control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
      SUBROUTINE MB03BB( BASE, LGBAS, ULP, K, AMAP, S, SINV, A, LDA1,
     $                   LDA2, ALPHAR, ALPHAI, BETA, SCAL, DWORK, INFO )
C
C     PURPOSE
C
C     To compute the eigenvalues of a general 2-by-2 matrix product via
C     a complex single shifted periodic QZ algorithm.
C
C     ARGUMENTS
C
C     Input/Output Parameters
C
C     BASE    (input)  DOUBLE PRECISION
C             Machine base.
C
C     LGBAS   (input)  DOUBLE PRECISION
C             Logarithm of BASE.
C
C     ULP     (input)  DOUBLE PRECISION
C             Machine precision.
C
C     K       (input)  INTEGER
C             The number of factors.  K >= 1.
C
C     AMAP    (input) INTEGER array, dimension (K)
C             The map for accessing the factors, i.e., if AMAP(I) = J,
C             then the factor A_I is stored at the J-th position in A.
C
C     S       (input)  INTEGER array, dimension (K)
C             The signature array. Each entry of S must be 1 or -1.
C
C     SINV    (input) INTEGER
C             Signature multiplier. Entries of S are virtually
C             multiplied by SINV.
C
C     A       (input)  DOUBLE PRECISION array, dimension (LDA1,LDA2,K)
C             On entry, the leading 2-by-2-by-K part of this array must
C             contain a 2-by-2 product (implicitly represented by its K
C             factors) in upper Hessenberg-triangular form.
C
C     LDA1    INTEGER
C             The first leading dimension of the array A.  LDA1 >= 2.
C
C     LDA2    INTEGER
C             The second leading dimension of the array A.  LDA2 >= 2.
C
C     ALPHAR  (output)  DOUBLE PRECISION array, dimension (2)
C             On exit, this array contains the scaled real part of the
C             two eigenvalues. If BETA(I) <> 0, then the I-th eigenvalue
C             (I = 1 : 2) is given by
C                 (ALPHAR(I) + ALPHAI(I)*SQRT(-1) ) * (BASE)**SCAL(I).
C
C     ALPHAI  (output)  DOUBLE PRECISION array, dimension (2)
C             On exit, this array contains the scaled imaginary part of
C             the two eigenvalues. ALPHAI(1) >= 0.
C
C     BETA    (output)  DOUBLE PRECISION array, dimension (2)
C             On exit, this array contains information about infinite
C             eigenvalues. If BETA(I) = 0, then the I-th eigenvalue is
C             infinite. Otherwise, BETA(I) = 1.0.
C
C     SCAL    (output)  INTEGER array, dimension (2)
C             On exit, this array contains the scaling exponents for the
C             two eigenvalues.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (8*K)
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             = 1:  the periodic QZ algorithm did not converge;
C             = 2:  the computed eigenvalues might be inaccurate.
C                   Both values might be taken as warnings, since
C                   approximations of eigenvalues are returned.
C
C     METHOD
C
C     A complex single shifted periodic QZ iteration is applied.
C
C     CONTRIBUTOR
C
C     D. Kressner, Technical Univ. Berlin, Germany, June 2001.
C
C     REVISIONS
C
C     V. Sima, Research Institute for Informatics, Bucharest, Romania,
C     July 2009, SLICOT Library version of the routine PLACP2.
C     V. Sima, June 2010, July 2010, Aug. 2011, Sep. 2011, Oct. 2011.
C
C     KEYWORDS
C
C     Eigenvalues, QZ algorithm, periodic QZ algorithm, orthogonal
C     transformation.
C
C     ******************************************************************
C
C     .. Parameters ..
      COMPLEX*16        CZERO, CONE
      PARAMETER         ( CZERO = ( 0.0D0, 0.0D0 ),
     $                    CONE  = ( 1.0D0, 0.0D0 ) )
      DOUBLE PRECISION  ZERO, ONE, TWO
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
C     .. Scalar Arguments ..
      INTEGER           INFO, K, LDA1, LDA2, SINV
      DOUBLE PRECISION  BASE, LGBAS, ULP
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA1,LDA2,*), ALPHAI(2), ALPHAR(2), BETA(2),
     $                  DWORK(*)
      INTEGER           AMAP(*), S(*), SCAL(2)
C     .. Local Scalars ..
      INTEGER           AI, I, IITER, J, PDM, PDW, SL
      DOUBLE PRECISION  CS, CST, LHS, MISC, MISR, RHS, TEMPI, TEMPR
      COMPLEX*16        SN, SNT, TEMP
C     .. Local Arrays ..
