control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
      SUBROUTINE SB02MT( JOBG, JOBL, FACT, UPLO, N, M, A, LDA, B, LDB,
     $                   Q, LDQ, R, LDR, L, LDL, IPIV, OUFACT, G, LDG,
     $                   IWORK, DWORK, LDWORK, INFO )
C
C     PURPOSE
C
C     To compute the following matrices
C
C                -1
C         G = B*R  *B',
C
C         -          -1
C         A = A - B*R  *L',
C
C         -          -1
C         Q = Q - L*R  *L',
C
C     where A, B, Q, R, L, and G are N-by-N, N-by-M, N-by-N, M-by-M,
C     N-by-M, and N-by-N matrices, respectively, with Q, R and G
C     symmetric matrices.
C
C     When R is well-conditioned with respect to inversion, standard
C     algorithms for solving linear-quadratic optimization problems will
C     then also solve optimization problems with coupling weighting
C     matrix L. Moreover, a gain in efficiency is possible using matrix
C     G in the deflating subspace algorithms (see SLICOT Library routine
C     SB02OD) or in the Newton's algorithms (see SLICOT Library routine
C     SG02CD).
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     JOBG    CHARACTER*1
C             Specifies whether or not the matrix G is to be computed,
C             as follows:
C             = 'G':  Compute G;
C             = 'N':  Do not compute G.
C
C     JOBL    CHARACTER*1
C             Specifies whether or not the matrix L is zero, as follows:
C             = 'Z':  L is zero;
C             = 'N':  L is nonzero.
C
C     FACT    CHARACTER*1
C             Specifies how the matrix R is given (factored or not), as
C             follows:
C             = 'N':  Array R contains the matrix R;
C             = 'C':  Array R contains the Cholesky factor of R;
C             = 'U':  Array R contains the factors of the symmetric
C                     indefinite UdU' or LdL' factorization of R.
C
C     UPLO    CHARACTER*1
C             Specifies which triangle of the matrices R, Q (if
C             JOBL = 'N'), and G (if JOBG = 'G') is stored, as follows:
C             = 'U':  Upper triangle is stored;
C             = 'L':  Lower triangle is stored.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrices A, Q, and G, and the number of
C             rows of the matrices B and L.  N >= 0.
C
C     M       (input) INTEGER
C             The order of the matrix R, and the number of columns of
C             the matrices B and L.  M >= 0.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, if JOBL = 'N', the leading N-by-N part of this
C             array must contain the matrix A.
C             On exit, if JOBL = 'N', and INFO = 0, the leading N-by-N
C                                                    -          -1
C             part of this array contains the matrix A = A - B*R  L'.
C             If JOBL = 'Z', this array is not referenced.
C
C     LDA     INTEGER
C             The leading dimension of array A.
C             LDA >= MAX(1,N) if JOBL = 'N';
C             LDA >= 1        if JOBL = 'Z'.
C
C     B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C             On entry, the leading N-by-M part of this array must
C             contain the matrix B.
C             On exit, if OUFACT = 1, and INFO = 0, the leading N-by-M
C                                                             -1
C             part of this array contains the matrix B*chol(R)  .
C             On exit, B is unchanged if OUFACT <> 1 (hence also when
C             FACT = 'U').
C
C     LDB     INTEGER
C             The leading dimension of array B.  LDB >= MAX(1,N).
C
C     Q       (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
C             On entry, if JOBL = 'N', the leading N-by-N upper
C             triangular part (if UPLO = 'U') or lower triangular part
C             (if UPLO = 'L') of this array must contain the upper
C             triangular part or lower triangular part, respectively, of
C             the symmetric matrix Q. The strictly lower triangular part
C             (if UPLO = 'U') or strictly upper triangular part (if
C             UPLO = 'L') is not referenced.
C             On exit, if JOBL = 'N' and INFO = 0, the leading N-by-N
C             upper triangular part (if UPLO = 'U') or lower triangular
C             part (if UPLO = 'L') of this array contains the upper
C             triangular part or lower triangular part, respectively, of
C                                  -          -1
C             the symmetric matrix Q = Q - L*R  *L'.
C             If JOBL = 'Z', this array is not referenced.
C
C     LDQ     INTEGER
C             The leading dimension of array Q.
C             LDQ >= MAX(1,N) if JOBL = 'N';
C             LDQ >= 1        if JOBL = 'Z'.
