control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
      SUBROUTINE SB10PD( N, M, NP, NCON, NMEAS, A, LDA, B, LDB, C, LDC,
     $                   D, LDD, TU, LDTU, TY, LDTY, RCOND, TOL, DWORK,
     $                   LDWORK, INFO )
C
C     PURPOSE
C
C     To reduce the matrices D12 and D21 of the linear time-invariant
C     system
C
C                   | A  | B1  B2  |   | A | B |
C               P = |----|---------| = |---|---|
C                   | C1 | D11 D12 |   | C | D |
C                   | C2 | D21 D22 |
C
C     to unit diagonal form, to transform the matrices B, C, and D11 to
C     satisfy the formulas in the computation of an H2 and H-infinity
C     (sub)optimal controllers and to check the rank conditions.
C
C     ARGUMENTS
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the system.  N >= 0.
C
C     M       (input) INTEGER
C             The column size of the matrix B.  M >= 0.
C
C     NP      (input) INTEGER
C             The row size of the matrix C.  NP >= 0.
C
C     NCON    (input) INTEGER
C             The number of control inputs (M2).  M >= NCON >= 0,
C             NP-NMEAS >= NCON.
C
C     NMEAS   (input) INTEGER
C             The number of measurements (NP2).  NP >= NMEAS >= 0,
C             M-NCON >= NMEAS.
C
C     A       (input) DOUBLE PRECISION array, dimension (LDA,N)
C             The leading N-by-N part of this array must contain the
C             system state matrix A.
C
C     LDA     INTEGER
C             The leading dimension of the array A.  LDA >= max(1,N).
C
C     B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C             On entry, the leading N-by-M part of this array must
C             contain the system input matrix B.
C             On exit, the leading N-by-M part of this array contains
C             the transformed system input matrix B.
C
C     LDB     INTEGER
C             The leading dimension of the array B.  LDB >= max(1,N).
C
C     C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C             On entry, the leading NP-by-N part of this array must
C             contain the system output matrix C.
C             On exit, the leading NP-by-N part of this array contains
C             the transformed system output matrix C.
C
C     LDC     INTEGER
C             The leading dimension of the array C.  LDC >= max(1,NP).
C
C     D       (input/output) DOUBLE PRECISION array, dimension (LDD,M)
C             On entry, the leading NP-by-M part of this array must
C             contain the system input/output matrix D. The
C             NMEAS-by-NCON trailing submatrix D22 is not referenced.
C             On exit, the leading (NP-NMEAS)-by-(M-NCON) part of this
C             array contains the transformed submatrix D11.
C             The transformed submatrices D12 = [ 0  Im2 ]' and
C             D21 = [ 0  Inp2 ] are not stored. The corresponding part
C             of this array contains no useful information.
C
C     LDD     INTEGER
C             The leading dimension of the array D.  LDD >= max(1,NP).
C
C     TU      (output) DOUBLE PRECISION array, dimension (LDTU,M2)
C             The leading M2-by-M2 part of this array contains the
C             control transformation matrix TU.
C
C     LDTU    INTEGER
C             The leading dimension of the array TU.  LDTU >= max(1,M2).
C
C     TY      (output) DOUBLE PRECISION array, dimension (LDTY,NP2)
C             The leading NP2-by-NP2 part of this array contains the
C             measurement transformation matrix TY.
C
C     LDTY    INTEGER
C             The leading dimension of the array TY.
C             LDTY >= max(1,NP2).
C
C     RCOND   (output) DOUBLE PRECISION array, dimension (2)
C             RCOND(1) contains the reciprocal condition number of the
C                      control transformation matrix TU;
C             RCOND(2) contains the reciprocal condition number of the
C                      measurement transformation matrix TY.
C             RCOND is set even if INFO = 3 or INFO = 4; if INFO = 3,
C             then RCOND(2) was not computed, but it is set to 0.
C
C     Tolerances
C
C     TOL     DOUBLE PRECISION
C             Tolerance used for controlling the accuracy of the applied
C             transformations. Transformation matrices TU and TY whose
C             reciprocal condition numbers are less than TOL are not
C             allowed. If TOL <= 0, then a default value equal to
C             sqrt(EPS) is used, where EPS is the relative machine
C             precision.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) contains the optimal
C             LDWORK.
