control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
      SUBROUTINE MB04AZ( JOB, COMPQ, COMPU, N, Z, LDZ, B, LDB, FG,
     $                   LDFG, D, LDD, C, LDC, Q, LDQ, U, LDU, ALPHAR,
     $                   ALPHAI, BETA, IWORK, LIWORK, DWORK, LDWORK,
     $                   ZWORK, LZWORK, BWORK, INFO )
C     PURPOSE
C
C     To compute the eigenvalues of a complex N-by-N skew-Hamiltonian/
C     Hamiltonian pencil aS - bH, with
C
C              H  T           (  B  F  )       (  Z11  Z12  )
C       S = J Z  J  Z and H = (      H ), Z =: (            ).       (1)
C                             (  G -B  )       (  Z21  Z22  )
C
C     The structured Schur form of the embedded real skew-Hamiltonian/
C                                                           H  T
C     skew-Hamiltonian pencil, aB_S - bB_T, with B_S = J B_Z  J  B_Z,
C
C             (  Re(Z11)  -Im(Z11)  |  Re(Z12)  -Im(Z12)  )
C             (                     |                     )
C             (  Im(Z11)   Re(Z11)  |  Im(Z12)   Re(Z12)  )
C             (                     |                     )
C       B_Z = (---------------------+---------------------) ,
C             (                     |                     )
C             (  Re(Z21)  -Im(Z21)  |  Re(Z22)  -Im(Z22)  )
C             (                     |                     )
C             (  Im(Z21)   Re(Z21)  |  Im(Z22)   Re(Z22)  )
C                                                                    (2)
C             ( -Im(B)  -Re(B)  | -Im(F)  -Re(F)  )
C             (                 |                 )
C             (  Re(B)  -Im(B)  |  Re(F)  -Im(F)  )
C             (                 |                 )
C       B_T = (-----------------+-----------------) ,  T = i*H,
C             (                 |      T       T  )
C             ( -Im(G)  -Re(G)  | -Im(B )  Re(B ) )
C             (                 |      T       T  )
C             (  Re(G)  -Im(G)  | -Re(B ) -Im(B ) )
C
C     is determined and used to compute the eigenvalues. Optionally,
C     if JOB = 'T', the pencil aB_S - bB_H is transformed by a unitary
C     matrix Q and a unitary symplectic matrix U to the structured Schur
C                                                   H  T
C     form aB_Sout - bB_Hout, with B_Sout = J B_Zout  J  B_Zout,
C
C                ( BA  BD  )              ( BB  BF  )
C       B_Zout = (         ) and B_Hout = (       H ),               (3)
C                (  0  BC  )              (  0 -BB  )
C
C     where BA and BB are upper triangular, BC is lower triangular,
C     and BF is Hermitian. B_H above is defined as B_H = -i*B_T.
C     The embedding doubles the multiplicities of the eigenvalues of
C     the pencil aS - bH.
C     Optionally, if COMPQ = 'C', the unitary matrix Q is computed.
C     Optionally, if COMPU = 'C', the unitary symplectic matrix U is
C     computed.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     JOB     CHARACTER*1
C             Specifies the computation to be performed, as follows:
C             = 'E': compute the eigenvalues only; S and H will not
C                    necessarily be transformed as in (3).
C             = 'T': put S and H into the forms in (3) and return the
C                    eigenvalues in ALPHAR, ALPHAI and BETA.
C
C     COMPQ   CHARACTER*1
C             Specifies whether to compute the unitary transformation
C             matrix Q, as follows:
C             = 'N': do not compute the unitary matrix Q;
C             = 'C': the array Q is initialized internally to the unit
C                    matrix, and the unitary matrix Q is returned.
C
C     COMPU   CHARACTER*1
C             Specifies whether to compute the unitary symplectic
C             transformation matrix U, as follows:
C             = 'N': do not compute the unitary symplectic matrix U;
C             = 'C': the array U is initialized internally to the unit
C                    matrix, and the unitary symplectic matrix U is
C                    returned.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             Order of the pencil aS - bH.  N >= 0, even.