C
C     R       (input/output) DOUBLE PRECISION array, dimension (LDR,M)
C             On entry, if FACT = 'N', the leading M-by-M upper
C             triangular part (if UPLO = 'U') or lower triangular part
C             (if UPLO = 'L') of this array must contain the upper
C             triangular part or lower triangular part, respectively,
C             of the symmetric input weighting matrix R.
C             On entry, if FACT = 'C', the leading M-by-M upper
C             triangular part (if UPLO = 'U') or lower triangular part
C             (if UPLO = 'L') of this array must contain the Cholesky
C             factor of the positive definite input weighting matrix R
C             (as produced by LAPACK routine DPOTRF).
C             On entry, if FACT = 'U', the leading M-by-M upper
C             triangular part (if UPLO = 'U') or lower triangular part
C             (if UPLO = 'L') of this array must contain the factors of
C             the UdU' or LdL' factorization, respectively, of the
C             symmetric indefinite input weighting matrix R (as produced
C             by LAPACK routine DSYTRF).
C             If FACT = 'N', the strictly lower triangular part (if UPLO
C             = 'U') or strictly upper triangular part (if UPLO = 'L')
C             of this array is used as workspace (filled in by
C             symmetry).
C             On exit, if OUFACT = 1, and INFO = 0 (or INFO = M+1),
C             the leading M-by-M upper triangular part (if UPLO = 'U')
C             or lower triangular part (if UPLO = 'L') of this array
C             contains the Cholesky factor of the given input weighting
C             matrix.
C             On exit, if OUFACT = 2, and INFO = 0 (or INFO = M+1),
C             the leading M-by-M upper triangular part (if UPLO = 'U')
C             or lower triangular part (if UPLO = 'L') of this array
C             contains the factors of the UdU' or LdL' factorization,
C             respectively, of the given input weighting matrix.
C             On exit R is unchanged if FACT = 'C' or 'U'.
C
C     LDR     INTEGER
C             The leading dimension of array R.  LDR >= MAX(1,M).
C
C     L       (input/output) DOUBLE PRECISION array, dimension (LDL,M)
C             On entry, if JOBL = 'N', the leading N-by-M part of this
C             array must contain the matrix L.
C             On exit, if JOBL = 'N', OUFACT = 1, and INFO = 0, the
C             leading N-by-M part of this array contains the matrix
C                      -1
C             L*chol(R)  .
C             On exit, L is unchanged if OUFACT <> 1 (hence also when
C             FACT = 'U').
C             L is not referenced if JOBL = 'Z'.
C
C     LDL     INTEGER
C             The leading dimension of array L.
C             LDL >= MAX(1,N) if JOBL = 'N';
C             LDL >= 1        if JOBL = 'Z'.
C
C     IPIV    (input/output) INTEGER array, dimension (M)
C             On entry, if FACT = 'U', this array must contain details
C             of the interchanges performed and the block structure of
C             the d factor in the UdU' or LdL' factorization of matrix R
C             (as produced by LAPACK routine DSYTRF).
C             On exit, if OUFACT = 2, this array contains details of
C             the interchanges performed and the block structure of the
C             d factor in the UdU' or LdL' factorization of matrix R,
C             as produced by LAPACK routine DSYTRF.
C             This array is not referenced if FACT = 'C'.
C
C     OUFACT  (output) INTEGER
C             Information about the factorization finally used.
C             OUFACT = 0:  no factorization of R has been used (M = 0);
C             OUFACT = 1:  Cholesky factorization of R has been used;
C             OUFACT = 2:  UdU' (if UPLO = 'U') or LdL' (if UPLO = 'L')
C                          factorization of R has been used.
C
C     G       (output) DOUBLE PRECISION array, dimension (LDG,N)
C             If JOBG = 'G', and INFO = 0, the leading N-by-N upper
C             triangular part (if UPLO = 'U') or lower triangular part
C             (if UPLO = 'L') of this array contains the upper
C             triangular part (if UPLO = 'U') or lower triangular part
C                                                                 -1
C             (if UPLO = 'L'), respectively, of the matrix G = B*R  B'.
C             If JOBG = 'N', this array is not referenced.
C
C     LDG     INTEGER
C             The leading dimension of array G.
C             LDG >= MAX(1,N) if JOBG = 'G';
C             LDG >= 1        if JOBG = 'N'.
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (M)
C             If FACT = 'C' or FACT = 'U', this array is not referenced.
