control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
      SUBROUTINE SB10QD( N, M, NP, NCON, NMEAS, GAMMA, A, LDA, B, LDB,
     $                   C, LDC, D, LDD, F, LDF, H, LDH, X, LDX, Y, LDY,
     $                   XYCOND, IWORK, DWORK, LDWORK, BWORK, INFO )
C
C     PURPOSE
C
C     To compute the state feedback and the output injection
C     matrices for an H-infinity (sub)optimal n-state controller,
C     using Glover's and Doyle's 1988 formulas, for the system
C
C                   | A  | B1  B2  |   | A | B |
C               P = |----|---------| = |---|---|
C                   | C1 | D11 D12 |   | C | D |
C                   | C2 | D21 D22 |
C
C     and for a given value of gamma, where B2 has as column size the
C     number of control inputs (NCON) and C2 has as row size the number
C     of measurements (NMEAS) being provided to the controller.
C
C     It is assumed that
C
C     (A1) (A,B2) is stabilizable and (C2,A) is detectable,
C
C     (A2) D12 is full column rank with D12 = | 0 | and D21 is
C                                             | I |
C          full row rank with D21 = | 0 I | as obtained by the
C          subroutine SB10PD,
C
C     (A3) | A-j*omega*I  B2  | has full column rank for all omega,
C          |    C1        D12 |
C
C
C     (A4) | A-j*omega*I  B1  |  has full row rank for all omega.
C          |    C2        D21 |
C
C
C     ARGUMENTS
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the system.  N >= 0.
C
C     M       (input) INTEGER
C             The column size of the matrix B.  M >= 0.
C
C     NP      (input) INTEGER
C             The row size of the matrix C.  NP >= 0.
C
C     NCON    (input) INTEGER
C             The number of control inputs (M2).  M >= NCON >= 0,
C             NP-NMEAS >= NCON.
C
C     NMEAS   (input) INTEGER
C             The number of measurements (NP2).  NP >= NMEAS >= 0,
C             M-NCON >= NMEAS.
C
C     GAMMA   (input) DOUBLE PRECISION
C             The value of gamma. It is assumed that gamma is
C             sufficiently large so that the controller is admissible.
C             GAMMA >= 0.
C
C     A       (input) DOUBLE PRECISION array, dimension (LDA,N)
C             The leading N-by-N part of this array must contain the
C             system state matrix A.
C
C     LDA     INTEGER
C             The leading dimension of the array A.  LDA >= max(1,N).
C
C     B       (input) DOUBLE PRECISION array, dimension (LDB,M)
C             The leading N-by-M part of this array must contain the
C             system input matrix B.
C
C     LDB     INTEGER
C             The leading dimension of the array B.  LDB >= max(1,N).
C
C     C       (input) DOUBLE PRECISION array, dimension (LDC,N)
C             The leading NP-by-N part of this array must contain the
C             system output matrix C.
C
C     LDC     INTEGER
C             The leading dimension of the array C.  LDC >= max(1,NP).
C
C     D       (input) DOUBLE PRECISION array, dimension (LDD,M)
C             The leading NP-by-M part of this array must contain the
C             system input/output matrix D.
C
C     LDD     INTEGER
C             The leading dimension of the array D.  LDD >= max(1,NP).
C
C     F       (output) DOUBLE PRECISION array, dimension (LDF,N)
C             The leading M-by-N part of this array contains the state
C             feedback matrix F.
C
C     LDF     INTEGER
C             The leading dimension of the array F.  LDF >= max(1,M).
C
C     H       (output) DOUBLE PRECISION array, dimension (LDH,NP)
C             The leading N-by-NP part of this array contains the output
C             injection matrix H.
C
C     LDH     INTEGER
C             The leading dimension of the array H.  LDH >= max(1,N).
C
C     X       (output) DOUBLE PRECISION array, dimension (LDX,N)
C             The leading N-by-N part of this array contains the matrix
C             X, solution of the X-Riccati equation.
C
C     LDX     INTEGER
C             The leading dimension of the array X.  LDX >= max(1,N).