C
C     Z       (input/output) COMPLEX*16 array, dimension (LDZ, N)
C             On entry, the leading N-by-N part of this array must
C             contain the non-trivial factor Z in the factorization
C                    H  T
C             S = J Z  J  Z of the skew-Hamiltonian matrix S.
C             On exit, if JOB = 'T', the leading N-by-N part of this
C             array contains the upper triangular matrix BA in (3)
C             (see also METHOD). The strictly lower triangular part is
C             not zeroed. The submatrix in the rows N/2+1 to N and the
C             first N/2 columns is unchanged, except possibly for the
C             entry (N/2+1,N/2), which might be set to zero.
C             If JOB = 'E', this array is unchanged on exit.
C
C     LDZ     INTEGER
C             The leading dimension of the array Z.  LDZ >= MAX(1, N).
C
C     B       (input/output) COMPLEX*16 array, dimension (LDB, K), where
C             K = N, if JOB = 'T', and K = M, if JOB = 'E'.
C             On entry, the leading N/2-by-N/2 part of this array must
C             contain the matrix B.
C             On exit, if JOB = 'T', the leading N-by-N part of this
C             array contains the upper triangular matrix BB in (3)
C             (see also METHOD).
C             The strictly lower triangular part is not zeroed.
C             If JOB = 'E', this array is unchanged on exit.
C
C     LDB     INTEGER
C             The leading dimension of the array B.
C             LDB >= MAX(1, M), if JOB = 'E';
C             LDB >= MAX(1, N), if JOB = 'T'.
C
C     FG      (input/output) COMPLEX*16 array, dimension (LDFG, P),
C             where P = MAX(M+1,N), if JOB = 'T', and
C                   P = M+1,        if JOB = 'E'.
C             On entry, the leading N/2-by-N/2 lower triangular part of
C             this array must contain the lower triangular part of the
C             Hermitian matrix G, and the N/2-by-N/2 upper triangular
C             part of the submatrix in the columns 2 to N/2+1 of this
C             array must contain the upper triangular part of the
C             Hermitian matrix F. Accidental nonzero imaginary parts on
C             the main diagonals of F and G do not perturb the results.
C             On exit, if JOB = 'T', the leading N-by-N part of this
C             array contains the Hermitian matrix BF in (3) (see also
C             METHOD). The strictly lower triangular part of the input
C             matrix is preserved. The diagonal elements might have tiny
C             imaginary parts, since they have not been annihilated.
C             If JOB = 'E', this array is unchanged on exit.
C
C     LDFG    INTEGER
C             The leading dimension of the array FG.
C             LDFG >= MAX(1, M), if JOB = 'E';
C             LDFG >= MAX(1, N), if JOB = 'T'.
C
C     D       (output) COMPLEX*16 array, dimension (LDD, N)
C             If JOB = 'T', the leading N-by-N part of this array
C             contains the matrix BD in (3) (see also METHOD).
C             If JOB = 'E', this array is not referenced.
C
C     LDD     INTEGER
C             The leading dimension of the array D.
C             LDD >= 1,         if JOB = 'E';
C             LDD >= MAX(1, N), if JOB = 'T'.
C
C     C       (output) COMPLEX*16 array, dimension (LDC, N)
C             If JOB = 'T', the leading N-by-N part of this array
C             contains the lower triangular matrix BC in (3) (see also
C             METHOD). The part over the first superdiagonal is not set.
C             If JOB = 'E', this array is not referenced.
C
C     LDC     INTEGER
C             The leading dimension of the array C.
C             LDC >= 1,         if JOB = 'E';
C             LDC >= MAX(1, N), if JOB = 'T'.
C
C     Q       (output) COMPLEX*16 array, dimension (LDQ, 2*N)
C             On exit, if COMPQ = 'C' and JOB = 'T', then the leading
C             2*N-by-2*N part of this array contains the unitary
C             transformation matrix Q.
C             If COMPQ = 'C' and JOB = 'E', this array contains the
C             orthogonal transformation which reduced B_Z and B_T
C             in the first step of the algorithm (see METHOD).
C             If COMPQ = 'N', this array is not referenced.
C
C     LDQ     INTEGER
C             The leading dimension of the array Q.