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0 or LDWORK = -1, DWORK(1) returns the
C             optimal value of LDWORK; if FACT = 'N' and LDWORK is set
C             as specified below, DWORK(2) contains the reciprocal
C             condition number of the given matrix R.
C             On exit, if LDWORK = -2 on input or INFO = -23, then
C             DWORK(1) returns the minimal value of LDWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             LDWORK >= 1              if FACT = 'C' or  (FACT = 'U' and
C                                         JOBG = 'N' and  JOBL = 'Z');
C             LDWORK >= MAX(2,3*M)     if FACT = 'N' and  JOBG = 'N' and
C                                                         JOBL = 'Z';
C             LDWORK >= MAX(2,3*M,N*M) if FACT = 'N' and (JOBG = 'G' or
C                                                         JOBL = 'N');
C             LDWORK >= MAX(1,N*M)     if FACT = 'U' and (JOBG = 'G' or
C                                                         JOBL = 'N').
C             For optimum performance LDWORK should be larger than 3*M,
C             if FACT = 'N'.
C
C             If LDWORK = -1, an optimal workspace query is assumed; the
C             routine only calculates the optimal size of the DWORK
C             array, returns this value as the first entry of the DWORK
C             array, and no error message is issued by XERBLA.
C
C             If LDWORK = -2, a minimal workspace query is assumed; the
C             routine only calculates the minimal size of the DWORK
C             array, returns this value as the first entry of the DWORK
C             array, and no error message is issued by XERBLA.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = i:  if the i-th element (1 <= i <= M) of the d factor is
C                   exactly zero; the UdU' (or LdL') factorization has
C                   been completed, but the block diagonal matrix d is
C                   exactly singular;
C             = M+1:  if the matrix R is numerically singular.
C
C     METHOD
C                            -     -
C     The matrices G, and/or A and Q are evaluated using the given or
C     computed symmetric factorization of R.
C
C     NUMERICAL ASPECTS
C
C     The routine should not be used when R is ill-conditioned.
C
C     CONTRIBUTOR
C
C     Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Sep. 1997.
C
C     REVISIONS
C
C     V. Sima, Research Institute for Informatics, Bucharest, Dec. 2013,
C     Feb. 2014, Mar. 2014, May 2014.
C
C     KEYWORDS
C
C     Algebraic Riccati equation, closed loop system, continuous-time
C     system, discrete-time system, optimal regulator, Schur form.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         FACT, JOBG, JOBL, UPLO
      INTEGER           INFO, LDA, LDB, LDG, LDL, LDQ, LDR, LDWORK, M,
     $                  N, OUFACT
C     .. Array Arguments ..
      INTEGER           IPIV(*), IWORK(*)
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), DWORK(*), G(LDG,*),
     $                  L(LDL,*), Q(LDQ,*), R(LDR,*)
C     .. Local Scalars ..
      LOGICAL           LFACTC, LFACTU, LJOBG, LJOBL, LNFACT, LUPLOU
      CHARACTER         NT, TR, TRANS
      INTEGER           J, WRKMIN, WRKOPT
      DOUBLE PRECISION  EPS, RCOND, RNORM
C     .. External Functions ..
      LOGICAL           LSAME
      DOUBLE PRECISION  DLAMCH, DLANSY
      EXTERNAL          DLAMCH, DLANSY, LSAME
C     .. External Subroutines ..
      EXTERNAL          DCOPY, DGEMM, DLASET, DPOCON, DPOTRF, DSYCON,
     $                  DSYRK, DSYTRF, DSYTRS, DTRSM, MA02ED, MB01RB,
     $                  XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         INT, MAX
C     .. Executable Statements ..
C
      INFO   = 0
      LJOBG  = LSAME( JOBG, 'G' )
      LJOBL  = LSAME( JOBL, 'N' )
      LFACTC = LSAME( FACT, 'C' )
      LFACTU = LSAME( FACT, 'U' )
      LUPLOU = LSAME( UPLO, 'U' )
      LNFACT = .NOT.( LFACTC .OR. LFACTU )
C
C     Test the input scalar arguments.
