control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
      SUBROUTINE TG01LY( COMPQ, COMPZ, N, M, P, RANKE, RNKA22, A, LDA,
     $                   E, LDE, B, LDB, C, LDC, Q, LDQ, Z, LDZ, NF,
     $                   NIBLCK, IBLCK, TOL, IWORK, DWORK, LDWORK,
     $                   INFO )
C
C     PURPOSE
C
C     To compute orthogonal transformation matrices Q and Z which reduce
C     the regular pole pencil A-lambda*E of the descriptor system
C     (A-lambda*E,B,C), with the A and E matrices in the form
C
C           ( A11 A12 A13 )             ( E11  0  0 )
C       A = ( A21 A22 A23 ) ,       E = (  0   0  0 ) ,              (1)
C           ( A31  0   0  )             (  0   0  0 )
C
C     where E11 and A22 are nonsingular and upper triangular matrices,
C     to the form
C
C                ( Af  *  )             ( Ef  *  )
C       Q'*A*Z = (        ) ,  Q'*E*Z = (        ) ,
C                ( 0   Ai )             ( 0   Ei )
C
C     where the subpencil Af-lambda*Ef contains the finite eigenvalues
C     and the subpencil Ai-lambda*Ei contains the infinite eigenvalues.
C     The subpencil Ai-lambda*Ei is in a staircase form with the
C     matrices Ai and Ei of form
C
C
C           ( A0,0  A0,k ... A0,1 )         ( 0  E0,k ... E0,1 )
C      Ai = (  0    Ak,k ... Ak,1 ) ,  Ei = ( 0   0   ... Ek,1 ) ,   (2)
C           (  :     :   ...   :  )         ( :   :   ...   :  )
C           (  0     0   ... A1,1 )         ( 0   0   ...   0  )
C
C     where Ai,i, for i = 0, 1, ..., k, are nonsingular upper triangular
C     matrices.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     COMPQ   LOGICAL
C             Specify the option to accumulate or not the performed
C             left transformations:
C             COMPQ = .FALSE. : do not accumulate the transformations;
C             COMPQ = .TRUE.  : accumulate the transformations; in this
C                     case, Q must contain an orthogonal matrix Q1
C                     on entry, and the product Q1*Q is returned.
C
C     COMPZ   LOGICAL
C             Specify the option to accumulate or not the performed
C             right transformations:
C             COMPZ = .FALSE. : do not accumulate the transformations;
C             COMPZ = .TRUE.  : accumulate the transformations; in this
C                     case, Z must contain an orthogonal matrix Z1
C                     on entry, and the product Z1*Z is returned.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The number of rows of the matrix B, the number of columns
C             of the matrix C and the order of the square matrices A
C             and E.  N >= 0.
C
C     M       (input) INTEGER
C             The number of columns of the matrix B.  M >= 0.
C
C     P       (input) INTEGER
C             The number of rows of the matrix C.  P >= 0.
C
C     RANKE   (input) INTEGER
C             The rank of the matrix E; also, the order of the upper
C             triangular matrix E11.  0 <= RANKE <= N. 
C
C     RNKA22  (input) DOUBLE PRECISION
C             The order of the nonsingular submatrix A22 of A.
C             0 <= RNKA22 <= N - RANKE. 
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading N-by-N part of this array must
C             contain the N-by-N state matrix A in the form (1).
C             On exit, the leading N-by-N part of this array contains
C             the transformed state matrix Q'*A*Z,
C
C                                ( Af  *  )
C                       Q'*A*Z = (        ) ,
C                                ( 0   Ai )
C
C             where Af is NF-by-NF and Ai is (N-NF)-by-(N-NF).
C             The submatrix Ai is in the staircase form (2), where A0,0
C             is (N-RANKE)-by-(N-RANKE), and Ai,i , for i = 1, ...,
C             NIBLCK is IBLCK(i)-by-IBLCK(i).
C
C     LDA     INTEGER
C             The leading dimension of the array A.  LDA >= MAX(1,N).