C
C     Y       (output) DOUBLE PRECISION array, dimension (LDY,N)
C             The leading N-by-N part of this array contains the matrix
C             Y, solution of the Y-Riccati equation.
C
C     LDY     INTEGER
C             The leading dimension of the array Y.  LDY >= max(1,N).
C
C     XYCOND  (output) DOUBLE PRECISION array, dimension (2)
C             XYCOND(1) contains an estimate of the reciprocal condition
C                       number of the X-Riccati equation;
C             XYCOND(2) contains an estimate of the reciprocal condition
C                       number of the Y-Riccati equation.
C
C     Workspace
C
C     IWORK   INTEGER array, dimension
C             (max(2*max(N,M-NCON,NP-NMEAS),N*N))
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) contains the optimal
C             LDWORK.
C
C     LDWORK  INTEGER
C             The dimension of the array DWORK.
C             LDWORK >= max(1,M*M + max(2*M1,3*N*N +
C                                       max(N*M,10*N*N+12*N+5)),
C                           NP*NP + max(2*NP1,3*N*N +
C                                       max(N*NP,10*N*N+12*N+5))),
C             where M1 = M - M2 and NP1 = NP - NP2.
C             For good performance, LDWORK must generally be larger.
C             Denoting Q = MAX(M1,M2,NP1,NP2), an upper bound is
C             max(1,4*Q*Q+max(2*Q,3*N*N + max(2*N*Q,10*N*N+12*N+5))).
C
C     BWORK   LOGICAL array, dimension (2*N)
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = 1:  if the controller is not admissible (too small value
C                   of gamma);
C             = 2:  if the X-Riccati equation was not solved
C                   successfully (the controller is not admissible or
C                   there are numerical difficulties);
C             = 3:  if the Y-Riccati equation was not solved
C                   successfully (the controller is not admissible or
C                   there are numerical difficulties).
C
C     METHOD
C
C     The routine implements the Glover's and Doyle's formulas [1],[2]
C     modified as described in [3]. The X- and Y-Riccati equations
C     are solved with condition and accuracy estimates [4].
C
C     REFERENCES
C
C     [1] Glover, K. and Doyle, J.C.
C         State-space formulae for all stabilizing controllers that
C         satisfy an Hinf norm bound and relations to risk sensitivity.
C         Systems and Control Letters, vol. 11, pp. 167-172, 1988.
C
C     [2] Balas, G.J., Doyle, J.C., Glover, K., Packard, A., and
C         Smith, R.
C         mu-Analysis and Synthesis Toolbox.
C         The MathWorks Inc., Natick, Mass., 1995.
C
C     [3] Petkov, P.Hr., Gu, D.W., and Konstantinov, M.M.
C         Fortran 77 routines for Hinf and H2 design of continuous-time
C         linear control systems.
C         Rep. 98-14, Department of Engineering, Leicester University,
C         Leicester, U.K., 1998.
C
C     [4] Petkov, P.Hr., Konstantinov, M.M., and Mehrmann, V.
C         DGRSVX and DMSRIC: Fortan 77 subroutines for solving
C         continuous-time matrix algebraic Riccati equations with
C         condition and accuracy estimates.
C         Preprint SFB393/98-16, Fak. f. Mathematik, Tech. Univ.
C         Chemnitz, May 1998.
C
C     NUMERICAL ASPECTS
C
C     The precision of the solution of the matrix Riccati equations
C     can be controlled by the values of the condition numbers
C     XYCOND(1) and XYCOND(2) of these equations.
C
C     FURTHER COMMENTS
C
C     The Riccati equations are solved by the Schur approach
C     implementing condition and accuracy estimates.
C
C     CONTRIBUTORS
C
C     P.Hr. Petkov, D.W. Gu and M.M. Konstantinov, October 1998.
C
C     REVISIONS
C
C     V. Sima, Research Institute for Informatics, Bucharest, May 1999,
C     Sept. 1999.
C
C     KEYWORDS
C
C     Algebraic Riccati equation, H-infinity optimal control, robust
C     control.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
C
C     .. Scalar Arguments ..
      INTEGER            INFO, LDA, LDB, LDC, LDD, LDF, LDH, LDWORK,
     $                   LDX, LDY, M, N, NCON, NMEAS, NP
      DOUBLE PRECISION   GAMMA
C     ..