C             LDQ >= 1,           if COMPQ = 'N';
C             LDQ >= MAX(1, 2*N), if COMPQ = 'C'.
C
C     U       (output) COMPLEX*16 array, dimension (LDU, 2*N)
C             On exit, if COMPU = 'C' and JOB = 'T', then the leading
C             N-by-2*N part of this array contains the leading N-by-2*N
C             part of the unitary symplectic transformation matrix U.
C             If COMPU = 'C' and JOB = 'E', this array contains the
C             first N rows of the transformation U which reduced B_Z
C             and B_T in the first step of the algorithm (see METHOD).
C             If COMPU = 'N', this array is not referenced.
C
C     LDU     INTEGER
C             The leading dimension of the array U.
C             LDU >= 1,         if COMPU = 'N';
C             LDU >= MAX(1, N), if COMPU = 'C'.
C
C     ALPHAR  (output) DOUBLE PRECISION array, dimension (N)
C             The real parts of each scalar alpha defining an eigenvalue
C             of the pencil aS - bH.
C
C     ALPHAI  (output) DOUBLE PRECISION array, dimension (N)
C             The imaginary parts of each scalar alpha defining an
C             eigenvalue of the pencil aS - bH.
C             If ALPHAI(j) is zero, then the j-th eigenvalue is real.
C
C     BETA    (output) DOUBLE PRECISION array, dimension (N)
C             The scalars beta that define the eigenvalues of the pencil
C             aS - bH.
C             Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
C             beta = BETA(j) represent the j-th eigenvalue of the pencil
C             aS - bH, in the form lambda = alpha/beta. Since lambda may
C             overflow, the ratios should not, in general, be computed.
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (LIWORK)
C             On exit, if INFO = 3, IWORK(1) contains the number of
C             (pairs of) possibly inaccurate eigenvalues, q <= N/2, and
C             IWORK(2), ..., IWORK(q+1) indicate their indices.
C             Specifically, a positive value is an index of a real or
C             purely imaginary eigenvalue, corresponding to a 1-by-1
C             block, while the absolute value of a negative entry in
C             IWORK is an index to the first eigenvalue in a pair of
C             consecutively stored eigenvalues, corresponding to a
C             2-by-2 block. A 2-by-2 block may have two complex, two
C             real, two purely imaginary, or one real and one purely
C             imaginary eigenvalue. The blocks are those in B_T and B_S.
C             For i = q+2, ..., 2*q+1, IWORK(i) contains a pointer to
C             the starting location in DWORK of the i-th triplet of
C             1-by-1 blocks, if IWORK(i-q) > 0, or 2-by-2 blocks,
C             if IWORK(i-q) < 0, defining unreliable eigenvalues.
C             IWORK(2*q+2) contains the number of the 1-by-1 blocks, and
C             IWORK(2*q+3) contains the number of the 2-by-2 blocks,
C             corresponding to unreliable eigenvalues. IWORK(2*q+4)
C             contains the total number t of the 2-by-2 blocks.
C             If INFO = 0, then q = 0, therefore IWORK(1) = 0.
C
C     LIWORK  INTEGER
C             The dimension of the array IWORK.  LIWORK >= 2*N+9.
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0 or INFO = 3, DWORK(1) returns the
C             optimal LDWORK, and DWORK(2), ..., DWORK(4) contain the
C             Frobenius norms of the factors of the formal matrix
C             product used by the algorithm. In addition, DWORK(5), ...,
C             DWORK(4+3*s) contain the s triplet values corresponding
C             to the 1-by-1 blocks. Their eigenvalues are real or purely
C             imaginary. Such an eigenvalue is obtained as -a1/a2/a3*i,
C             where a1, ..., a3 are the corresponding triplet values,
C             and i is the purely imaginary unit.
C             Moreover, DWORK(5+3*s), ..., DWORK(4+3*s+12*t) contain the
C             t groups of triplet 2-by-2 matrices corresponding to the
C             2-by-2 blocks. Their eigenvalue pairs are either complex,
C             or placed on the real and imaginary axes. Such an
C             eigenvalue pair is given by imag( ev ) - real( ev )*i,
C             where ev is the spectrum of the matrix product
C             A1*inv(A2)*inv(A3), and A1, ..., A3 define the
C             corresponding 2-by-2 matrix triplet.
