leading M-by-M
C             upper triangular part (if UPLO = 'U') or lower triangular
C             part (if UPLO = 'L') of this array must contain the
C             factors of the UdU' or LdL' factorization, respectively,
C             of the symmetric indefinite input weighting matrix R (as
C             produced by LAPACK routine DSYTRF).
C             The strictly lower triangular part (if UPLO = 'U') or
C             strictly upper triangular part (if UPLO = 'L') of this
C             array is used as workspace (filled in by symmetry with the
C             other strictly triangular part of R, of R+B'XB, or of the
C             result, if DICO = 'C', DICO = 'D', or (DICO = 'D' and
C             (FACT = 'D' or FACT = 'C') and UPLO = 'L'), respectively.
C             On exit, if OUFACT(1) = 1, and INFO = 0 (or INFO = M+1),
C             the leading M-by-M upper triangular part (if UPLO = 'U')
C             or lower triangular part (if UPLO = 'L') of this array
C             contains the Cholesky factor of the given input weighting
C             matrix R (for DICO = 'C'), or that of the matrix R + B'XB
C             (for DICO = 'D').
C             On exit, if OUFACT(1) = 2, and INFO = 0 (or INFO = M+1),
C             the leading M-by-M upper triangular part (if UPLO = 'U')
C             or lower triangular part (if UPLO = 'L') of this array
C             contains the factors of the UdU' or LdL' factorization,
C             respectively, of the given input weighting matrix
C             (for DICO = 'C'), or that of the matrix R + B'XB
C             (for DICO = 'D' and FACT = 'N').
C             On exit R is unchanged if FACT = 'U' or N = 0.
C
C     LDR     INTEGER.
C             The leading dimension of the array R.
C             LDR >= MAX(1,M)   if FACT <> 'D';
C             LDR >= MAX(1,M,P) if FACT =  'D'.
C
C     IPIV    (input/output) INTEGER array, dimension (M)
C             On entry, if FACT = 'U', this array must contain details
C             of the interchanges performed and the block structure of
C             the d factor in the UdU' or LdL' factorization of matrix R
C             (as produced by LAPACK routine DSYTRF).
C             On exit, if OUFACT(1) = 2, this array contains details of
C             the interchanges performed and the block structure of the
C             d factor in the UdU' or LdL' factorization of matrix R or
C             R + B'XB, as produced by LAPACK routine DSYTRF.
C             This array is not referenced if FACT = 'D', or FACT = 'C',
C             or N = 0.
C
C     L       (input) DOUBLE PRECISION array, dimension (LDL,M)
C             If JOBL = 'N', the leading N-by-M part of this array must
C             contain the cross weighting matrix L.
C             If JOBL = 'Z', this array is not referenced.
C
C     LDL     INTEGER
C             The leading dimension of array L.
C             LDL >= MAX(1,N) if JOBL = 'N';
C             LDL >= 1        if JOBL = 'Z'.
C
C     X       (input/output) DOUBLE PRECISION array, dimension (LDX,N)
C             On entry, the leading N-by-N part of this array must
C             contain the solution matrix X of the algebraic Riccati
C             equation as produced by SLICOT Library routines SB02MD or
C             SB02OD. Matrix X is assumed non-negative definite if
C             DICO = 'D' and (FACT = 'D' or FACT = 'C').
C             The full matrix X must be given on input if LDWORK < N*M
C             or if DICO = 'D' and (FACT = 'D' or FACT = 'C').
C             On exit, if DICO = 'D', FACT = 'D' or FACT = 'C', and
C             OUFACT(2) = 1, the N-by-N upper triangular part
C             (if UPLO = 'U') or lower triangular part (if UPLO = 'L')
C             of this array contains the Cholesky factor of the given
C             matrix X, which is found to be positive definite.
C             On exit, if DICO = 'D', FACT = 'D' or 'C', OUFACT(2) = 2,
C             and INFO < M+2 (but INFO >= 0), the leading N-by-N part of
C             this array contains the matrix of orthonormal eigenvectors
C             of X.
C             On exit X is unchanged if DICO = 'C' or FACT = 'N'.