C     .. Array Arguments ..
      INTEGER            IWORK( * )
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), C( LDC, * ),
     $                   D( LDD, * ), DWORK( * ),  F( LDF, * ),
     $                   H( LDH, * ), X( LDX, * ), XYCOND( 2 ),
     $                   Y( LDY, * )
      LOGICAL            BWORK( * )
C
C     ..
C     .. Local Scalars ..
      INTEGER            INFO2, IW2, IWA, IWG, IWI, IWQ, IWR, IWRK, IWS,
     $                   IWT, IWV, LWAMAX, M1, M2, MINWRK, N2, ND1, ND2,
     $                   NN, NP1, NP2
      DOUBLE PRECISION   ANORM, EPS, FERR, RCOND, SEP
C     ..
C     .. External Functions ..
C
      DOUBLE PRECISION   DLAMCH, DLANSY
      EXTERNAL           DLAMCH, DLANSY
C     ..
C     .. External Subroutines ..
      EXTERNAL           DGEMM, DLACPY, DLASET, DSYCON, DSYMM, DSYRK,
     $                   DSYTRF, DSYTRI, MB01RU, MB01RX, SB02RD, XERBLA
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC          DBLE, INT, MAX
C     ..
C     .. Executable Statements ..
C
C     Decode and Test input parameters.
C
      M1  = M - NCON
      M2  = NCON
      NP1 = NP - NMEAS
      NP2 = NMEAS
      NN  = N*N
C
      INFO = 0
      IF( N.LT.0 ) THEN
         INFO = -1
      ELSE IF( M.LT.0 ) THEN
         INFO = -2
      ELSE IF( NP.LT.0 ) THEN
         INFO = -3
      ELSE IF( NCON.LT.0 .OR. M1.LT.0 .OR. M2.GT.NP1 ) THEN
         INFO = -4
      ELSE IF( NMEAS.LT.0 .OR. NP1.LT.0 .OR. NP2.GT.M1 ) THEN
         INFO = -5
      ELSE IF( GAMMA.LT.ZERO ) THEN
         INFO = -6
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -8
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -10
      ELSE IF( LDC.LT.MAX( 1, NP ) ) THEN
         INFO = -12
      ELSE IF( LDD.LT.MAX( 1, NP ) ) THEN
         INFO = -14
      ELSE IF( LDF.LT.MAX( 1, M ) ) THEN
         INFO = -16
      ELSE IF( LDH.LT.MAX( 1, N ) ) THEN
         INFO = -18
      ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
         INFO = -20
      ELSE IF( LDY.LT.MAX( 1, N ) ) THEN
         INFO = -22
      ELSE
C
C        Compute workspace.
C
         MINWRK = MAX( 1, M*M + MAX( 2*M1, 3*NN +
     $                               MAX( N*M, 10*NN + 12*N + 5 ) ),
     $                  NP*NP + MAX( 2*NP1, 3*NN +
     $                               MAX( N*NP, 10*NN + 12*N + 5 ) ) )
         IF( LDWORK.LT.MINWRK )
     $      INFO = -26
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SB10QD', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF( N.EQ.0 .OR. M.EQ.0 .OR. NP.EQ.0 .OR. M1.EQ.0 .OR. M2.EQ.0
     $    .OR. NP1.EQ.0 .OR. NP2.EQ.0 ) THEN
         XYCOND( 1 ) = ONE
         XYCOND( 2 ) = ONE
         DWORK( 1 )  = ONE
         RETURN
      END IF
      ND1 = NP1 - M2
      ND2 = M1 - NP2
      N2  = 2*N
C
C     Get the machine precision.
C
      EPS = DLAMCH( 'Epsilon' )
C
C     Workspace usage.
C
      IWA = M*M + 1
      IWQ = IWA + NN
      IWG = IWQ + NN
      IW2 = IWG + NN
C
C     Compute |D1111'||D1111 D1112| - gamma^2*Im1 .