C
C     E       (input/output) DOUBLE PRECISION array, dimension (LDE,N)
C             On entry, the leading N-by-N part of this array must
C             contain the N-by-N descriptor matrix E in the form (1).
C             On exit, the leading N-by-N part of this array contains
C             the transformed descriptor matrix Q'*E*Z,
C
C                                ( Ef  *  )
C                       Q'*E*Z = (        ) ,
C                                ( 0   Ei )
C
C             where Ef is an NF-by-NF nonsingular matrix and Ei is an
C             (N-NF)-by-(N-NF) nilpotent matrix in the staircase
C             form (2).
C
C     LDE     INTEGER
C             The leading dimension of the array E.  LDE >= MAX(1,N).
C
C     B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C             On entry, the leading N-by-M part of this array must
C             contain the N-by-M input matrix B.
C             On exit, the leading N-by-M part of this array contains
C             the transformed input matrix Q'*B.
C
C     LDB     INTEGER
C             The leading dimension of the array B.  LDB >= MAX(1,N).
C
C     C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C             On entry, the leading P-by-N part of this array must
C             contain the state/output matrix C.
C             On exit, the leading P-by-N part of this array contains
C             the transformed matrix C*Z.
C
C     LDC     INTEGER
C             The leading dimension of the array C.  LDC >= MAX(1,P).
C
C     Q       (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
C             If COMPQ = .FALSE., Q is not referenced.
C             If COMPQ = .TRUE., on entry, the leading N-by-N part of
C                         this array must contain an orthogonal matrix
C                         Q1; on exit, the leading N-by-N part of this
C                         array contains the orthogonal matrix Q1*Q.
C
C     LDQ     INTEGER
C             The leading dimension of the array Q.
C             LDQ >= 1,        if COMPQ = .FALSE.;
C             LDQ >= MAX(1,N), if COMPQ = .TRUE. .
C
C     Z       (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
C             If COMPZ = .FALSE., Z is not referenced.
C             If COMPZ = .TRUE., on entry, the leading N-by-N part of
C                        this array must contain an orthogonal matrix
C                        Z1; on exit, the leading N-by-N part of this
C                        array contains the orthogonal matrix Z1*Z.
C
C     LDZ     INTEGER
C             The leading dimension of the array Z.
C             LDZ >= 1,        if COMPZ = .FALSE.;
C             LDZ >= MAX(1,N), if COMPZ = .TRUE. .
C
C     NF      (output) INTEGER
C             The order of the reduced matrices Af and Ef; also, the
C             number of finite generalized eigenvalues of the pencil
C             A-lambda*E.
C
C     NIBLCK  (output) INTEGER
C             If RANKE < N, the number of infinite blocks minus one.
C             If RANKE = N, NIBLCK = 0.
C
C     IBLCK   (output) INTEGER array, dimension (N)
C             IBLCK(i) contains the dimension of the i-th block in the
C             staircase form (2), where i = 1, 2, ..., NIBLCK.
C
C     Tolerances
C
C     TOL     DOUBLE PRECISION
C             A tolerance used in rank decisions to determine the
C             effective rank, which is defined as the order of the
C             largest leading (or trailing) triangular submatrix in the
C             QR factorization with column pivoting whose estimated
C             condition number is less than 1/TOL.  If the user sets
C             TOL <= 0, then an implicitly computed, default tolerance,
C             TOLDEF = N**2*EPS,  is used instead, where EPS is the
C             machine precision (see LAPACK Library routine DLAMCH).
C             TOL < 1.
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (N-RANKE)
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) returns the optimal value
C             of LDWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             LDWORK >= 1, if RANKE = N; otherwise,
C             LDWORK >= MAX(4*(N-RANKE)-1, N-RANKE-RNKA22+MAX(N,M)).
C             For optimal performance, LDWORK should be larger.
C
C             If LDWORK = -1, then a workspace query is assumed;
C             the routine only calculates the optimal size of the
C             DWORK array, returns this value as the first entry of
C             the DWORK array, and no error message related to LDWORK
C             is issued by XERBLA.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = 1:  the pencil A-lambda*E is not regular.