C
C     LDX     INTEGER
C             The leading dimension of array X.  LDX >= MAX(1,N).
C
C     RNORM   (input) DOUBLE PRECISION
C             If FACT = 'U', this parameter must contain the 1-norm of
C             the original matrix R (before factoring it).
C             Otherwise, this parameter is not used.
C
C     F       (output) DOUBLE PRECISION array, dimension (LDF,N)
C             The leading M-by-N part of this array contains the
C             optimal feedback matrix F.
C             This array is not referenced if DICO = 'C' and FACT = 'D'
C             and P < M.
C
C     LDF     INTEGER
C             The leading dimension of array F.  LDF >= MAX(1,M).
C
C     OUFACT  (output) INTEGER array, dimension (2)
C             Information about the factorization finally used.
C             OUFACT(1) = 1:  Cholesky factorization of R (or R + B'XB)
C                             has been used;
C             OUFACT(1) = 2:  UdU' (if UPLO = 'U') or LdL' (if UPLO =
C                             'L') factorization of R (or R + B'XB)
C                             has been used;
C             OUFACT(2) = 1:  Cholesky factorization of X has been used;
C             OUFACT(2) = 2:  Spectral factorization of X has been used.
C             The value of OUFACT(2) is not set for DICO = 'C' or for
C             DICO = 'D' and FACT = 'N'.
C             This array is not set if N = 0 or M = 0.
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (M)
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0 or LDWORK = -1, DWORK(1) returns the
C             optimal value of LDWORK, and for LDWORK set as specified
C             below, DWORK(2) contains the reciprocal condition number
C             of the matrix R (for DICO = 'C') or of R + B'XB (for
C             DICO = 'D'); DWORK(2) is set to 1 if N = 0.
C             On exit, if LDWORK = -2 on input or INFO = -25, then
C             DWORK(1) returns the minimal value of LDWORK.
C             If on exit INFO = 0, and OUFACT(2) = 2, then DWORK(3),...,
C             DWORK(N+2) contain the eigenvalues of X, in ascending
C             order.
C
C     LDWORK  INTEGER
C             Dimension of working array DWORK.
C             LDWORK >= max(2,2*M)           if FACT =  'U';
C             LDWORK >= max(2,3*M)           if FACT <> 'U', DICO = 'C';
C             LDWORK >= max(2,3*M,N)         if FACT =  'N', DICO = 'D';
C             LDWORK >= max(N+3*M+2,4*N+1)   if FACT <> 'N', DICO = 'D'.
C             For optimum performance LDWORK should be larger.
C
C             If LDWORK = -1, an optimal workspace query is assumed; the
C             routine only calculates the optimal size of the DWORK
C             array, returns this value as the first entry of the DWORK
C             array, and no error message is issued by XERBLA.
C
C             If LDWORK = -2, a minimal workspace query is assumed; the
C             routine only calculates the minimal size of the DWORK
C             array, returns this value as the first entry of the DWORK
C             array, and no error message is issued by XERBLA.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = i:  if the i-th element of the d factor is exactly zero;
C                   the UdU' (or LdL') factorization has been completed,
C                   but the block diagonal matrix d is exactly singular;
C             = M+1:  if the matrix R (if DICO = 'C'), or R + B'XB
C                   (if DICO = 'D') is numerically singular (to working
C                   precision);
C             = M+2:  if one or more of the eigenvalues of X has not
C                   converged;
C             = M+3:  if the matrix X is indefinite and updating the
C                   triangular factorization failed.
C             If INFO > M+1, call the routine again with an appropriate,
C             unfactored matrix R.
C
C     METHOD
C
C     The optimal feedback matrix F is obtained as the solution to the
C     system of linear equations
C
C        (R + B'XB) * F = B'XA + L'
C
C     in the discrete-time case and
C
C        R * F = B'X + L'
C
C     in the continuous-time case, with R replaced by D'D if FACT = 'D'.