C             |D1112'|
C
      CALL DLASET( 'L', M1, M1, ZERO, -GAMMA*GAMMA, DWORK, M )
      IF( ND1.GT.0 )
     $   CALL DSYRK( 'L', 'T', M1, ND1, ONE, D, LDD, ONE, DWORK, M )
C
C     Compute inv(|D1111'|*|D1111 D1112| - gamma^2*Im1) .
C                 |D1112'|
C
      IWRK = IWA
      ANORM = DLANSY( 'I', 'L', M1, DWORK, M, DWORK( IWRK ) )
      CALL DSYTRF( 'L', M1, DWORK, M, IWORK, DWORK( IWRK ),
     $             LDWORK-IWRK+1, INFO2 )
      IF( INFO2.GT.0 ) THEN
         INFO = 1
         RETURN
      END IF
C
      LWAMAX = INT( DWORK( IWRK ) ) + IWRK - 1
      CALL DSYCON( 'L', M1, DWORK, M, IWORK, ANORM, RCOND,
     $             DWORK( IWRK ), IWORK( M1+1 ), INFO2 )
      IF( RCOND.LT.EPS ) THEN
         INFO = 1
         RETURN
      END IF
C
C     Compute inv(R) block by block.
C
      CALL DSYTRI( 'L', M1, DWORK, M, IWORK, DWORK( IWRK ), INFO2 )
C
C     Compute -|D1121 D1122|*inv(|D1111'|*|D1111 D1112| - gamma^2*Im1) .
C                                |D1112'|
C
      CALL DSYMM( 'R', 'L', M2, M1, -ONE, DWORK, M, D( ND1+1, 1 ), LDD,
     $            ZERO, DWORK( M1+1 ), M )
C
C     Compute |D1121 D1122|*inv(|D1111'|*|D1111 D1112| -
C                               |D1112'|
C
C                  gamma^2*Im1)*|D1121'| + Im2 .
C                               |D1122'|
C
      CALL DLASET( 'Lower', M2, M2, ZERO, ONE, DWORK( M1*(M+1)+1 ), M )
      CALL MB01RX( 'Right', 'Lower', 'Transpose', M2, M1, ONE, -ONE,
     $             DWORK( M1*(M+1)+1 ), M, D( ND1+1, 1 ), LDD,
     $             DWORK( M1+1 ), M, INFO2 )
C
C     Compute D11'*C1 .
C
      CALL DGEMM( 'T', 'N', M1, N, NP1, ONE, D, LDD, C, LDC, ZERO,
     $            DWORK( IW2 ), M )
C
C     Compute D1D'*C1 .
C
      CALL DLACPY( 'Full', M2, N, C( ND1+1, 1 ), LDC, DWORK( IW2+M1 ),
     $             M )
C
C     Compute inv(R)*D1D'*C1 in F .
C
      CALL DSYMM( 'L', 'L', M, N, ONE, DWORK, M, DWORK( IW2 ), M, ZERO,
     $            F, LDF )
C
C     Compute Ax = A - B*inv(R)*D1D'*C1 .
C
      CALL DLACPY( 'Full', N, N, A, LDA, DWORK( IWA ), N )
      CALL DGEMM( 'N', 'N', N, N, M, -ONE, B, LDB, F, LDF, ONE,
     $            DWORK( IWA ), N )
C
C     Compute Cx = C1'*C1 - C1'*D1D*inv(R)*D1D'*C1 .
C
      IF( ND1.EQ.0 ) THEN
         CALL DLASET( 'L', N, N, ZERO, ZERO, DWORK( IWQ ), N )
      ELSE
         CALL DSYRK( 'L', 'T', N, NP1, ONE, C, LDC, ZERO,
     $               DWORK( IWQ ), N )
         CALL MB01RX( 'Left', 'Lower', 'Transpose', N, M, ONE, -ONE,
     $                DWORK( IWQ ), N, DWORK( IW2 ), M, F, LDF, INFO2 )
      END IF
C
C     Compute Dx = B*inv(R)*B' .
C
      IWRK = IW2
      CALL MB01RU( 'Lower', 'NoTranspose', N, M, ZERO, ONE,
     $             DWORK( IWG ), N, B, LDB, DWORK, M, DWORK( IWRK ),
     $             M*N, INFO2 )
C
C     Solution of the Riccati equation Ax'*X + X*Ax + Cx - X*Dx*X = 0 .
