control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
      SUBROUTINE MB03RZ( JOBX, SORT, N, PMAX, A, LDA, X, LDX, NBLCKS,
     $                   BLSIZE, W, TOL, INFO )
C     PURPOSE
C
C     To reduce an upper triangular complex matrix A (Schur form) to a
C     block-diagonal form using well-conditioned non-unitary similarity
C     transformations. The condition numbers of the transformations used
C     for reduction are roughly bounded by PMAX, where PMAX is a given
C     value. The transformations are optionally postmultiplied in a
C     given matrix X. The Schur form is optionally ordered, so that
C     clustered eigenvalues are grouped in the same block.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     JOBX    CHARACTER*1
C             Specifies whether or not the transformations are
C             accumulated, as follows:
C             = 'N':  The transformations are not accumulated;
C             = 'U':  The transformations are accumulated in X (the
C                     given matrix X is updated).
C
C     SORT    CHARACTER*1
C             Specifies whether or not the diagonal elements of the
C             Schur form are reordered, as follows:
C             = 'N':  The diagonal elements are not reordered;
C             = 'S':  The diagonal elements are reordered before each
C                     step of reduction, so that clustered eigenvalues
C                     appear in the same block;
C             = 'C':  The diagonal elements are not reordered, but the
C                     "closest-neighbour" strategy is used instead of
C                     the standard "closest to the mean" strategy (see
C                     METHOD);
C             = 'B':  The diagonal elements are reordered before each
C                     step of reduction, and the "closest-neighbour"
C                     strategy is used (see METHOD).
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrices A and X.  N >= 0.
C
C     PMAX    (input) DOUBLE PRECISION
C             An upper bound for the absolute value of the elements of
C             the individual transformations used for reduction
C             (see METHOD). PMAX >= 1.0D0.
C
C     A       (input/output) COMPLEX*16 array, dimension (LDA,N)
C             On entry, the leading N-by-N upper triangular part of this
C             array must contain the upper triangular matrix A to be
C             block-diagonalized.
C             On exit, the leading N-by-N upper triangular part of this
C             array contains the computed block-diagonal matrix, in
C             Schur form.
C             The strictly lower triangular part is used as workspace,
C             but it is set to zero before exit.
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= MAX(1,N).
C
C     X       (input/output) COMPLEX*16 array, dimension (LDX,*)
C             On entry, if JOBX = 'U', the leading N-by-N part of this
C             array must contain a given matrix X.
C             On exit, if JOBX = 'U', the leading N-by-N part of this
C             array contains the product of the given matrix X and the
C             transformation matrix that reduced A to block-diagonal
C             form. The transformation matrix is itself a product of
C             non-unitary similarity transformations having elements
C             with magnitude less than or equal to PMAX.
C             If JOBX = 'N', this array is not referenced.
C
C     LDX     INTEGER
C             The leading dimension of array X.
C             LDX >= 1,        if JOBX = 'N';
C             LDX >= MAX(1,N), if JOBX = 'U'.
C
C     NBLCKS  (output) INTEGER
C             The number of diagonal blocks of the matrix A.
C
C     BLSIZE  (output) INTEGER array, dimension (N)
C             The first NBLCKS elements of this array contain the orders
C             of the resulting diagonal blocks of the matrix A.
C
C     W       (output) COMPLEX*16 array, dimension (N)
C             This array contains the eigenvalues of the matrix A.
C
C     Tolerances
C
C     TOL     DOUBLE PRECISION
C             The tolerance to be used in the ordering of the diagonal
C             elements of the upper triangular matrix.
C             If the user sets TOL > 0, then the given value of TOL is
C             used as an absolute tolerance: an eigenvalue i and a
C             temporarily fixed eigenvalue 1 (the first element of the
C             current trailing submatrix to be reduced) are considered
C             to belong to the same cluster if they satisfy
C
C               | lambda_1 - lambda_i | <= TOL.