C
C     METHOD
C
C     The subroutine is based on the reduction algorithm of [1].
C
C     REFERENCES
C
C     [1] Misra, P., Van Dooren, P., and Varga, A.
C         Computation of structural invariants of generalized
C         state-space systems.
C         Automatica, 30, pp. 1921-1936, 1994.
C
C     NUMERICAL ASPECTS
C
C     The algorithm is numerically backward stable and requires
C     0( N**3 )  floating point operations.
C
C     FURTHER COMMENTS
C
C     The number of infinite poles is computed as
C
C            NIBLCK
C             Sum  IBLCK(i) = RANKE - NF.
C             i=1
C
C     The multiplicities of infinite poles can be computed as follows:
C     there are IBLCK(k)-IBLCK(k+1) infinite poles of multiplicity
C     k, for k = 1, ..., NIBLCK, where IBLCK(NIBLCK+1) = 0.
C     Note that each infinite pole of multiplicity k corresponds to
C     an infinite eigenvalue of multiplicity k+1.
C
C     CONTRIBUTOR
C
C     A. Varga, German Aerospace Center, DLR Oberpfaffenhofen.
C     July 1999. Based on the RASP routine SRISEP.
C
C     REVISIONS
C
C     A. Varga, German Aerospace Center, DLR Oberpfaffenhofen.
C     July 2001; Nov. 2002
C     V. Sima, Dec. 2016, Feb. 2017, June 2017.
C
C     KEYWORDS
C
C     Generalized eigenvalue problem, system poles, multivariable
C     system, orthogonal transformation, structural invariant.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D0, ZERO = 0.0D0 )
C     .. Scalar Arguments ..
      LOGICAL            COMPQ, COMPZ
      INTEGER            INFO, LDA, LDB, LDC, LDE, LDQ, LDWORK, LDZ, M,
     $                   N, NF, NIBLCK, P, RANKE, RNKA22
      DOUBLE PRECISION   TOL
C     .. Array Arguments ..
      INTEGER            IBLCK( * ), IWORK(*)
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), C( LDC, * ),
     $                   DWORK(  * ), E( LDE, * ), Q( LDQ, * ),
     $                   Z( LDZ, * )
C     .. Local Scalars ..
      LOGICAL            FIRST, LQUERY
      INTEGER            I, I0, I1, ICOL, IPIV, IROW, ITAU, J, JWORK1,
     $                   JWORK2, K, MINWRK, MM1, N1, ND, NR, RANK, RO,
     $                   RO1, SIGMA, WRKOPT
      DOUBLE PRECISION   CO, RCOND, SI, SVLMAX, T, TOLDEF
C     .. Local Arrays ..
      DOUBLE PRECISION   DUM(1), SVAL(3)
C     .. External Functions ..
      DOUBLE PRECISION   DLAMCH, DLANGE, DLANTR, DLAPY2, DNRM2
      EXTERNAL           DLAMCH, DLANGE, DLANTR, DLAPY2, DNRM2
C     .. External Subroutines ..
      EXTERNAL           DCOPY, DLACPY, DLAPMT, DLARFG, DLARTG, DLASET,
     $                   DLATZM, DORMQR, DROT, DSWAP, DTRCON, MB03OY,
     $                   XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC          DBLE, INT, MAX, MIN, MOD
C     .. Executable Statements ..
C
C     Test the input parameters.