C
      IF(      .NOT.LJOBG  .AND. .NOT.LSAME( JOBG, 'N' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.LJOBL  .AND. .NOT.LSAME( JOBL, 'Z' ) ) THEN
         INFO = -2
      ELSE IF(     LNFACT  .AND. .NOT.LSAME( FACT, 'N' ) ) THEN
         INFO = -3
      ELSE IF( .NOT.LUPLOU .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -4
      ELSE IF( N.LT.0 ) THEN
         INFO = -5
      ELSE IF( M.LT.0 ) THEN
         INFO = -6
      ELSE IF( LDA.LT.1 .OR. ( LJOBL .AND. LDA.LT.N ) ) THEN
         INFO = -8
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -10
      ELSE IF( LDQ.LT.1 .OR. ( LJOBL .AND. LDQ.LT.N ) ) THEN
         INFO = -12
      ELSE IF( LDR.LT.MAX( 1, M ) ) THEN
         INFO = -14
      ELSE IF( LDL.LT.1 .OR. ( LJOBL .AND. LDL.LT.N ) ) THEN
         INFO = -16
      ELSE IF( LDG.LT.1 .OR. ( LJOBG .AND. LDG.LT.N ) ) THEN
         INFO = -20
      ELSE
         IF( LFACTC ) THEN
            WRKMIN = 1
         ELSE IF( LFACTU ) THEN
            IF( LJOBG .OR. LJOBL ) THEN
               WRKMIN = MAX( 1, N*M )
            ELSE
               WRKMIN = 1
            END IF
         ELSE
            IF( LJOBG .OR. LJOBL ) THEN
               WRKMIN = MAX( 2, 3*M, N*M )
            ELSE
               WRKMIN = MAX( 2, 3*M )
            END IF
         END IF
         IF( LDWORK.EQ.-1 ) THEN
            IF( LNFACT ) THEN
               CALL DSYTRF( UPLO, M, R, LDR, IPIV, DWORK, -1, INFO )
               WRKOPT = MAX( WRKMIN, INT( DWORK(1) ) )
            ELSE
               WRKOPT = WRKMIN
            END IF
            DWORK(1) = WRKOPT
            RETURN
         ELSE IF( LDWORK.EQ.-2 ) THEN
            DWORK(1) = WRKMIN
            RETURN
         ELSE IF( LDWORK.LT.WRKMIN ) THEN
            INFO = -23
            DWORK(1) = WRKMIN
         END IF
      END IF
C
      IF( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'SB02MT', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF( M.EQ.0 ) THEN
         IF( LJOBG )
     $      CALL DLASET( UPLO, N, N, ZERO, ZERO, G, LDG )
         OUFACT   = 0
         DWORK(1) = WRKMIN
         IF( LNFACT )
     $      DWORK(2) = ZERO
         RETURN
      END IF
C
C     (Note: Comments in the code beginning "Workspace:" describe the
C     minimal amount of workspace needed at that point in the code,
C     as well as the preferred amount for good performance.
C     NB refers to the optimal block size for the immediately
C     following subroutine, as returned by ILAENV.)
C
      WRKOPT = 1
C
      IF( LNFACT ) THEN
C
C        Set relative machine precision.
C
         EPS = DLAMCH( 'Precision' )
C
C        Compute the norm of the matrix R, which is not factored.
C        Then save the given triangle of R in the other strict triangle
C        and the diagonal in the workspace, and try Cholesky
C        factorization.
C        Workspace: need M.
C
         RNORM = DLANSY( '1-norm', UPLO, M, R, LDR, DWORK )
         CALL DCOPY(  M, R, LDR+1, DWORK, 1 )
         CALL MA02ED( UPLO, M, R, LDR )
         CALL DPOTRF( UPLO, M, R, LDR, INFO )
         IF( INFO.EQ.0 ) THEN
C
C           Compute the reciprocal of the condition number of R.
C           Workspace: need 3*M.
C
            CALL DPOCON( UPLO, M, R, LDR, RNORM, RCOND, DWORK, IWORK,
     $                   INFO )
C
C           Return if the matrix is singular to working precision.
C
            OUFACT = 1
            IF( RCOND.LT.EPS ) THEN
               INFO = M + 1
               DWORK(2) = RCOND
               RETURN
            END IF
            WRKOPT = MAX( WRKOPT, 3*M )
         ELSE
C
C           Use UdU' or LdL' factorization, first restoring the saved
C           triangle.
C
            CALL DCOPY( M, DWORK, 1, R, LDR+1 )
            IF( LUPLOU ) THEN
               CALL MA02ED( 'Lower', M, R, LDR )
            ELSE
               CALL MA02ED( 'Upper', M, R, LDR )
            END IF
C
C           Compute the UdU' or LdL' factorization.