      COMPLEX*16        T(2,2), Z(3,3)
C     .. External Functions ..
      DOUBLE PRECISION  DLAPY2
      EXTERNAL          DLAPY2
C     .. External Subroutines ..
      EXTERNAL          DLADIV, ZLARTG, ZROT
C     .. Intrinsic Functions ..
      INTRINSIC         ABS, DCMPLX, DCONJG, DBLE, DIMAG, DREAL, INT,
     $                  LOG, MAX, MIN, MOD, SQRT
C
C     .. Executable Statements ..
C
C     Apply a complex single shifted periodic QZ iteration.
C     This might not be efficient but it seems to be reliable.
C
      INFO = 0
      PDW  = 0
C
      DO 10 I = 1, K
         AI = AMAP(I)
         DWORK(PDW+1) = A(1,1,AI)
         DWORK(PDW+2) = ZERO
         DWORK(PDW+3) = A(2,1,AI)
         DWORK(PDW+4) = ZERO
         DWORK(PDW+5) = A(1,2,AI)
         DWORK(PDW+6) = ZERO
         DWORK(PDW+7) = A(2,2,AI)
         DWORK(PDW+8) = ZERO
         PDW = PDW + 8
   10 CONTINUE
C
      PDM = PDW
C
      DO 40  IITER = 1, 80
C
C        Test for deflation.
C
         LHS = DLAPY2( DWORK(3), DWORK(4) )
         RHS = MAX( DLAPY2( DWORK(1), DWORK(2) ),
     $              DLAPY2( DWORK(7), DWORK(8) ) )
         IF ( RHS.EQ.ZERO )
     $      RHS = DLAPY2( DWORK(5), DWORK(6) )
         IF ( LHS.LE.ULP*RHS )
     $      GO TO 50
C
C        Start Iteration.
C
         IF ( IITER.EQ.1 ) THEN
C
C           Compute a randomly chosen initial unitary shift.
C
            CALL ZLARTG( DCMPLX( ONE, -TWO ), DCMPLX( TWO, TWO ), CS,
     $                   SN, TEMP )
         ELSE IF ( MOD( IITER, 40 ).EQ.0 ) THEN
C
C           Ad hoc shift.
C
            CALL ZLARTG( DCMPLX( DBLE( I ), ONE ), DCMPLX( ONE, -TWO ),
     $                   CS, SN, TEMP )
         ELSE
C
C           Compute the shift by a product QR decomposition.
C
            CS = ONE
            SN = CZERO
            CALL ZLARTG( CONE, CONE, CST, SNT, TEMP )
            PDW = PDM
C
            DO 20  I = K, 2, -1
               PDW = PDW - 8
               TEMP = DCMPLX( DWORK(PDW+1), DWORK(PDW+2) )
               Z(1,1) = TEMP
               Z(2,1) = CZERO
               Z(3,1) = CZERO
               Z(1,2) = CZERO
               Z(2,2) = TEMP
               Z(3,2) = DCMPLX( DWORK(PDW+3), DWORK(PDW+4) )
               Z(1,3) = CZERO
               Z(2,3) = DCMPLX( DWORK(PDW+5), DWORK(PDW+6) )
               Z(3,3) = DCMPLX( DWORK(PDW+7), DWORK(PDW+8) )
               IF ( S(AMAP(I)).EQ.SINV ) THEN
                  CALL ZROT( 3, Z(1,1), 1, Z(1,3), 1, CST, DCONJG( SNT )
     $                      )
                  CALL ZROT( 3, Z(1,1), 1, Z(1,2), 1, CS,  DCONJG( SN )
     $                      )
                  CALL ZLARTG( Z(1,1), Z(3,1), CST, SNT, TEMP )
                  CALL ZLARTG( TEMP, Z(2,1), CS, SN, TEMP )
               ELSE
                  CALL ZROT( 3, Z(1,1), 3, Z(3,1), 3, CST, SNT )
                  CALL ZROT( 3, Z(1,1), 3, Z(2,1), 3, CS, SN )
                  TEMP = Z(3,3)
                  CALL ZLARTG( TEMP, Z(3,1), CST, SNT, Z(3,3) )