C
C             If the user sets TOL < 0, then the given value of TOL is
C             used as a relative tolerance: an eigenvalue i and a
C             temporarily fixed eigenvalue 1 are considered to belong to
C             the same cluster if they satisfy, for j = 1, ..., N,
C
C               | lambda_1 - lambda_i | <= | TOL | * max | lambda_j |.
C
C             If the user sets TOL = 0, then an implicitly computed,
C             default tolerance, defined by TOL = SQRT( SQRT( EPS ) )
C             is used instead, as a relative tolerance, where EPS is
C             the machine precision (see LAPACK Library routine DLAMCH).
C             If SORT = 'N' or 'C', this parameter is not referenced.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     Consider first that SORT = 'N'. Let
C
C            ( A    A   )
C            (  11   12 )
C        A = (          ),
C            ( 0    A   )
C            (       22 )
C
C     be the given matrix in Schur form, where initially A   is the
C                                                         11
C     first diagonal element. An attempt is made to compute a
C     transformation matrix X of the form
C
C            ( I   P )
C        X = (       )                                               (1)
C            ( 0   I )
C
C     (partitioned as A), so that
C
C                 ( A     0  )
C         -1      (  11      )
C        X  A X = (          ),
C                 ( 0    A   )
C                 (       22 )
C
C     and the elements of P do not exceed the value PMAX in magnitude.
C     An adaptation of the standard method for solving Sylvester
C     equations [1], which controls the magnitude of the individual
C     elements of the computed solution [2], is used to obtain matrix P.
C     When this attempt failed, a diagonal element of A  , closest to
C                                                      22
C     the mean of those of A   is selected, and moved by unitary
C                           11
C     similarity transformations in the leading position of A  ; the
C                                                            22
C     moved diagonal element is then added to the block A  , increasing
C                                                        11
C     its order by 1. Another attempt is made to compute a suitable
C     transformation matrix X with the new definitions of the blocks A
C                                                                     11
C     and A  . After a successful transformation matrix X has been
C          22
C     obtained, it postmultiplies the current transformation matrix
C     (if JOBX = 'U'), and the whole procedure is repeated for the
C     block A  .
C            22
C
C     When SORT = 'S', the diagonal elements of the Schur form are
C     reordered before each step of the reduction, so that each cluster
C     of eigenvalues, defined as specified in the definition of TOL,
C     appears in adjacent elements. The elements for each cluster are
C     merged together, and the procedure described above is applied to
C     the larger blocks. Using the option SORT = 'S' will usually
C     provide better efficiency than the standard option (SORT = 'N'),
C     proposed in [2], because there could be no or few unsuccessful
C     attempts to compute individual transformation matrices X of the
C     form (1). However, the resulting dimensions of the blocks are
C     usually larger; this could make subsequent calculations less
C     efficient.
C
C     When SORT = 'C' or 'B', the procedure is similar to that for
C     SORT = 'N' or 'S', respectively, but the block of A   whose
C                                                        22
C     eigenvalue(s) is (are) the closest to those of A   (not to their
C                                                     11
C     mean) is selected and moved to the leading position of A  . This
C                                                             22
C     is called the "closest-neighbour" strategy.
C
C     REFERENCES
C
C     [1] Bartels, R.H. and Stewart, G.W.  T
C         Solution of the matrix equation A X + XB = C.
C         Comm. A.C.M., 15, pp. 820-826, 1972.
C
C     [2] Bavely, C. and Stewart, G.W.
C         An Algorithm for Computing Reducing Subspaces by Block
C         Diagonalization.
C         SIAM J. Numer. Anal., 16, pp. 359-367, 1979.
C
C     [3] Demmel, J.
C         The Condition Number of Equivalence Transformations that
C         Block Diagonalize Matrix Pencils.
C         SIAM J. Numer. Anal., 20, pp. 599-610, 1983.
C
C     NUMERICAL ASPECTS
C                                       3                     4
C     The algorithm usually requires 0(N ) operations, but 0(N ) are
C     possible in the worst case, when the matrix cannot be diagonalized
C     by well-conditioned transformations.