C     If FACT = 'N', Cholesky factorization is tried first, but
C     if the coefficient matrix is not positive definite, then UdU' (or
C     LdL') factorization is used. If FACT <> 'N', the factored form
C     of R is taken into account. The discrete-time case then involves
C     updating of a triangular factorization of R (or D'D); Cholesky or
C     symmetric spectral factorization of X is employed to avoid
C     squaring of the condition number of the matrix. When D is given,
C     its QR factorization is determined, and the triangular factor is
C     used as described above.
C
C     NUMERICAL ASPECTS
C
C     The algorithm consists of numerically stable steps.
C                                    3     2
C     For DICO = 'C', it requires O(m  + mn ) floating point operations
C                           2
C     if FACT = 'N' and O(mn ) floating point operations, otherwise.
C     For DICO = 'D', the operation counts are similar, but additional
C        3
C     O(n ) floating point operations may be needed in the worst case.
C     These estimates assume that M <= N.
C
C     CONTRIBUTORS
C
C     Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Sep. 1997.
C     Supersedes Release 2.0 routine SB02BD by M. Vanbegin, and
C     P. Van Dooren, Philips Research Laboratory, Brussels, Belgium.
C
C     REVISIONS
C
C     V. Sima, Research Institute for Informatics, Bucharest, Dec. 2013,
C     Jan. 2014.
C
C     KEYWORDS
C
C     Algebraic Riccati equation, closed loop system, continuous-time
C     system, discrete-time system, matrix algebra, optimal control,
C     optimal regulator.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE, TWO
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         DICO, FACT, JOBL, UPLO
      INTEGER           INFO, LDA, LDB, LDF, LDL, LDR, LDWORK, LDX, M,
     $                  N, P
      DOUBLE PRECISION  RNORM
C     .. Array Arguments ..
      INTEGER           IPIV(*), IWORK(*), OUFACT(2)
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), DWORK(*), F(LDF,*),
     $                  L(LDL,*), R(LDR,*), X(LDX,*)
C     .. Local Scalars ..
      LOGICAL           DISCR, LFACTA, LFACTC, LFACTD, LFACTU, LNFACT,
     $                  LUPLOU, SUFWRK, WITHL
      CHARACTER         NT, NUPLO, TR, TRL
      INTEGER           I, IFAIL, JW, JZ, MS, NR, WRKMIN, WRKOPT
      DOUBLE PRECISION  EPS, RCOND, RNORMP, TEMP
C     .. Local Arrays ..
      DOUBLE PRECISION  DUMMY(1)
C     .. External Functions ..
      LOGICAL           LSAME
      DOUBLE PRECISION  DLAMCH, DLANSY
      EXTERNAL          DLAMCH, DLANSY, LSAME
C     .. External Subroutines ..
      EXTERNAL          DAXPY, DCOPY, DGEMM, DGEQRF, DLACPY, DLASET,
     $                  DPOCON, DPOTRF, DPOTRS, DSCAL, DSYCON, DSYEV,
     $                  DSYMM, DSYTRF, DSYTRS, DTRCON, DTRMM, MA02AD,
     $                  MA02ED, MB01RB, MB04KD, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         ABS, DBLE, INT, MAX, MIN, SQRT
C     .. Executable Statements ..
C
      INFO   = 0
      DISCR  = LSAME( DICO, 'D' )
      LFACTC = LSAME( FACT, 'C' )
      LFACTD = LSAME( FACT, 'D' )
      LFACTU = LSAME( FACT, 'U' )
      LUPLOU = LSAME( UPLO, 'U' )
      WITHL  = LSAME( JOBL, 'N' )
      LFACTA = LFACTC .OR. LFACTD .OR. LFACTU
      LNFACT = .NOT.LFACTA
C
C     Test the input scalar arguments.
C
      IF( .NOT.DISCR .AND. .NOT.LSAME( DICO, 'C' ) ) THEN
         INFO = -1
      ELSE IF( ( LNFACT .AND. .NOT.LSAME( FACT, 'N' ) ) .OR.