C
      INFO = 0
      IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( M.LT.0 ) THEN
         INFO = -4
      ELSE IF( P.LT.0 ) THEN
         INFO = -5
      ELSE IF( RANKE.LT.0 .OR. RANKE.GT.N ) THEN
         INFO = -6
      ELSE IF( RNKA22.LT.0 .OR. RNKA22+RANKE.GT.N ) THEN
         INFO = -7
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -9
      ELSE IF( LDE.LT.MAX( 1, N ) ) THEN
         INFO = -11
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -13
      ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
         INFO = -15
      ELSE IF( ( COMPQ .AND. LDQ.LT.N ) .OR. LDQ.LT.1 ) THEN
         INFO = -17
      ELSE IF( ( COMPZ .AND. LDZ.LT.N ) .OR. LDZ.LT.1 ) THEN
         INFO = -19
      ELSE IF( TOL.GE.ONE ) THEN
         INFO = -23
      ELSE
         LQUERY = ( LDWORK.EQ.-1 )
C
         ND  = N  - RANKE
         RO1 = ND
         IF( RANKE.EQ.N ) THEN
            MINWRK = 1
         ELSE
            MINWRK = MAX( 4*ND - 1, RO1 + MAX( N, M ) )
         END IF
         IF( LQUERY ) THEN
            CALL DORMQR( 'Left', 'Transpose', RO1, RANKE, ND,
     $                   A, LDA, DWORK, A, LDA, DWORK, -1, INFO )
            WRKOPT = MAX( MINWRK, INT( DWORK(1) ) + ND )
            CALL DORMQR( 'Left', 'Transpose', RO1, M, ND, A, LDA,
     $                   DWORK, B, LDB, DWORK, -1, INFO )
            WRKOPT = MAX( WRKOPT, INT( DWORK(1) ) + ND )
            IF( COMPQ ) THEN
               CALL DORMQR( 'Right', 'No-Transpose', N, RO1, ND, A,
     $                      LDA, DWORK, Q, LDQ, DWORK, -1, INFO )
               WRKOPT = MAX( WRKOPT, INT( DWORK(1) ) + ND )
            END IF
         ELSE IF( LDWORK.LT.MINWRK ) THEN
            INFO = -26
         END IF
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'TG01LY', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         DWORK(1) = WRKOPT
         RETURN
      END IF
C
C     Initialize output variables.
C
      NF = RANKE
      NIBLCK = 0
C
C     Quick return if possible.
C
      IF( RANKE.EQ.N ) THEN
         DWORK(1) = ONE
         RETURN
      END IF
C
C     Trivial rank check.
C
      IF( RANKE.EQ.0 .AND. RNKA22.EQ.0 ) THEN
         INFO = 1
         RETURN
      END IF
C
C     Skip reduction if A22 has rank N-RANKE.
C
      WRKOPT = MINWRK
      IF( RNKA22.EQ.ND )
     $   GO TO 110
C
      TOLDEF = TOL
      IF( TOLDEF.LE.ZERO ) THEN
C
C        Use the default tolerance in rank determination.
C
         TOLDEF = DBLE( N*N ) * DLAMCH( 'Precision' )
      END IF
C
C     Permute block columns to put E in the form  E = ( 0 E1 )
C                                                     ( 0 0  )
C
C     and define accordingly  A = ( B1 A1 ).
C                                 ( D1 C1 )
C
      MM1 = ND + 1
      CALL DLACPY( 'Full', N, ND, A(1,RANKE+1), LDA, E(1,RANKE+1), LDE )
      IF( RANKE.LE.ND ) THEN
         CALL DLACPY( 'Full', N, RANKE, A, LDA, A(1,MM1), LDA )
      ELSE
         K = MOD( RANKE, ND )
         DO 10 I = N-2*ND+1, K+1, -ND