C
C     LDWORK  INTEGER
C             The dimension of the array DWORK.
C             LDWORK >= MAX(1,LW1,LW2,LW3,LW4), where
C             LW1 = (N+NP1+1)*(N+M2) + MAX(3*(N+M2)+N+NP1,5*(N+M2)),
C             LW2 = (N+NP2)*(N+M1+1) + MAX(3*(N+NP2)+N+M1,5*(N+NP2)),
C             LW3 = M2 + NP1*NP1 + MAX(NP1*MAX(N,M1),3*M2+NP1,5*M2),
C             LW4 = NP2 + M1*M1 + MAX(MAX(N,NP1)*M1,3*NP2+M1,5*NP2),
C             with M1 = M - M2 and NP1 = NP - NP2.
C             For good performance, LDWORK must generally be larger.
C             Denoting Q = MAX(M1,M2,NP1,NP2), an upper bound is
C             MAX(1,(N+Q)*(N+Q+6),Q*(Q+MAX(N,Q,5)+1).
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = 1:  if the matrix | A   B2  | had not full column rank
C                                 | C1  D12 |
C                   in respect to the tolerance EPS;
C             = 2:  if the matrix | A   B1  | had not full row rank in
C                                 | C2  D21 |
C                   respect to the tolerance EPS;
C             = 3:  if the matrix D12 had not full column rank in
C                   respect to the tolerance TOL;
C             = 4:  if the matrix D21 had not full row rank in respect
C                   to the tolerance TOL;
C             = 5:  if the singular value decomposition (SVD) algorithm
C                   did not converge (when computing the SVD of one of
C                   the matrices |A   B2 |, |A   B1 |, D12 or D21).
C                                |C1  D12|  |C2  D21|
C
C     METHOD
C
C     The routine performs the transformations described in [2].
C
C     REFERENCES
C
C     [1] Glover, K. and Doyle, J.C.
C         State-space formulae for all stabilizing controllers that
C         satisfy an Hinf norm bound and relations to risk sensitivity.
C         Systems and Control Letters, vol. 11, pp. 167-172, 1988.
C
C     [2] Balas, G.J., Doyle, J.C., Glover, K., Packard, A., and
C         Smith, R.
C         mu-Analysis and Synthesis Toolbox.
C         The MathWorks Inc., Natick, Mass., 1995.
C
C     NUMERICAL ASPECTS
C
C     The precision of the transformations can be controlled by the
C     condition numbers of the matrices TU and TY as given by the
C     values of RCOND(1) and RCOND(2), respectively. An error return
C     with INFO = 3 or INFO = 4 will be obtained if the condition
C     number of TU or TY, respectively, would exceed 1/TOL.
C
C     CONTRIBUTORS
C
C     P.Hr. Petkov, D.W. Gu and M.M. Konstantinov, October 1998.
C
C     REVISIONS
C
C     V. Sima, Research Institute for Informatics, Bucharest, May 1999,
C     Feb. 2000.
C
C     KEYWORDS
C
C     H-infinity optimal control, robust control, singular value
C     decomposition.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
C     ..
C     .. Scalar Arguments ..
      INTEGER            INFO, LDA, LDB, LDC, LDD, LDTU, LDTY, LDWORK,
     $                   M, N, NCON, NMEAS, NP
      DOUBLE PRECISION   TOL
C     ..
C     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), C( LDC, * ),
     $                   D( LDD, * ), DWORK( * ), RCOND( 2 ),
     $                   TU( LDTU, * ), TY( LDTY, * )
C     ..
C     .. Local Scalars ..
      INTEGER            IEXT, INFO2, IQ, IWRK, J, LWAMAX, M1, M2,
     $                   MINWRK, ND1, ND2, NP1, NP2
      DOUBLE PRECISION   EPS, TOLL
C     ..
C     .. External Functions ..
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           DLAMCH
C     ..
C     .. External Subroutines ..
      EXTERNAL           DGEMM, DGESVD, DLACPY, DSCAL, DSWAP, XERBLA
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC          DBLE, INT, MAX, SQRT
C     ..
C     .. Executable Statements ..
C
C     Decode and Test input parameters.