C           Workspace: need   1,
C                      prefer M*NB.
C
            CALL DSYTRF( UPLO, M, R, LDR, IPIV, DWORK, LDWORK, INFO )
            OUFACT = 2
            IF( INFO.GT.0 ) THEN
               DWORK(2) = ZERO
               RETURN
            END IF
            WRKOPT = MAX( WRKOPT, INT( DWORK(1) ) )
C
C           Compute the reciprocal of the condition number of R.
C           Workspace: need 2*M.
C
            CALL DSYCON( UPLO, M, R, LDR, IPIV, RNORM, RCOND, DWORK,
     $                   IWORK, INFO )
C
C           Return if the matrix is singular to working precision.
C
            IF( RCOND.LT.EPS ) THEN
               INFO = M + 1
               DWORK(2) = RCOND
               RETURN
            END IF
         END IF
      ELSE IF( LFACTC ) THEN
         OUFACT = 1
      ELSE
         OUFACT = 2
      END IF
C
      IF( N.GT.0 .AND. ( LJOBG .OR. LJOBL ) ) THEN
         NT = 'No transpose'
         TR = 'Transpose'
C
         IF( OUFACT.EQ.1 ) THEN
C
C           Solve positive definite linear system(s).
C
            IF( LUPLOU ) THEN
               TRANS = NT
            ELSE
               TRANS = TR
            END IF
C
C           Solve the system X*U = B, overwriting B with X.
C
            CALL DTRSM( 'Right', UPLO, TRANS, 'Non-unit', N, M, ONE, R,
     $                  LDR, B, LDB )
C
            IF( LJOBG ) THEN
C                                         -1
C              Compute the matrix  G = B*R  *B', multiplying X*X' in G.
C
               CALL DSYRK( UPLO, NT, N, M, ONE, B, LDB, ZERO, G, LDG )
            END IF
C
            IF( LJOBL ) THEN
C
C              Update matrices A and Q.
C
C              Solve the system Y*U = L, overwriting L with Y.
C
               CALL DTRSM( 'Right', UPLO, TRANS, 'Non-unit', N, M, ONE,
     $                     R, LDR, L, LDL )
C
C              Compute A <- A - X*Y'.
C
               CALL DGEMM( NT, TR, N, N, M, -ONE, B, LDB, L, LDL, ONE,
     $                     A, LDA )
C
C              Compute Q <- Q - Y*Y'.
C
               CALL DSYRK( UPLO, NT, N, M, -ONE, L, LDL, ONE, Q, LDQ )
            END IF
         ELSE
C
C           Solve indefinite linear system(s).
C
            IF( LJOBG ) THEN
C
C              Solve the system UdU'*X = B' (or LdL'*X = B').
C              Workspace: need N*M.
C
               DO 10 J = 1, M
                  CALL DCOPY( N, B(1,J), 1, DWORK(J), M )
   10          CONTINUE
C
               CALL DSYTRS( UPLO, M, N, R, LDR, IPIV, DWORK, M, INFO )
C                                                       -1
C              Compute a triangle of the matrix  G = B*R  *B' = B*X.
C
               CALL MB01RB( 'Left', UPLO, NT, N, M, ZERO, ONE, G, LDG,
     $                      B, LDB, DWORK, M, INFO )
            END IF
C
            IF( LJOBL ) THEN
C
C              Update matrices A and Q.
C
C              Solve the system UdU'*Y = L' (or LdL'*Y = L').
C
               DO 20 J = 1, M
                  CALL DCOPY( N, L(1,J), 1, DWORK(J), M )
   20          CONTINUE
C
               CALL DSYTRS( UPLO, M, N, R, LDR, IPIV, DWORK, M, INFO )
C
C              A <- A - B*Y.
C
               CALL DGEMM( NT, NT, N, N, M, -ONE, B, LDB, DWORK, M, ONE,
     $                     A, LDA )
C                                               -          -1
C              Compute a triangle of the matrix Q = Q - L*R  *L'
C                                                 = Q - L*Y.
C
               CALL MB01RB( 'Left', UPLO, NT, N, M, ONE, -ONE, Q, LDQ,
     $                      L, LDL, DWORK, M, INFO )
            END IF
         END IF
      END IF
C
      DWORK(1) = WRKOPT
      IF( LNFACT )
     $   DWORK(2) = RCOND
C
C *** Last line of SB02MT ***
      RETURN
      END