C     Workspace:  need   M*M + 13*N*N + 12*N + 5;
C                 prefer larger.
C
      IWT  = IW2
      IWV  = IWT + NN
      IWR  = IWV + NN
      IWI  = IWR + N2
      IWS  = IWI + N2
      IWRK = IWS + 4*NN
C
      CALL SB02RD( 'All', 'Continuous', 'NotUsed', 'NoTranspose',
     $             'Lower', 'GeneralScaling', 'Stable', 'NotFactored',
     $             'Original', N, DWORK( IWA ), N, DWORK( IWT ), N,
     $             DWORK( IWV ), N, DWORK( IWG ), N, DWORK( IWQ ), N,
     $             X, LDX, SEP, XYCOND( 1 ), FERR, DWORK( IWR ),
     $             DWORK( IWI ), DWORK( IWS ), N2, IWORK, DWORK( IWRK ),
     $             LDWORK-IWRK+1, BWORK, INFO2 )
      IF( INFO2.GT.0 ) THEN
         INFO = 2
         RETURN
      END IF
C
      LWAMAX = MAX( INT( DWORK( IWRK ) ) + IWRK - 1, LWAMAX )
C
C     Compute F = -inv(R)*|D1D'*C1 + B'*X| .
C
      IWRK = IW2
      CALL DGEMM( 'T', 'N', M, N, N, ONE, B, LDB, X, LDX, ZERO,
     $            DWORK( IWRK ), M )
      CALL DSYMM( 'L', 'L', M, N, -ONE, DWORK, M, DWORK( IWRK ), M,
     $            -ONE, F, LDF )
C
C     Workspace usage.
C
      IWA = NP*NP + 1
      IWQ = IWA + NN
      IWG = IWQ + NN
      IW2 = IWG + NN
C
C     Compute |D1111|*|D1111' D1121'| - gamma^2*Inp1 .
C             |D1121|
C
      CALL DLASET( 'U', NP1, NP1, ZERO, -GAMMA*GAMMA, DWORK, NP )
      IF( ND2.GT.0 )
     $   CALL DSYRK( 'U', 'N', NP1, ND2, ONE, D, LDD, ONE, DWORK, NP )
C
C     Compute inv(|D1111|*|D1111' D1121'| - gamma^2*Inp1) .
C                 |D1121|
C
      IWRK  = IWA
      ANORM = DLANSY( 'I', 'U', NP1, DWORK, NP, DWORK( IWRK ) )
      CALL DSYTRF( 'U', NP1, DWORK, NP, IWORK, DWORK( IWRK ),
     $             LDWORK-IWRK+1, INFO2 )
      IF( INFO2.GT.0 ) THEN
         INFO = 1
         RETURN
      END IF
C
      LWAMAX = MAX( INT( DWORK( IWRK ) ) + IWRK - 1, LWAMAX )
      CALL DSYCON( 'U', NP1, DWORK, NP, IWORK, ANORM, RCOND,
     $             DWORK( IWRK ), IWORK( NP1+1 ), INFO2 )
      IF( RCOND.LT.EPS ) THEN
         INFO = 1
         RETURN
      END IF
C
C     Compute inv(RT) .
C
      CALL DSYTRI( 'U', NP1, DWORK, NP, IWORK, DWORK( IWRK ), INFO2 )
C
C     Compute -inv(|D1111||D1111' D1121'| - gamma^2*Inp1)*|D1112| .
C                  |D1121|                                |D1122|
C
      CALL DSYMM( 'L', 'U', NP1, NP2, -ONE, DWORK, NP, D( 1, ND2+1 ),
     $            LDD, ZERO, DWORK( NP1*NP+1 ), NP )
C
C     Compute [D1112' D1122']*inv(|D1111||D1111' D1121'| -
C                                 |D1121|
C
C                gamma^2*Inp1)*|D1112| + Inp2 .