     $         ( DISCR  .AND. LFACTU ) ) THEN
         INFO = -2
      ELSE IF( .NOT.LUPLOU .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -3
      ELSE IF( .NOT.WITHL  .AND. .NOT.LSAME( JOBL, 'Z' ) ) THEN
         INFO = -4
      ELSE IF( N.LT.0 ) THEN
         INFO = -5
      ELSE IF( M.LT.0 ) THEN
         INFO = -6
      ELSE IF( LFACTD .AND. ( P.LT.0 .OR. ( .NOT.DISCR .AND. P.LT.M ) )
     $       ) THEN
         INFO = -7
      ELSE IF( LDA.LT.1 .OR. ( DISCR .AND. LDA.LT.N ) ) THEN
         INFO = -9
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -11
      ELSE IF( LDR.LT.MAX( 1, M ) .OR. ( LFACTD .AND. 
     $         LDR.LT.MAX( 1, P ) ) ) THEN
         INFO = -13
      ELSE IF( LDL.LT.1 .OR. ( WITHL .AND. LDL.LT.N ) ) THEN
         INFO = -16
      ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
         INFO = -18
      ELSE IF( LFACTU ) THEN
         IF( RNORM.LT.ZERO )
     $      INFO = -19
      END IF
      IF ( INFO.EQ.0 ) THEN
         IF( LDF.LT.MAX( 1, M ) ) THEN
            INFO = -21
         ELSE
            IF ( DISCR ) THEN
               IF( LNFACT ) THEN
                  WRKMIN = MAX( 2, 3*M, N )
               ELSE
                  WRKMIN = MAX( N + 3*M + 2, 4*N + 1 )
               END IF
            ELSE
               IF( LFACTU ) THEN
                  WRKMIN = MAX( 2, 2*M )
               ELSE
                  WRKMIN = MAX( 2, 3*M )
               END IF
            END IF
            IF( LDWORK.EQ.-1 ) THEN
               WRKOPT = MAX( WRKMIN, N*M )
               IF ( LFACTD ) THEN
                  CALL DGEQRF( P, M, R, LDR, DWORK, DWORK, -1, IFAIL )
                  WRKOPT = MAX( WRKOPT, INT( DWORK(1) )+MIN( P, M ) )
               END IF
               IF( LFACTA ) THEN
                  IF( DISCR ) THEN
                     CALL DSYEV( 'Vectors', 'Lower', N, X, LDX, DWORK,
     $                           DWORK, -1, IFAIL )
                     WRKOPT = MAX( WRKOPT, INT( DWORK(1) )+N+2,
     $                             N*M+2*N+2 )
                  END IF
               ELSE
                  CALL DSYTRF( UPLO, M, R, LDR, IPIV, DWORK, -1, IFAIL )
                  WRKOPT = MAX( WRKOPT, INT( DWORK(1) ) )
               END IF
               DWORK(1) = WRKOPT
               RETURN
            ELSE IF( LDWORK.EQ.-2 ) THEN
               DWORK(1) = WRKMIN
               RETURN
            ELSE IF( LDWORK.LT.WRKMIN ) THEN
               INFO = -25
               DWORK(1) = WRKMIN
               RETURN
            END IF
         END IF
      END IF
C
      IF ( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'SB02ND', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF ( N.EQ.0 .OR. M.EQ.0 ) THEN
         DWORK(1) = TWO
         IF ( N.EQ.0 ) THEN
            DWORK(2) = ONE
         ELSE
            DWORK(2) = ZERO
         END IF
         RETURN
      END IF
C
      NT = 'No transpose'
      TR = 'Transpose'
C
      EPS = DLAMCH( 'Precision' )
C
C     Determine the right-hand side of the matrix equation, and R+B'XB,
C     if needed.
C     Compute  B'X  in F or XB in the workspace, if enough space. In the
C     first case and for DICO = 'D' and FACT = 'N', compute R+B'XB in R.
C     Then, compute in F
C        B'XA + L', if DICO = 'D';
C        B'X  + L', if DICO = 'C'.
C     In the second case, reverse the order of the last two steps.
C
C     (Note: Comments in the code beginning "Workspace:" describe the
C     minimal amount of real workspace needed at that point in the
C     code, as well as the preferred amount for good performance.
C     NB refers to the optimal block size for the immediately
C     following subroutine, as returned by ILAENV.)
C
C     Workspace: need   0;
C                prefer M*N. This will need only a triangle of X.