            CALL DLACPY( 'Full', N, ND, A(1,I), LDA, A(1,I+ND), LDA )
   10    CONTINUE
         IF( K.NE.0 )
     $      CALL DLACPY( 'Full', N, K, A, LDA, A(1,MM1), LDA )
      END IF
      CALL DLACPY( 'Full', N, ND, E(1,RANKE+1), LDE, A, LDA )
      IF( COMPZ ) THEN
         CALL DLACPY( 'Full', N, ND, Z(1,RANKE+1), LDZ, E(1,RANKE+1),
     $                LDE )
         IF( RANKE.LE.ND ) THEN
            CALL DLACPY( 'Full', N, RANKE, Z, LDZ, Z(1,MM1), LDZ )
         ELSE
            DO 20 I = N-2*ND+1, K+1, -ND
               CALL DLACPY( 'Full', N, ND, Z(1,I), LDZ, Z(1,I+ND), LDZ )
   20       CONTINUE
            IF( K.NE.0 )
     $         CALL DLACPY( 'Full', N, K, Z, LDZ, Z(1,MM1), LDZ )
         END IF
         CALL DLACPY( 'Full', N, ND, E(1,RANKE+1), LDE, Z, LDZ )
      END IF
      IF( P.LE.N ) THEN
         CALL DLACPY( 'Full', P, ND, C(1,RANKE+1), LDC, E(1,RANKE+1),
     $                LDE )
         IF( RANKE.LE.ND ) THEN
            CALL DLACPY( 'Full', P, RANKE, C, LDC, C(1,MM1), LDC )
         ELSE
            DO 30 I = N-2*ND+1, K+1, -ND
               CALL DLACPY( 'Full', P, ND, C(1,I), LDC, C(1,I+ND), LDC )
   30       CONTINUE
            IF( K.NE.0 )
     $         CALL DLACPY( 'Full', P, K, C, LDC, C(1,MM1), LDC )
         END IF
         CALL DLACPY( 'Full', P, ND, E(1,RANKE+1), LDE, C, LDC )
      ELSE
         DO 40 I = 1, P
            CALL DCOPY( ND, C(I,RANKE+1), LDC, DWORK, 1 )
            CALL DCOPY( RANKE, C(I,1), LDC, DWORK(ND+1), 1 )
            CALL DCOPY( N, DWORK, 1, C(I,1), LDC )
   40    CONTINUE
      END IF
      IF( RANKE.LE.ND ) THEN
         CALL DLACPY( 'Full', N, RANKE, E, LDE, E(1,MM1), LDE )
      ELSE
         DO 50 I = N-2*ND+1, K+1, -ND
            CALL DLACPY( 'Full', N, ND, E(1,I), LDE, E(1,I+ND), LDE )
   50    CONTINUE
         IF( K.NE.0 )
     $      CALL DLACPY( 'Full', N, K, E, LDE, E(1,MM1), LDE )
      END IF
      CALL DLASET( 'Full', N, ND, ZERO, ZERO, E, LDE )
C
C     Set the estimate of the maximum singular value of A to ||A||_F.
C
      SVAL(1) = DLANGE( 'Frobenius', RANKE, RNKA22, A, LDA, DWORK )
      SVAL(2) = DLANTR( 'Frobenius', 'Upper', 'Non-Unit', RNKA22,
     $                  RNKA22, A(RANKE+1,1), LDA, DWORK )
      SVAL(3) = DLANGE( 'Frobenius', RANKE+RNKA22, ND-RNKA22,
     $                  A(1,RNKA22+1), LDA, DWORK )
      SVLMAX  = DLAPY2( DNRM2( 3, SVAL, 1 ),
     $                  DLANGE( 'Frobenius', N, RANKE, A(1,ND+1), LDA,
     $                          DWORK ) )/DBLE( N )
C
C     The D1 matrix is (RO+SIGMA)-by-(RO+SIGMA), where RO = ND - SIGMA
C     and SIGMA = 0. At each iteration the leading (RO+SIGMA)-by-SIGMA
C     submatrix of D1 has full column rank, with the trailing
C     SIGMA-by-SIGMA submatrix upper triangular.
C
      RO = ND
C
      SIGMA  = 0
      FIRST  = .TRUE.
      ITAU   = 1
      JWORK1 = ITAU   + ND
      JWORK2 = JWORK1 + 1
      DUM(1) = ZERO
C
   60 CONTINUE
      IF( FIRST ) THEN
         RO1 = ND - RNKA22
      ELSE
C
C        (NF+1,1) points to the current position of matrix D1.