C                              |D1122|
C
      CALL DLASET( 'Full', NP2, NP2, ZERO, ONE, DWORK( NP1*(NP+1)+1 ),
     $             NP )
      CALL MB01RX( 'Left', 'Upper', 'Transpose', NP2, NP1, ONE, -ONE,
     $             DWORK( NP1*(NP+1)+1 ), NP, D( 1, ND2+1 ), LDD,
     $             DWORK( NP1*NP+1 ), NP, INFO2 )
C
C     Compute B1*D11' .
C
      CALL DGEMM( 'N', 'T', N, NP1, M1, ONE, B, LDB, D, LDD, ZERO,
     $            DWORK( IW2 ), N )
C
C     Compute B1*DD1' .
C
      CALL DLACPY( 'Full', N, NP2, B( 1, ND2+1 ), LDB,
     $             DWORK( IW2+NP1*N ), N )
C
C     Compute B1*DD1'*inv(RT) in H .
C
      CALL DSYMM( 'R', 'U', N, NP, ONE, DWORK, NP, DWORK( IW2 ), N,
     $            ZERO, H, LDH )
C
C     Compute Ay = A - B1*DD1'*inv(RT)*C .
C
      CALL DLACPY( 'Full', N, N, A, LDA, DWORK( IWA ), N )
      CALL DGEMM( 'N', 'N', N, N, NP, -ONE, H, LDH, C, LDC, ONE,
     $            DWORK( IWA ), N )
C
C     Compute Cy = B1*B1' - B1*DD1'*inv(RT)*DD1*B1' .
C
      IF( ND2.EQ.0 ) THEN
         CALL DLASET( 'U', N, N, ZERO, ZERO, DWORK( IWQ ), N )
      ELSE
         CALL DSYRK( 'U', 'N', N, M1, ONE, B, LDB, ZERO, DWORK( IWQ ),
     $               N )
         CALL MB01RX( 'Right', 'Upper', 'Transpose', N, NP, ONE, -ONE,
     $                DWORK( IWQ ), N, H, LDH, DWORK( IW2 ), N, INFO2 )
      END IF
C
C     Compute Dy = C'*inv(RT)*C .
C
      IWRK = IW2
      CALL MB01RU( 'Upper', 'Transpose', N, NP, ZERO, ONE, DWORK( IWG ),
     $             N, C, LDC, DWORK, NP, DWORK( IWRK), N*NP, INFO2 )
C
C     Solution of the Riccati equation Ay*Y + Y*Ay' + Cy - Y*Dy*Y = 0 .
C     Workspace:  need   NP*NP + 13*N*N + 12*N + 5;
C                 prefer larger.
C
      IWT  = IW2
      IWV  = IWT + NN
      IWR  = IWV + NN
      IWI  = IWR + N2
      IWS  = IWI + N2
      IWRK = IWS + 4*NN
C
      CALL SB02RD( 'All', 'Continuous', 'NotUsed', 'Transpose',
     $             'Upper', 'GeneralScaling', 'Stable', 'NotFactored',
     $             'Original', N, DWORK( IWA ), N, DWORK( IWT ), N,
     $             DWORK( IWV ), N, DWORK( IWG ), N, DWORK( IWQ ), N,
     $             Y, LDY, SEP, XYCOND( 2 ), FERR, DWORK( IWR ),
     $             DWORK( IWI ), DWORK( IWS ), N2, IWORK, DWORK( IWRK ),
     $             LDWORK-IWRK+1, BWORK, INFO2 )
      IF( INFO2.GT.0 ) THEN
         INFO = 3
         RETURN
      END IF
C
      LWAMAX = MAX( INT( DWORK( IWRK ) ) + IWRK - 1, LWAMAX )
C
C     Compute H = -|B1*DD1' + Y*C'|*inv(RT) .
C
      IWRK = IW2
      CALL DGEMM( 'N', 'T', N, NP, N, ONE, Y, LDY, C, LDC, ZERO,
     $            DWORK( IWRK ), N )
      CALL DSYMM( 'R', 'U', N, NP, -ONE, DWORK, NP, DWORK( IWRK ), N,
     $            -ONE, H, LDH )
C
      DWORK( 1 ) = DBLE( LWAMAX )
      RETURN
C *** Last line of SB10QD ***
      END