C             On exit, if INFO = -25, DWORK(1) returns the minimum
C             value of LDWORK.
C
C     LDWORK  INTEGER
C             The dimension of the array DWORK.
C             LDWORK >= c*N**2 + N + MAX(6*N, 27), where
C                       c = 18, if                 COMPU = 'C';
C                       c = 16, if COMPQ = 'C' and COMPU = 'N';
C                       c = 13, if COMPQ = 'N' and COMPU = 'N'.
C             For good performance LDWORK should be generally larger.
C
C             If LDWORK = -1, then a workspace query is assumed;
C             the routine only calculates the optimal size of the
C             DWORK array, returns this value as the first entry of
C             the DWORK array, and no error message related to LDWORK
C             is issued by XERBLA.
C
C     ZWORK   COMPLEX*16 array, dimension (LZWORK)
C             On exit, if INFO = 0, ZWORK(1) returns the optimal LZWORK.
C             On exit, if INFO = -27, ZWORK(1) returns the minimum
C             value of LZWORK.
C
C     LZWORK  INTEGER
C             The dimension of the array ZWORK.
C             LZWORK >= 8*N + 28, if JOB = 'T' and COMPQ = 'C';
C             LZWORK >= 6*N + 28, if JOB = 'T' and COMPQ = 'N';
C             LZWORK >= 1,        if JOB = 'E'.
C             For good performance LZWORK should be generally larger.
C
C             If LZWORK = -1, then a workspace query is assumed;
C             the routine only calculates the optimal size of the
C             ZWORK array, returns this value as the first entry of
C             the ZWORK array, and no error message related to LZWORK
C             is issued by XERBLA.
C
C     BWORK   LOGICAL array, dimension (LBWORK)
C             LBWORK >= 0, if JOB = 'E';
C             LBWORK >= N, if JOB = 'T'.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0: succesful exit;
C             < 0: if INFO = -i, the i-th argument had an illegal value;
C             = 1: the algorithm was not able to reveal information
C                  about the eigenvalues from the 2-by-2 blocks in the
C                  SLICOT Library routine MB03BD (called by MB04ED);
C             = 2: periodic QZ iteration failed in the SLICOT Library
C                  routines MB03BD or MB03BZ when trying to
C                  triangularize the 2-by-2 blocks;
C             = 3: some eigenvalues might be inaccurate. This is a
C                  warning.
C
C     METHOD
C
C     First T = i*H is set. Then, the embeddings, B_Z and B_T, of the
C     matrices S and T, are determined and, subsequently, the SLICOT
C     Library routine MB04ED is applied to compute the structured Schur
C     form, i.e., the factorizations
C
C     ~      T         (  BZ11  BZ12  )
C     B_Z = U  B_Z Q = (              ) and
C                      (    0   BZ22  )
C
C     ~        T  T         (  T11  T12  )
C     B_T = J Q  J  B_T Q = (          T ),
C                           (   0   T11  )
C
C     where Q is real orthogonal, U is real orthogonal symplectic, BZ11,
C     BZ22' are upper triangular and T11 is upper quasi-triangular.
C     If JOB = 'T', the 2-by-2 blocks are triangularized using the
C     periodic QZ algorithm.
C
C     REFERENCES
C
C     [1] Benner, P., Byers, R., Mehrmann, V. and Xu, H.
C         Numerical Computation of Deflating Subspaces of Embedded
C         Hamiltonian Pencils.
C         Tech. Rep. SFB393/99-15, Technical University Chemnitz,
C         Germany, June 1999.
C
C     NUMERICAL ASPECTS
C                                                               3
C     The algorithm is numerically backward stable and needs O(N )
C     complex floating point operations.
C
C     FURTHER COMMENTS
C
C     This routine does not perform any scaling of the matrices. Scaling
C     might sometimes be useful, and it should be done externally.