C
         RO1 = RO
C
C        Compress columns of D1; first exploit the trapezoidal shape of
C        the (RO+SIGMA)-by-SIGMA matrix in the first SIGMA columns of D1;
C        compress the first SIGMA columns without column pivoting:
C
C              ( x x x x x )       ( x x x x x )
C              ( x x x x x )       ( 0 x x x x )
C              ( x x x x x )  - >  ( 0 0 x x x )
C              ( 0 x x x x )       ( 0 0 0 x x )
C              ( 0 0 x x x )       ( 0 0 0 x x )
C
C        where SIGMA = 3 and RO = 2.
C        Workspace: need  MAX( N, M ).
C
         IROW = NF
         DO 70 ICOL = 1, SIGMA
            IROW = IROW + 1
            CALL DLARFG( RO+1, A(IROW,ICOL), A(IROW+1,ICOL), 1, T )
            CALL DLATZM( 'L', RO+1, N-ICOL, A(IROW+1,ICOL), 1, T,
     $                   A(IROW,ICOL+1), A(IROW+1,ICOL+1), LDA, DWORK )
            CALL DLATZM( 'L', RO+1, RANKE, A(IROW+1,ICOL), 1, T,
     $                   E(IROW,ND+1), E(IROW+1,ND+1), LDE, DWORK )
            IF( COMPQ )
     $         CALL DLATZM( 'R', N, RO+1, A(IROW+1,ICOL), 1, T,
     $                      Q(1, IROW), Q(1, IROW+1), LDQ, DWORK )
            CALL DLATZM( 'L', RO+1, M, A(IROW+1,ICOL), 1, T,
     $                   B(IROW,1), B(IROW+1,1), LDB, DWORK )
            CALL DCOPY( ND-ICOL, DUM, 0, A(IROW+1, ICOL), 1 )
   70    CONTINUE
C
C        Continue with Householder with column pivoting.
C
C              ( x x x x x )       ( x x x x x )
C              ( 0 x x x x )       ( 0 x x x x )
C              ( 0 0 x x x )  ->   ( 0 0 x x x ) .
C              ( 0 0 0 x x )       ( 0 0 0 x x )
C              ( 0 0 0 x x )       ( 0 0 0 0 0 )
C
C                             ( D11 D12 )
C        Reduce further D1 to (  0  D22 ), where D22 is full
C                             (  0   0  )
C        row rank upper triangular.
C        Real workspace:    need  4*ND - 1;
C        Integer workspace: need  ND.
C
         IROW = MIN( NF+SIGMA+1, N  )
         ICOL = MIN(    SIGMA+1, ND )
         CALL MB03OY( RO1, ND-SIGMA, A(IROW,ICOL), LDA, TOLDEF, SVLMAX,
     $                RANK, SVAL, IWORK, DWORK(ITAU), DWORK(JWORK1),
     $                INFO )
C
C        Apply the column permutations to D12 and to the corresponding
C        columns of B1.
C
         CALL DLAPMT( .TRUE., NF+SIGMA, ND-SIGMA, A(1,ICOL), LDA,
     $                IWORK )
         CALL DLAPMT( .TRUE., P, ND-SIGMA, C(1,ICOL), LDC, IWORK )
         IF( COMPZ )
     $      CALL DLAPMT( .TRUE., N, ND-SIGMA, Z(1,ICOL), LDZ, IWORK )
C
         IF( RANK.GT.0 ) THEN
C
C           Apply the Householder transformations to the submatrix C1
C                                            ( C11 )
C           and define the transformed C1 as ( C21 ).
C                                            ( C31 )
C           Workspace: need    RANK + MAX(N,M);
C                      prefer  RANK + MAX(N,M)*NB.