C
      M1 = M - NCON
      M2 = NCON
      NP1 = NP - NMEAS
      NP2 = NMEAS
C
      INFO = 0
      IF( N.LT.0 ) THEN
         INFO = -1
      ELSE IF( M.LT.0 ) THEN
         INFO = -2
      ELSE IF( NP.LT.0 ) THEN
         INFO = -3
      ELSE IF( NCON.LT.0 .OR. M1.LT.0 .OR. M2.GT.NP1 ) THEN
         INFO = -4
      ELSE IF( NMEAS.LT.0 .OR. NP1.LT.0 .OR. NP2.GT.M1 ) THEN
         INFO = -5
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -7
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -9
      ELSE IF( LDC.LT.MAX( 1, NP ) ) THEN
         INFO = -11
      ELSE IF( LDD.LT.MAX( 1, NP ) ) THEN
         INFO = -13
      ELSE IF( LDTU.LT.MAX( 1, M2 ) ) THEN
         INFO = -15
      ELSE IF( LDTY.LT.MAX( 1, NP2 ) ) THEN
         INFO = -17
      ELSE
C
C        Compute workspace.
C
         MINWRK = MAX( 1,
     $                 ( N + NP1 + 1 )*( N + M2 ) +
     $                 MAX( 3*( N + M2 ) + N + NP1, 5*( N + M2 ) ),
     $                 ( N + NP2 )*( N + M1 + 1 ) +
     $                 MAX( 3*( N + NP2 ) + N + M1, 5*( N + NP2 ) ),
     $                 M2 + NP1*NP1 + MAX( NP1*MAX( N, M1 ), 3*M2 + NP1,
     $                                     5*M2 ),
     $                 NP2 + M1*M1 +  MAX( MAX( N, NP1 )*M1, 3*NP2 + M1,
     $                                     5*NP2 ) )
         IF( LDWORK.LT.MINWRK )
     $      INFO = -21
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SB10PD', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF( N.EQ.0 .OR. M.EQ.0 .OR. NP.EQ.0 .OR. M1.EQ.0 .OR. M2.EQ.0
     $    .OR. NP1.EQ.0 .OR. NP2.EQ.0 ) THEN
         RCOND( 1 ) = ONE
         RCOND( 2 ) = ONE
         DWORK( 1 ) = ONE
         RETURN
      END IF
C
      ND1  = NP1 - M2
      ND2  = M1 - NP2
      EPS  = DLAMCH( 'Epsilon' )
      TOLL = TOL
      IF( TOLL.LE.ZERO ) THEN
C
C        Set the default value of the tolerance for condition tests.
C
         TOLL = SQRT( EPS )
      END IF
C
C     Determine if |A-jwI  B2 | has full column rank at w = 0.
C                  |  C1   D12|
C     Workspace:  need   (N+NP1+1)*(N+M2) +
C                        max(3*(N+M2)+N+NP1,5*(N+M2));
C                 prefer larger.
C
      IEXT = N + M2 + 1
      IWRK = IEXT + ( N + NP1 )*( N + M2 )
      CALL DLACPY( 'Full', N, N, A, LDA, DWORK( IEXT ), N+NP1 )
      CALL DLACPY( 'Full', NP1, N, C, LDC, DWORK( IEXT+N ), N+NP1 )
      CALL DLACPY( 'Full', N, M2, B( 1, M1+1 ), LDB,
     $             DWORK( IEXT+(N+NP1)*N ), N+NP1 )
      CALL DLACPY( 'Full', NP1, M2, D( 1, M1+1 ), LDD,
     $             DWORK( IEXT+(N+NP1)*N+N ), N+NP1 )
      CALL DGESVD( 'N', 'N', N+NP1, N+M2, DWORK( IEXT ), N+NP1, DWORK,
     $             TU, LDTU, TY, LDTY, DWORK( IWRK ), LDWORK-IWRK+1,
     $             INFO2 )
      IF( INFO2.NE.0 ) THEN
          INFO = 5
          RETURN
      END IF
      IF( DWORK( N+M2 )/DWORK( 1 ).LE.EPS ) THEN
          INFO = 1
          RETURN
      END IF
      LWAMAX = INT( DWORK( IWRK ) ) + IWRK - 1
C
C     Determine if |A-jwI  B1 | has full row rank at w = 0.
C                  |  C2   D21|
C     Workspace:  need   (N+NP2)*(N+M1+1) +
C                        max(3*(N+NP2)+N+M1,5*(N+NP2));
C                 prefer larger.