C
      WRKOPT = MAX( WRKMIN, N*M )
      SUFWRK = LDWORK.GE.N*M
      IF ( SUFWRK ) THEN
         IF ( DISCR .OR. .NOT.WITHL ) THEN
            CALL DSYMM(  'Left', UPLO, N, M, ONE, X, LDX, B, LDB, ZERO,
     $                   DWORK, N )
            IF ( WITHL ) THEN
               CALL MA02AD( 'All', N, M, L, LDL, F, LDF )
               CALL DGEMM(  TR, NT, M, N, N, ONE, DWORK, N, A, LDA, ONE,
     $                      F, LDF )
            ELSE IF ( DISCR ) THEN
               CALL DGEMM(  TR, NT, M, N, N, ONE, DWORK, N, A, LDA,
     $                      ZERO, F, LDF )
            ELSE
               CALL MA02AD( 'All', N, M, DWORK, N, F, LDF )
            END IF
         ELSE
            CALL DLACPY( 'All', N, M, L, LDL, DWORK, N )
            CALL DSYMM(  'Left', UPLO, N, M, ONE, X, LDX, B, LDB, ONE,
     $                   DWORK, N )
            CALL MA02AD( 'All', N, M, DWORK, N, F, LDF )
         END IF
      ELSE
         CALL DGEMM( TR, NT, M, N, N, ONE, B, LDB, X, LDX, ZERO,
     $               F, LDF )
      END IF
C
      IF ( LNFACT ) THEN
C
C        R not factored.
C
         IF ( DISCR ) THEN
C
C           Discrete-time case. Compute a triangle of R + B'XB.
C
            IF ( SUFWRK ) THEN
               CALL MB01RB( 'Left', UPLO, TR, M, N, ONE, ONE, R, LDR,
     $                      DWORK, N, B, LDB, IFAIL )
            ELSE
               CALL MB01RB( 'Left', UPLO, NT, M, N, ONE, ONE, R, LDR, F,
     $                      LDF, B, LDB, IFAIL )
            END IF
         END IF
C
C        Compute the 1-norm of the matrix  R  or  R + B'XB.
C        Workspace: need M.
C
         RNORMP = DLANSY( '1-norm', UPLO, M, R, LDR, DWORK )
      END IF
C
      IF ( DISCR .AND. .NOT.SUFWRK ) THEN
         MS = MAX( LDWORK/N, 1 )
C
C        Postmultiply B'X by A.
C        Workspace: need   N;
C                   prefer N*M.
C
         DO 10 I = 1, M, MS
            NR = MIN( MS, M-I+1 )
            CALL DLACPY( 'All', NR, N, F(I,1), LDF, DWORK, NR )
            CALL DGEMM(  NT, NT, NR, N, N, ONE, DWORK, NR, A, LDA, ZERO,
     $                   F(I,1), LDF )
   10    CONTINUE
C
      END IF
C
      IF( WITHL .AND. .NOT.SUFWRK ) THEN
C
C        Add L'.
C
         DO 20 I = 1, M
            CALL DAXPY( N, ONE, L(1,I), 1, F(I,1), LDF )
   20    CONTINUE
C
      END IF
C
C     Solve the matrix equation.
C
      IF ( LFACTA ) THEN
C
C        Case 1: Matrix R is given in a factored form.
C
         IF ( LFACTD ) THEN
C
C           Use QR factorization of D.
C           Workspace: need   min(P,M) + M,
C                      prefer min(P,M) + M*NB.
C
            JW = MIN( P, M ) + 1
            CALL DGEQRF( P, M, R, LDR, DWORK, DWORK(JW), LDWORK-JW+1,
     $                   IFAIL )
            WRKOPT = MAX( WRKOPT, INT( DWORK(JW) )+JW-1 )
            IF ( P.LT.M )
     $         CALL DLASET( 'Full', M-P, M, ZERO, ZERO, R(P+1,1), LDR )
C
C           Make positive the diagonal elements of the triangular
C           factor. Construct the strictly lower triangle, if requested.