C
C     FURTHER COMMENTS
C
C     The individual non-unitary transformation matrices used in the
C     reduction of A to a block-diagonal form have condition numbers of
C     the order PMAX. This does not guarantee that their product is
C     well-conditioned enough. The routine can be easily modified to
C     provide estimates for the condition numbers of the clusters of
C     eigenvalues.
C
C     CONTRIBUTOR
C
C     V. Sima, June 2021.
C
C     REVISIONS
C
C     V. Sima, Feb. 2022.
C
C     KEYWORDS
C
C     Diagonalization, unitary transformation, Schur form, Sylvester
C     equation.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0 )
      COMPLEX*16        CZERO, CONE
      PARAMETER         ( CZERO = ( 0.0D+0, 0.0D+0 ),
     $                    CONE  = ( 1.0D+0, 0.0D+0 ) )
C     .. Scalar Arguments ..
      CHARACTER         JOBX, SORT
      INTEGER           INFO, LDA, LDX, N, NBLCKS
      DOUBLE PRECISION  PMAX, TOL
C     .. Array Arguments ..
      INTEGER           BLSIZE(*)
      COMPLEX*16        A(LDA,*), W(*), X(LDX,*)
C     .. Local Scalars ..
      LOGICAL           LJOBX, LSORN, LSORS, LSORT
      CHARACTER         JOBV
      INTEGER           DA11, DA22, I, IERR, J, K, L, L11, L22, L22M1
      DOUBLE PRECISION  BIGNUM, C, D, EDIF, SAFEMN, THRESH
      COMPLEX*16        AV, SC
C     .. External Functions ..
      INTEGER           IZAMAX
      LOGICAL           LSAME
      DOUBLE PRECISION  DLAMCH, DZNRM2
      EXTERNAL          DLAMCH, DZNRM2, IZAMAX, LSAME
C     .. External Subroutines ..
      EXTERNAL          DLABAD, MA02AZ, MB03RW, XERBLA, ZCOPY, ZGEMM,
     $                  ZLASET, ZSCAL, ZTREXC
C     .. Intrinsic Functions ..
      INTRINSIC         ABS, DCMPLX, MAX, SQRT
C     .. Executable Statements ..
C
C     Test the input scalar arguments.
C
      INFO  = 0
      LJOBX = LSAME( JOBX, 'U' )
      LSORN = LSAME( SORT, 'N' )
      LSORS = LSAME( SORT, 'S' )
      LSORT = LSAME( SORT, 'B' ) .OR. LSORS
      IF( .NOT.LJOBX .AND. .NOT.LSAME( JOBX, 'N' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.LSORN .AND. .NOT.LSORT .AND.
     $         .NOT.LSAME( SORT, 'C' ) ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( PMAX.LT.ONE ) THEN
         INFO = -4
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -6
      ELSE IF( ( LDX.LT.1 ) .OR. ( LJOBX .AND. LDX.LT.N ) ) THEN
         INFO = -8
      END IF
C
      IF( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'MB03RZ', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      NBLCKS = 0
      IF( N.EQ.0 )
     $   RETURN
C
C     Set the "safe" minimum positive number with representable
C     reciprocal, and set JOBV parameter for ZTREXC routine.
C
      SAFEMN = DLAMCH( 'Safe minimum' )
      BIGNUM = ONE / SAFEMN
      CALL DLABAD( SAFEMN, BIGNUM )
      SAFEMN = SAFEMN / DLAMCH( 'Precision' )
      JOBV   = JOBX
      IF( LJOBX )
     $   JOBV = 'V'
C
C     Set the eigenvalues of A and the tolerance for reordering the
C     eigenvalues in clusters, if needed.
C
      CALL ZCOPY( N, A, LDA+1, W, 1 )
C
      IF( LSORT ) THEN
         THRESH = ABS( TOL )
         IF( THRESH.EQ.ZERO ) THEN
C
C           Use the default tolerance in ordering the elements.