C
      IEXT = N + NP2 + 1
      IWRK = IEXT + ( N + NP2 )*( N + M1 )
      CALL DLACPY( 'Full', N, N, A, LDA, DWORK( IEXT ), N+NP2 )
      CALL DLACPY( 'Full', NP2, N, C( NP1+1, 1), LDC, DWORK( IEXT+N ),
     $             N+NP2 )
      CALL DLACPY( 'Full', N, M1, B, LDB, DWORK( IEXT+(N+NP2)*N ),
     $             N+NP2 )
      CALL DLACPY( 'Full', NP2, M1, D( NP1+1, 1 ), LDD,
     $             DWORK( IEXT+(N+NP2)*N+N ), N+NP2 )
      CALL DGESVD( 'N', 'N', N+NP2, N+M1, DWORK( IEXT ), N+NP2, DWORK,
     $             TU, LDTU, TY, LDTY, DWORK( IWRK ), LDWORK-IWRK+1,
     $             INFO2 )
      IF( INFO2.NE.0 ) THEN
          INFO = 5
          RETURN
      END IF
      IF( DWORK( N+NP2 )/DWORK( 1 ).LE.EPS ) THEN
          INFO = 2
          RETURN
      END IF
      LWAMAX = MAX( INT( DWORK( IWRK ) ) + IWRK - 1, LWAMAX )
C
C     Determine SVD of D12, D12 = U12 S12 V12', and check if D12 has
C     full column rank. V12' is stored in TU.
C     Workspace:  need   M2 + NP1*NP1 + max(3*M2+NP1,5*M2);
C                 prefer larger.
C
      IQ   = M2 + 1
      IWRK = IQ + NP1*NP1
C
      CALL DGESVD( 'A', 'A', NP1, M2, D( 1, M1+1 ), LDD, DWORK,
     $             DWORK( IQ ), NP1, TU, LDTU, DWORK( IWRK ),
     $             LDWORK-IWRK+1, INFO2 )
      IF( INFO2.NE.0 ) THEN
          INFO = 5
          RETURN
      END IF
C
      RCOND( 1 ) = DWORK( M2 )/DWORK( 1 )
      IF( RCOND( 1 ).LE.TOLL ) THEN
          RCOND( 2 ) = ZERO
          INFO = 3
          RETURN
      END IF
      LWAMAX = MAX( INT( DWORK( IWRK ) ) + IWRK - 1, LWAMAX )
C
C     Determine Q12.
C
      IF( ND1.GT.0 ) THEN
         CALL DLACPY( 'Full', NP1, M2, DWORK( IQ ), NP1, D( 1, M1+1 ),
     $                LDD )
         CALL DLACPY( 'Full', NP1, ND1, DWORK( IQ+NP1*M2 ), NP1,
     $                DWORK( IQ ), NP1 )
         CALL DLACPY( 'Full', NP1, M2, D( 1, M1+1 ), LDD,
     $                DWORK( IQ+NP1*ND1 ), NP1 )
      END IF
C
C     Determine Tu by transposing in-situ and scaling.
C
      DO 10 J = 1, M2 - 1
         CALL DSWAP( J, TU( J+1, 1 ), LDTU, TU( 1, J+1 ), 1 )
   10 CONTINUE
C
      DO 20 J = 1, M2
         CALL DSCAL( M2, ONE/DWORK( J ), TU( 1, J ), 1 )
   20 CONTINUE
C
C     Determine C1 =: Q12'*C1.
C     Workspace:  M2 + NP1*NP1 + NP1*N.
C
      CALL DGEMM( 'T', 'N', NP1, N, NP1, ONE, DWORK( IQ ), NP1, C, LDC,
     $            ZERO, DWORK( IWRK ), NP1 )
      CALL DLACPY( 'Full', NP1, N, DWORK( IWRK ), NP1, C, LDC )
      LWAMAX = MAX( IWRK + NP1*N - 1, LWAMAX )
C
C     Determine D11 =: Q12'*D11.
C     Workspace:  M2 + NP1*NP1 + NP1*M1.