C
            DO 30 I = 1, M
               IF ( R(I,I).LT.ZERO )
     $            CALL DSCAL( M-I+1, -ONE, R(I,I), LDR ) 
               IF ( .NOT.LUPLOU )
     $            CALL DCOPY( I-1, R(1,I), 1, R(I,1), LDR )
   30       CONTINUE
C
         END IF
C
         IF ( DISCR ) THEN
            JZ = 0
C
            IF ( LUPLOU ) THEN
               NUPLO = 'Lower'
            ELSE
               NUPLO = 'Upper'
            END IF
C
C           Discrete-time case. Update the factorization for B'XB.
C           Try first the Cholesky factorization of X, saving the
C           diagonal of X, in order to recover it, if X is not positive
C           definite. In the later case, use spectral factorization.
C           Workspace: need N.
C           Define     JW = 1   for Cholesky factorization of X,
C                      JW = N+3 for spectral factorization of X.
C
            CALL DCOPY(  N, X, LDX+1, DWORK, 1 )
            CALL DPOTRF( UPLO, N, X, LDX, IFAIL )
C
            IF ( IFAIL.EQ.0 ) THEN
C
C              Use Cholesky factorization of X to compute chol(X)*B.
C
               JW = 1
               OUFACT(2) = 1
               IF ( LUPLOU ) THEN
                  TRL = NT
               ELSE
                  TRL = TR
               END IF
               CALL DTRMM( 'Left', UPLO, TRL, 'Non unit', N, M, ONE, X,
     $                     LDX, B, LDB )
            ELSE
C
C              Use spectral factorization of X, X = UVU'.
C              Workspace: need   4*N+1,
C                         prefer N*(NB+2)+N+2.
C
               JW = N + 3
               OUFACT(2) = 2
               CALL DCOPY( N, DWORK, 1, X, LDX+1 )
               CALL DSYEV( 'Vectors', NUPLO, N, X, LDX, DWORK(3),
     $                     DWORK(JW), LDWORK-JW+1, IFAIL )
               IF ( IFAIL.GT.0 ) THEN
                  INFO = M + 2
                  RETURN
               END IF
               WRKOPT = MAX( WRKOPT, INT( DWORK(JW) )+JW-1 )
               TEMP   = ABS( DWORK(N+2) )*EPS*DBLE( N )
C
C              Check out the positive (semi-)definiteness of X.
C              First, count the negligible eigenvalues.
C
   40          CONTINUE
               IF ( ABS( DWORK(JZ+3) ).LE.TEMP ) THEN
                  JZ = JZ + 1
                  IF ( JZ.LT.N ) GO TO 40
               END IF
C
               IF ( LFACTD .AND. N-JZ+P.LT.M ) THEN
C
C                 The coefficient matrix is (numerically) singular.
C
                  OUFACT(1) = 1
                  DWORK(2)  = ZERO
                  INFO = M + 1
                  RETURN
               END IF
C
               IF ( DWORK(JZ+3).LT.ZERO ) THEN
C
C                 X is not positive (semi-)definite. Updating fails.
C
                  INFO = M + 3
                  RETURN
               ELSE
C
C                 Compute sqrt(V)U'B.
C                 Workspace: need     2*N+2;
C                            prefer N*M+N+2.
C
                  WRKOPT = MAX( WRKOPT, N*M + JW - 1 )
                  MS = MAX( ( LDWORK - JW + 1 )/N, 1 )
C
                  DO 50 I = 1, M, MS
                     NR = MIN( MS, M-I+1 )
                     CALL DLACPY( 'All', N, NR, B(1,I), LDB, DWORK(JW),
     $                            N )
                     CALL DGEMM(  TR, NT, N-JZ, NR, N, ONE, X(1,JZ+1),
     $                            LDX, DWORK(JW), N, ZERO, B(JZ+1,I),
     $                            LDB )
   50             CONTINUE
C
                  DO 60 I = JZ + 1, N
                     CALL DSCAL( M, SQRT( DWORK(I+2) ), B(I,1), LDB )
   60             CONTINUE
C
               END IF
C
            END IF
C
C           Update the triangular factorization.