C
            THRESH = SQRT( SQRT( DLAMCH( 'Epsilon' ) ) )
         END IF
C
         IF( TOL.LE.ZERO ) THEN
C
C           Use a relative tolerance. Find max | lambda_j |, j = 1 : N.
C
            L = IZAMAX( N, W, 1 )
            THRESH = THRESH * ABS( W(L) )
         END IF
      END IF
C
C     Define the following submatrices of A:
C     A11, the DA11-by-DA11 block in position (L11,L11);
C     A22, the DA22-by-DA22 block in position (L22,L22);
C     A12, the DA11-by-DA22 block in position (L11,L22);
C     A21, the DA22-by-DA11 block in position (L22,L11) (null initially
C                                                        and finally).
C     The following loop uses L11 as loop variable and try to separate a
C     block in position (L11,L11), with possibly clustered eigenvalues,
C     separated by the other eigenvalues (in the block A22).
C
      L11 = 1
C
C     WHILE ( L11.LE.N ) DO
C
   10 CONTINUE
      IF( L11.LE.N ) THEN
         NBLCKS = NBLCKS + 1
         DA11   = 1
C
         IF( LSORT ) THEN
C
C           The following loop, using K as loop variable, finds the
C           diagonal elements which are close to those of A11 and moves
C           these elements (if any) to the leading position of A22.
C
            L22 = L11 + DA11
            K   = L22
C
C           WHILE ( K.LE.N ) DO
C
   20       CONTINUE
            IF( K.LE.N ) THEN
               EDIF = ABS( W(L11) - W(K) )
               IF( EDIF.LE.THRESH ) THEN
C
C                 A diagonal element of A22 has been found so that
C
C                    abs( lambda_1 - lambda_k ) <= THRESH
C
C                 where lambda_1 and lambda_k denote an eigenvalue of
C                 A11 and of the leading element in A22, respectively.
C                 Move that element to the leading position of A22.
C
                  IF( K.GT.L22 ) THEN
                     CALL ZTREXC( JOBV, N, A, LDA, X, LDX, K, L22, IERR)
                     CALL ZCOPY ( K-L22+1, A(L22,L22), LDA+1, W(L22), 1)
                  END IF
C
C                 Extend A11 with the leading element of A22.
C
                  DA11 = DA11 + 1
                  L22  = L11  + DA11
               END IF
               K = K + 1
               GO TO 20
            END IF
C
C           END WHILE 20
C
         END IF
C
C        The following loop uses L22 as loop variable and forms a
C        separable DA11-by-DA11 block A11 in position (L11,L11).
C
         L22   = L11 + DA11
         L22M1 = L22 - 1
C
C        WHILE ( L22.LE.N ) DO
C
   30    CONTINUE
         IF( L22.LE.N ) THEN
            DA22 = N - L22M1
C
C           Try to separate the block A11 of order DA11 by using a
C           well-conditioned similarity transformation.
C
C           First save A12' in the block A21, containing zeros only.
C
            CALL MA02AZ( 'Transpose', 'Full', DA11, DA22, A(L11,L22),
     $                   LDA, A(L22,L11), LDA )
C
C           Solve  -A11*P + P*A22 = A12.
C
            CALL MB03RW( DA11, DA22, PMAX, A(L11,L11), LDA, A(L22,L22),
     $                   LDA, A(L11,L22), LDA, IERR )
C
            IF( IERR.EQ.1 ) THEN
C
C              The annihilation of A12 failed. Restore A12 and A21.
C
               CALL MA02AZ( 'Transpose', 'Full', DA22, DA11, A(L22,L11),
     $                      LDA, A(L11,L22), LDA )
               CALL ZLASET( 'Full', DA22, DA11, CZERO, CZERO,
     $                      A(L22,L11), LDA )
C
               IF( LSORN .OR. LSORS ) THEN
C
C                 Extend A11 with an element of A22 having the nearest
C                 eigenvalues to the mean of eigenvalues of A11 and
C                 resume the loop.