C
      CALL DGEMM( 'T', 'N', NP1, M1, NP1, ONE, DWORK( IQ ), NP1, D, LDD,
     $            ZERO, DWORK( IWRK ), NP1 )
      CALL DLACPY( 'Full', NP1, M1, DWORK( IWRK ), NP1, D, LDD )
      LWAMAX = MAX( IWRK + NP1*M1 - 1, LWAMAX )
C
C     Determine SVD of D21, D21 = U21 S21 V21', and check if D21 has
C     full row rank. U21 is stored in TY.
C     Workspace:  need   NP2 + M1*M1 + max(3*NP2+M1,5*NP2);
C                 prefer larger.
C
      IQ   = NP2 + 1
      IWRK = IQ + M1*M1
C
      CALL DGESVD( 'A', 'A', NP2, M1, D( NP1+1, 1 ), LDD, DWORK, TY,
     $             LDTY, DWORK( IQ ), M1, DWORK( IWRK ), LDWORK-IWRK+1,
     $             INFO2 )
      IF( INFO2.NE.0 ) THEN
          INFO = 5
          RETURN
      END IF
C
      RCOND( 2 ) = DWORK( NP2 )/DWORK( 1 )
      IF( RCOND( 2 ).LE.TOLL ) THEN
          INFO = 4
          RETURN
      END IF
      LWAMAX = MAX( INT( DWORK( IWRK ) ) + IWRK - 1, LWAMAX )
C
C     Determine Q21.
C
      IF( ND2.GT.0 ) THEN
         CALL DLACPY( 'Full', NP2, M1, DWORK( IQ ), M1, D( NP1+1, 1 ),
     $                LDD )
         CALL DLACPY( 'Full', ND2, M1, DWORK( IQ+NP2 ), M1, DWORK( IQ ),
     $                M1 )
         CALL DLACPY( 'Full', NP2, M1, D( NP1+1, 1 ), LDD,
     $                DWORK( IQ+ND2 ), M1 )
      END IF
C
C     Determine Ty by scaling and transposing in-situ.
C
      DO 30 J = 1, NP2
         CALL DSCAL( NP2, ONE/DWORK( J ), TY( 1, J ), 1 )
   30 CONTINUE
C
      DO 40 J = 1, NP2 - 1
         CALL DSWAP( J, TY( J+1, 1 ), LDTY, TY( 1, J+1 ), 1 )
   40 CONTINUE
C
C     Determine B1 =: B1*Q21'.
C     Workspace:  NP2 + M1*M1 + N*M1.
C
      CALL DGEMM( 'N', 'T', N, M1, M1, ONE, B, LDB, DWORK( IQ ), M1,
     $            ZERO, DWORK( IWRK ), N )
      CALL DLACPY( 'Full', N, M1, DWORK( IWRK ), N, B, LDB )
      LWAMAX = MAX( IWRK + N*M1 - 1, LWAMAX )
C
C     Determine D11 =: D11*Q21'.
C     Workspace:  NP2 + M1*M1 + NP1*M1.
C
      CALL DGEMM( 'N', 'T', NP1, M1, M1, ONE, D, LDD, DWORK( IQ ), M1,
     $            ZERO, DWORK( IWRK ), NP1 )
      CALL DLACPY( 'Full', NP1, M1, DWORK( IWRK ), NP1, D, LDD )
      LWAMAX = MAX( IWRK + NP1*M1 - 1, LWAMAX )
C
C     Determine B2 =: B2*Tu.
C     Workspace:  N*M2.
C
      CALL DGEMM( 'N', 'N', N, M2, M2, ONE, B( 1, M1+1 ), LDB, TU, LDTU,
     $            ZERO, DWORK, N )
      CALL DLACPY( 'Full', N, M2, DWORK, N, B( 1, M1+1 ), LDB )
C
C     Determine C2 =: Ty*C2.
C     Workspace:  NP2*N.
C
      CALL DGEMM( 'N', 'N', NP2, N, NP2, ONE, TY, LDTY,
     $            C( NP1+1, 1 ), LDC, ZERO, DWORK, NP2 )
      CALL DLACPY( 'Full', NP2, N, DWORK, NP2, C( NP1+1, 1 ), LDC )
C
      LWAMAX = MAX( N*MAX( M2, NP2 ), LWAMAX )
      DWORK( 1 ) = DBLE( LWAMAX )
      RETURN
C *** Last line of SB10PD ***
      END