C
            CALL DORMQR( 'Left', 'Transpose', RO1, RANKE, RANK,
     $                   A(IROW,ICOL), LDA, DWORK(ITAU), A(IROW,MM1),
     $                   LDA, DWORK(JWORK1), LDWORK-JWORK1+1, INFO )
            WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK1) ) + JWORK1 - 1 )
            CALL DORMQR( 'Left', 'Transpose', RO1, M, RANK,
     $                   A(IROW,ICOL), LDA, DWORK(ITAU), B(IROW,1), LDB,
     $                   DWORK(JWORK1), LDWORK-JWORK1+1, INFO )
            WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK1) ) + JWORK1 - 1 )
            CALL DORMQR( 'Left', 'Transpose', RO1, RANKE, RANK,
     $                   A(IROW,ICOL), LDA, DWORK(ITAU), E(IROW,MM1),
     $                   LDE, DWORK(JWORK1), LDWORK-JWORK1+1, INFO )
            WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK1) ) + JWORK1 - 1 )
            IF( COMPQ ) THEN
               CALL DORMQR( 'Right', 'No-Transpose', N, RO1, RANK,
     $                      A(IROW,ICOL), LDA, DWORK(ITAU), Q(1,IROW),
     $                      LDQ, DWORK(JWORK1), LDWORK-JWORK1+1, INFO )
               WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK1) ) + JWORK1 - 1 )
            END IF
            CALL DLASET( 'Lower', RO1-1, MIN( RO1-1, RANK ), ZERO,
     $                   ZERO, A(MIN( IROW+1, N ),ICOL), LDA )
            RO1 = RO1 - RANK
         END IF
      END IF
C
C     Terminate if D1 has maximal row rank.
C
      IF( RO1.GT.0 ) THEN
C
C        Update SIGMA and number of blocks.
C
         SIGMA  = ND - RO1
         NIBLCK = NIBLCK + 1
C
C        Compress the columns of current C31 to separate a RO1-by-RO1
C        invertible block.
C        Perform RQ-decomposition on the current C31 while keeping E1
C        upper triangular. No row pivoting is necessary since the
C        pencil is assumed regular. Still check regularity at first
C        iteration.
C        The current C31 is the RO1-by-NF matrix delimited by rows
C        NF+SIGMA+1 to NF+SIGMA+RO1 and columns ND+1 to ND+NF of A1.
C        The rank of current C21 is checked only for the first iteration.
C
C        IPIV will point to the current pivot position in C31.
C
         IPIV = NF + ND + 1
         N1   = NF + 1
         DO 90 I = 1, RO1
            IPIV = IPIV - 1
            N1   = N1   - 1
C
C           Zero elements left to A(IPIV,IPIV).
C
            DO 80 K = 1, N1-1
               J = ND + K
C
C              Rotate columns J, J+1 to zero A(IPIV,J).
C
               T = A(IPIV,J+1)
               CALL DLARTG( T, A(IPIV,J), CO, SI, A(IPIV,J+1) )
               A(IPIV,J) = ZERO
               CALL DROT( IPIV-1, A(1,J+1), 1, A(1,J), 1, CO, SI )
               CALL DROT( K+1, E(1,J+1), 1, E(1,J), 1, CO, SI )
               CALL DROT( P, C(1,J+1), 1, C(1,J), 1, CO, SI )
               IF( COMPZ )
     $            CALL DROT( N, Z(1,J+1), 1, Z(1,J), 1, CO, SI )
C
C              Rotate rows K, K+1 to zero E(K+1,J).
C
               T = E(K,J)
               CALL DLARTG( T, E(K+1,J), CO, SI, E(K,J) )
               E(K+1,J) = ZERO
               CALL DROT( N-J, E(K,J+1), LDE, E(K+1,J+1), LDE, CO, SI )
               CALL DROT( N, A(K,1), LDA, A(K+1,1), LDA, CO, SI )
               CALL DROT( M, B(K,1), LDB, B(K+1,1), LDB, CO, SI )
               IF( COMPQ )
     $            CALL DROT( N, Q(1,K), 1, Q(1,K+1), 1, CO, SI )
   80       CONTINUE
C
   90    CONTINUE
C
C        Check regularity of the pencil.
C        Real workspace:    need 3*RO1.
C        Integer workspace: need RO1.
C
         IF( DLANTR( 'Frobenius', 'Upper', 'Non-Unit', RO1, RO1,
     $                A(IPIV,IPIV), LDA, DWORK ) .LE. TOLDEF*SVLMAX )
     $         THEN
            INFO = 1
         ELSE
            CALL DTRCON( '1-norm', 'Upper', 'Non-unit', RO1,
     $                    A(IPIV,IPIV), LDA, RCOND, DWORK, IWORK, INFO )
            IF( RCOND.LE.TOLDEF )
     $         INFO = 1
         END IF
C
C        Return with error for non-regular system.