C                 First compute the mean of eigenvalues of A11.
C
                  AV = CZERO
C
                  DO 40 I = L11, L22M1
                     AV = AV + W(I)
   40             CONTINUE
C
                  AV = AV/DA11
C
C                 Loop to find the eigenvalue of A22 nearest to the
C                 above computed mean.
C
                  D = ABS( AV - W(L22) )
                  K = L22
                  L = L22 + 1
C
C                 WHILE ( L.LE.N ) DO
C
   50             CONTINUE
                  IF( L.LE.N ) THEN
                     C = ABS( AV - W(L) )
                     IF( C.LT.D ) THEN
                        D = C
                        K = L
                     END IF
                     L = L + 1
                     GO TO 50
                  END IF
C
C                 END WHILE 50
C
               ELSE
C
C                 Extend A11 with an element of A22 having the nearest
C                 eigenvalues to the cluster of eigenvalues of A11 and
C                 resume the loop.
C
C                 Loop to find the eigenvalue of A22 of minimum distance
C                 to the cluster.
C
                  D = BIGNUM
                  L = L22
                  K = L22
C
C                 WHILE ( L.LE.N ) DO
C
   60             CONTINUE
                  IF( L.LE.N ) THEN
                     I = L11
C
C                    WHILE ( I.LE.L22M1 ) DO
C
   70                CONTINUE
                     IF( I.LE.L22M1 ) THEN
                        C = ABS( W(I) - W(L) )
                        IF( C.LT.D ) THEN
                           D = C
                           K = L
                        END IF
                        I = I + 1
                        GO TO 70
                     END IF
C
C                    END WHILE 70
C
                     L = L + 1
                     GO TO 60
                  END IF
C
C                 END WHILE 60
C
               END IF
C
C              Try to move element found to the leading position of A22.
C
               IF( K.GT.L22 ) THEN
                  CALL ZTREXC( JOBV, N, A, LDA, X, LDX, K, L22, IERR )
                  CALL ZCOPY ( K-L22+1, A(L22,L22), LDA+1, W(L22), 1 )
               END IF
C
C              Extend A11 with the leading element of A22.
C
               DA11  = DA11 + 1
               L22   = L11  + DA11
               L22M1 = L22  - 1
               GO TO 30
            END IF
         END IF
C
C        END WHILE 30
C
         IF( LJOBX ) THEN
C
C           Accumulate the transformation in X.
C           Only columns L22, ..., N are modified.
C
            IF( L22.LE.N )
     $         CALL ZGEMM( 'No transpose', 'No transpose', N, DA22,
     $                     DA11, CONE, X(1,L11), LDX, A(L11,L22), LDA,
     $                     CONE, X(1,L22), LDX )
C
C           Scale to unity the (non-zero) columns of X which will be
C           no more modified and transform A11 accordingly.
C
            DO 80 J = L11, L22M1
               C  = DZNRM2( N, X(1,J), 1 )
               SC = DCMPLX( C, ZERO )
               IF( C.GT.SAFEMN ) THEN
                  CALL ZSCAL( DA11, SC, A(J,L11), LDA )
                  SC = CONE/SC
                  CALL ZSCAL( N, SC, X(1,J), 1 )
                  CALL ZSCAL( DA11, SC, A(L11,J), 1 )
               END IF
   80       CONTINUE
C
         END IF
C
         IF( L22.LE.N ) THEN
C
C           Set A12 and A21 to zero.
C
            CALL ZLASET( 'Full', DA11, DA22, CZERO, CZERO, A(L11,L22),
     $                   LDA )
            CALL ZLASET( 'Full', DA22, DA11, CZERO, CZERO, A(L22,L11),
     $                   LDA )
         END IF
C
C        Store the orders of the diagonal blocks in BLSIZE.
C
         BLSIZE(NBLCKS) = DA11
         L11 = L22
         GO TO 10
      END IF
C
C     END WHILE 10
C
      RETURN
C *** Last line of MB03RZ ***
      END