                  SNT = -SNT
                  CALL ZROT( 2, Z(1,1), 1, Z(1,3), 1, CST, DCONJG( SNT )
     $                      )
                  TEMP = Z(2,2)
                  CALL ZLARTG( TEMP, Z(2,1), CS, SN, Z(2,2) )
                  SN = -SN
               END IF
   20       CONTINUE
C
            PDW = 0
            Z(1,1) =  DCMPLX( DWORK(PDW+1), DWORK(PDW+2) )
            Z(2,1) =  DCMPLX( DWORK(PDW+3), DWORK(PDW+4) )
            Z(1,2) = -DCMPLX( DWORK(PDW+3), DWORK(PDW+4) )
            Z(2,2) =  CZERO
            Z(1,3) = -DCMPLX( DWORK(PDW+7), DWORK(PDW+8) )
            Z(2,3) =  CZERO
            CALL ZROT( 2, Z(1,1), 1, Z(1,3), 1, CST, DCONJG( SNT ) )
            CALL ZROT( 2, Z(1,1), 1, Z(1,2), 1, CS,  DCONJG( SN ) )
            CALL ZLARTG( Z(1,1), Z(2,1), CS, SN, TEMP )
         END IF
         CST = CS
         SNT = SN
         PDW = PDM
C
         DO 30 I = K, 2, -1
            PDW = PDW - 8
            T(1,1) = DCMPLX( DWORK(PDW+1), DWORK(PDW+2) )
            T(2,1) = DCMPLX( DWORK(PDW+3), DWORK(PDW+4) )
            T(1,2) = DCMPLX( DWORK(PDW+5), DWORK(PDW+6) )
            T(2,2) = DCMPLX( DWORK(PDW+7), DWORK(PDW+8) )
            IF ( S(AMAP(I)).EQ.SINV) THEN
               CALL ZROT( 2, T(1,1), 1, T(1,2), 1, CS, DCONJG( SN ) )
               TEMP = T(1,1)
               CALL ZLARTG( TEMP, T(2,1), CS, SN, T(1,1) )
               T(2,1) = CZERO
               CALL ZROT( 1, T(1,2), 2, T(2,2), 2, CS, SN )
            ELSE
               CALL ZROT( 2, T(1,1), 2, T(2,1), 2, CS, SN )
               TEMP = T(2,2)
               CALL ZLARTG( TEMP, T(2,1), CS, SN, T(2,2) )
               T(2,1) = CZERO
               SN = -SN
               CALL ZROT( 1, T(1,1), 1, T(1,2), 1, CS, DCONJG( SN ) )
            END IF
            DWORK(PDW+1) = DREAL( T(1,1) )
            DWORK(PDW+2) = DIMAG( T(1,1) )
            DWORK(PDW+3) = DREAL( T(2,1) )
            DWORK(PDW+4) = DIMAG( T(2,1) )
            DWORK(PDW+5) = DREAL( T(1,2) )
            DWORK(PDW+6) = DIMAG( T(1,2) )
            DWORK(PDW+7) = DREAL( T(2,2) )
            DWORK(PDW+8) = DIMAG( T(2,2) )
   30    CONTINUE
C
         PDW = 0
         T(1,1) = DCMPLX( DWORK(PDW+1), DWORK(PDW+2) )
         T(2,1) = DCMPLX( DWORK(PDW+3), DWORK(PDW+4) )
         T(1,2) = DCMPLX( DWORK(PDW+5), DWORK(PDW+6) )
         T(2,2) = DCMPLX( DWORK(PDW+7), DWORK(PDW+8) )
         CALL ZROT( 2, T(1,1), 2, T(2,1), 2, CST, SNT )
         CALL ZROT( 2, T(1,1), 1, T(1,2), 1, CS, DCONJG( SN ) )
         DWORK(PDW+1) = DREAL( T(1,1) )
         DWORK(PDW+2) = DIMAG( T(1,1) )
         DWORK(PDW+3) = DREAL( T(2,1) )
         DWORK(PDW+4) = DIMAG( T(2,1) )
         DWORK(PDW+5) = DREAL( T(1,2) )
         DWORK(PDW+6) = DIMAG( T(1,2) )
         DWORK(PDW+7) = DREAL( T(2,2) )
         DWORK(PDW+8) = DIMAG( T(2,2) )
   40 CONTINUE
C
C     Not converged. Set INFO = 1, but continue. 
C
      INFO = 1
C
   50 CONTINUE
C
C     Converged.