C
         IF( INFO.NE.0 )
     $      RETURN
C
         NF = NF - RO1
C
C        Set the order of i-th block.
C
         IBLCK(NIBLCK) = RO1
         RO = RO1
         FIRST = .FALSE.
C
         GO TO 60
      END IF
C
      IF( NF.GT.0 ) THEN
C
C        Permute block columns to put A and E in the form
C
C               ( A1 B1  *  )       ( E1 0  *  )
C           A = ( C1 D1  *  ),  E = ( 0  0  *  ) .
C               ( 0   0  Ai )       ( 0  0  Ei )
C
         NR = NF + ND
         DUM(1) = ZERO
         CALL DLACPY( 'Full', NR, ND, A, LDA, E, LDE )
         CALL DLACPY( 'Full', NR, NF, A(1,ND+1), LDA, A, LDA )
         CALL DLACPY( 'Full', NR, ND, E, LDE, A(1,NF+1), LDA )
         IF( COMPZ ) THEN
            CALL DLACPY( 'Full', N, ND, Z, LDZ, E, LDE )
            CALL DLACPY( 'Full', N, NF, Z(1,ND+1), LDZ, Z, LDZ )
            CALL DLACPY( 'Full', N, ND, E, LDE, Z(1,NF+1), LDZ )
         END IF
         IF( P.LE.N ) THEN
            CALL DLACPY( 'Full', P, ND, C, LDC, E, LDE )
            CALL DLACPY( 'Full', P, NF, C(1,ND+1), LDC, C, LDC )
            CALL DLACPY( 'Full', P, ND, E, LDE, C(1,NF+1), LDC )
         ELSE
            DO 100 I = 1, P
               CALL DCOPY( ND, C(I,1), LDC, DWORK, 1 )
               CALL DCOPY( NF, C(I,ND+1), LDC, C(I,1), LDC )
               CALL DCOPY( ND, DWORK, 1, C(I,NF+1), LDC )
  100       CONTINUE
         END IF
         CALL DLACPY( 'Full', N, NF, E(1,ND+1), LDE, E, LDE )
         CALL DLASET( 'Full', N, ND, ZERO, ZERO, E(1,NF+1), LDE )
         CALL DLASET( 'Full', N-NF-ND, NF+ND, ZERO, ZERO,
     $                A(NF+ND+1,1), LDA )
      END IF
C
C     Annihilate C1 keeping E upper triangular, to obtain
C
C             ( Af  *    *  )       ( Ef *  *  )
C         A = ( 0  A0,0  *  ),  E = ( 0  0  *  ) .
C             ( 0   0    Ai )       ( 0  0  Ei )
C
  110 CONTINUE
      I1 = NF + ND
      DO 130 I0 = ND, 1, -1
C
C        Annihilate elements A(I1,1), ..., A(I1,NF) using A(I1,I1)
C        as pivot element; E remains further upper triangular.
C
         K = 1
         DO 120 J = 1, NF
C
C           Rotate columns I1 and J to zero A(I1,J).
C
            T = A(I1,I1)
            CALL DLARTG( T, A(I1,J), CO, SI, A(I1,I1) )
            A(I1,J) = ZERO
            CALL DROT( I1-1, A(1,I1), 1, A(1,J), 1, CO, SI )
            CALL DROT( K, E(1,I1), 1, E(1,J), 1, CO, SI )
            CALL DROT( P, C(1,I1), 1, C(1,J), 1, CO, SI )
            IF( COMPZ )
     $         CALL DROT( N, Z(1,I1), 1, Z(1,J), 1, CO, SI )
            K = K + 1
  120    CONTINUE
         I1 = I1 - 1
  130 CONTINUE
C
      DWORK(1) = WRKOPT
      RETURN
C *** Last line of TG01LY ***
      END