C
            IF ( .NOT.LUPLOU )
C
C              Transpose the lower triangle for using MB04KD.
C
     $         CALL MA02ED( UPLO, M, R, LDR )
C
C           Workspace: need JW+2*M-1.
C
            CALL MB04KD( 'Full', M, 0, N-JZ, R, LDR, B(JZ+1,1), LDB,
     $                   DUMMY, N, DUMMY, M, DWORK(JW), DWORK(JW+M) )
C
C           Make positive the diagonal elements of the triangular
C           factor.
C
            DO 70 I = 1, M
               IF ( R(I,I).LT.ZERO )
     $            CALL DSCAL( M-I+1, -ONE, R(I,I), LDR )
   70       CONTINUE
C
            IF ( .NOT.LUPLOU )
C
C              Construct the lower triangle.
C
     $         CALL MA02ED( NUPLO, M, R, LDR )
C
         ELSE
            JW = 1
         END IF
C
C        Compute the condition number of the coefficient matrix.
C
         IF ( .NOT.LFACTU ) THEN
C
C           Workspace: need JW+3*M-1.
C
            CALL DTRCON( '1-norm', UPLO, 'Non unit', M, R, LDR, RCOND,
     $                    DWORK(JW), IWORK, IFAIL )
            OUFACT(1) = 1
         ELSE
C
C           Workspace: need 2*M.
C
            CALL DSYCON( UPLO, M, R, LDR, IPIV, RNORM, RCOND, DWORK,
     $                   IWORK, IFAIL )
            OUFACT(1) = 2
         END IF
C
      ELSE
C
C        Case 2: Matrix R is given in an unfactored form.
C
C        Save the given triangle of  R  or  R + B'XB  in the other
C        strict triangle and the diagonal in the workspace, and try
C        Cholesky factorization.
C        Workspace: need M.
C
         CALL DCOPY( M, R, LDR+1, DWORK, 1 )
         CALL MA02ED( UPLO, M, R, LDR )
         CALL DPOTRF( UPLO, M, R, LDR, IFAIL )
         IF( IFAIL.EQ.0 ) THEN
            OUFACT(1) = 1
C
C           Compute the reciprocal of the condition number of R.
C           Workspace: need 3*M.
C
            CALL DPOCON( UPLO, M, R, LDR, RNORMP, RCOND, DWORK, IWORK,
     $                   IFAIL )
         ELSE
            OUFACT(1) = 2
C
C           Use UdU' or LdL' factorization, first restoring the saved
C           triangle.
C
            CALL DCOPY( M, DWORK, 1, R, LDR+1 )
            IF ( LUPLOU ) THEN
               NUPLO = 'Lower'
            ELSE
               NUPLO = 'Upper'
            END IF
C
            CALL MA02ED( NUPLO, M, R, LDR )
C
C           Workspace: need   1,
C                      prefer M*NB.
C
            CALL DSYTRF( UPLO, M, R, LDR, IPIV, DWORK, LDWORK, INFO )
            IF( INFO.GT.0 )
     $         RETURN
            WRKOPT = MAX( WRKOPT, INT( DWORK(1) ) )
C
C           Compute the reciprocal of the condition number of R.
C           Workspace: need   2*M.
C
            CALL DSYCON( UPLO, M, R, LDR, IPIV, RNORMP, RCOND, DWORK,
     $                   IWORK, IFAIL )
         END IF
      END IF
C
C     Return if the matrix is singular to working precision.
C
      DWORK(2) = RCOND
      IF( RCOND.LT.EPS ) THEN
         INFO = M + 1
         RETURN
      END IF
C
      IF ( OUFACT(1).EQ.1 ) THEN
C
C        Solve the positive definite linear system.
C
         CALL DPOTRS( UPLO, M, N, R, LDR, F, LDF, IFAIL )
      ELSE
C
C        Solve the indefinite linear system.
C
         CALL DSYTRS( UPLO, M, N, R, LDR, IPIV, F, LDF, IFAIL )
      END IF
C
C     Set the optimal workspace.
C
      DWORK(1) = WRKOPT
C
      RETURN
C *** Last line of SB02ND ***
      END