C
      DO 70  J = 1, 2
         PDW = 0
         IF ( J.EQ.2 )
     $      PDW  = 6
         TEMPI   = ZERO
         TEMPR   = ONE
         BETA(J) = ONE
         SCAL(J) = 0
C
         DO 60  I = 1, K
            RHS = DLAPY2( DWORK(PDW+1), DWORK(PDW+2) )
            IF ( RHS.NE.ZERO ) THEN
               SL = INT( LOG( RHS ) / LGBAS )
               DWORK(PDW+1) = DWORK(PDW+1) / ( BASE**DBLE( SL ) )
               DWORK(PDW+2) = DWORK(PDW+2) / ( BASE**DBLE( SL ) )
            ELSE
               SL = 0
            END IF
            IF ( S(AMAP(I)).EQ.1 ) THEN
               LHS = TEMPI
               TEMPI = TEMPR*DWORK(PDW+2) + TEMPI*DWORK(PDW+1)
               TEMPR = TEMPR*DWORK(PDW+1) -   LHS*DWORK(PDW+2)
               SCAL(J) = SCAL(J) + SL
            ELSE IF ( RHS.EQ.ZERO ) THEN
               BETA(J) = ZERO
            ELSE
               LHS = TEMPR
               RHS = TEMPI
               CALL DLADIV( LHS, RHS, DWORK(PDW+1), DWORK(PDW+2),
     $                      TEMPR, TEMPI )
               SCAL(J) = SCAL(J) - SL
            END IF
            IF ( ( MOD( I, 10 ).EQ.0 ) .OR. ( I.EQ.K ) ) THEN
               RHS = DLAPY2( TEMPR, TEMPI )
               IF ( RHS.EQ.ZERO ) THEN
                  SCAL(J) = 0
               ELSE
                  SL = INT( LOG( RHS ) / LGBAS )
                  TEMPR = TEMPR / ( BASE**DBLE( SL ) )
                  TEMPI = TEMPI / ( BASE**DBLE( SL ) )
                  SCAL(J) = SCAL(J) + SL
               END IF
            END IF
            PDW = PDW + 8
   60    CONTINUE
C
         ALPHAR(J) = TEMPR
         ALPHAI(J) = TEMPI
   70 CONTINUE
C
      IF ( TEMPI.GT.ZERO ) THEN
         ALPHAR(2) = ALPHAR(1)
         ALPHAI(2) = ALPHAI(1)
         ALPHAR(1) = TEMPR
         ALPHAI(1) = TEMPI
         TEMPR     = BETA(2)
         BETA(2)   = BETA(1)
         BETA(1)   = TEMPR
         TEMPR     = SCAL(2)
         SCAL(2)   = SCAL(1)
         SCAL(1)   = TEMPR
      END IF
C
C     Enforce the needed eigenvalue structure for real matrices.
C
      IF ( ALPHAI(1).NE.ZERO .OR. ALPHAI(2).NE.ZERO ) THEN
C
C        Decide if there are two real or complex conjugate eigenvalues.
C
         IF ( SCAL(1).GE.SCAL(2) ) THEN
            SL    = SCAL(1) - SCAL(2)
            TEMPR = ALPHAR(2) / BASE**DBLE( SL )
            TEMPI = ALPHAI(2) / BASE**DBLE( SL )
            LHS   = ALPHAR(1) - TEMPR
            RHS   = ALPHAI(1) + TEMPI
            CST   = ALPHAI(1)
         ELSE
            SL    = SCAL(2) - SCAL(1)
            TEMPR = ALPHAR(1) / BASE**DBLE( SL )
            TEMPI = ALPHAI(1) / BASE**DBLE( SL )
            LHS   = ALPHAR(2) - TEMPR
            RHS   = ALPHAI(2) + TEMPI
            CST   = ALPHAI(2)
         END IF
C
         MISR = DLAPY2( CST, TEMPI )
         MISC = DLAPY2( LHS, RHS ) / TWO
C
         CS = MAX( DLAPY2( ALPHAR(1), ALPHAI(1) ), ONE,
     $             DLAPY2( ALPHAR(2), ALPHAI(2) ) )
         IF ( MIN( MISR, MISC ).GT.CS*SQRT( ULP ) )
     $      INFO = 2
C
         IF ( MISR.GT.MISC ) THEN
C
C           Conjugate eigenvalues.
C
            IF ( SCAL(1).GE.SCAL(2) ) THEN
               ALPHAR(1) =    ( ALPHAR(1) + TEMPR ) / TWO
               ALPHAI(1) = ABS( ALPHAI(1) - TEMPI ) / TWO
               SCAL(2)   = SCAL(1)
            ELSE
               ALPHAR(1) =    ( ALPHAR(2) + TEMPR ) / TWO
               ALPHAI(1) = ABS( ALPHAI(2) - TEMPI ) / TWO
               SCAL(1)   = SCAL(2)
            END IF
            ALPHAR(2) =  ALPHAR(1)
            ALPHAI(2) = -ALPHAI(1)
         ELSE
C
C           Two real eigenvalues.
C
            ALPHAI(1) = ZERO
            ALPHAI(2) = ZERO
         END IF
      END IF
C
      RETURN
C *** Last line of MB03BB ***
      END