C
C     CONTRIBUTOR
C
C     Matthias Voigt, Fakultaet fuer Mathematik, Technische Universitaet
C     Chemnitz, April 30, 2009.
C     V. Sima, Aug. 2009 (SLICOT version of the routine ZHAFDF).
C
C     REVISIONS
C     V. Sima, Jan. 2011, Mar. 2011, Aug. 2011, Nov. 2011, July 2012,
C     July 2013, May 2020.
C
C     KEYWORDS
C
C     Deflating subspace, embedded pencil, skew-Hamiltonian/Hamiltonian
C     pencil, structured Schur form.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE, FOUR
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, FOUR = 4.0D+0 )
      COMPLEX*16         CZERO, CONE, CIMAG
      PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
     $                      CONE = ( 1.0D+0, 0.0D+0 ),
     $                     CIMAG = ( 0.0D+0, 1.0D+0 ) )
C
C     .. Scalar Arguments ..
      CHARACTER          COMPQ, COMPU, JOB
      INTEGER            INFO, LDB, LDC, LDD, LDFG, LDQ, LDU, LDWORK,
     $                   LDZ, LIWORK, LZWORK, N
C
C     .. Array Arguments ..
      LOGICAL            BWORK( * )
      INTEGER            IWORK( * )
      DOUBLE PRECISION   ALPHAI( * ), ALPHAR( * ), BETA( * ), DWORK( * )
      COMPLEX*16         B( LDB, * ), C( LDC, * ), D( LDD, * ),
     $                   FG( LDFG, * ), Q( LDQ, * ), U( LDU, * ),
     $                   Z( LDZ, * ), ZWORK( * )
C
C     .. Local Scalars ..
      LOGICAL            LCMPQ, LCMPU, LQUERY, LTRI
      CHARACTER*10       CMPQ, CMPU
      INTEGER            I, I1, IB, IEV, IFG, IQ, IQ2, IQB, IS, IU, IUB,
     $                   IW, IW1, IWRK, IZ11, IZ22, J, J1, J2, J3, JM1,
     $                   JP2, K, M, MINDB, MINDW, MINZW, N2, NB, NC,
     $                   NJ1, NN, OPTDW, OPTZW
      DOUBLE PRECISION   EPS, NRMB
      COMPLEX*16         TMP
C
C     .. Local Arrays ..
      INTEGER            DWORKZ( 2 ), IWORKZ( 5 )
C
C     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           DLAMCH, LSAME
C
C     .. External Subroutines ..
      EXTERNAL           DCOPY, DLACPY, DSCAL, MB03BZ, MB04ED, XERBLA,
     $                   ZGEMM, ZGEQRF, ZLACPY, ZSCAL
C
C     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, DCMPLX, DCONJG, DIMAG, INT, MAX,
     $                   MIN, MOD
C
C     .. Executable Statements ..
C
C     Decode the input arguments.
C
      M  = N/2
      NN = N*N
      N2 = 2*N
C
      LTRI  = LSAME( JOB,   'T' )
      LCMPQ = LSAME( COMPQ, 'C' )
      LCMPU = LSAME( COMPU, 'C' )
C
      IF( LTRI ) THEN
         K = MAX( 1, N )
      ELSE
         K = MAX( 1, M )
      END IF
      IF( N.EQ.0 ) THEN
         MINDW = 4
         MINZW = 1
      ELSE
         IF( LTRI ) THEN
            IF( LCMPQ ) THEN
               MINZW = 4*N2 + 28
            ELSE
               MINZW = 3*N2 + 28
            END IF
         ELSE
            MINZW = 1
         END IF
         IF( LCMPU ) THEN
            I = 12
            J = 18
         ELSE
            I = 10
            IF( LCMPQ ) THEN
               J = 16
            ELSE
               J = 13
            END IF
         END IF
         MINDB = I*NN + N
         MINDW = J*NN + N + MAX( 3*N2, 27 )
      END IF
      LQUERY = LDWORK.EQ.-1 .OR. LZWORK.EQ.-1
C
C     Test the input arguments.
C
      INFO = 0
      IF( .NOT.( LSAME( JOB, 'E' ) .OR. LTRI ) ) THEN
         INFO = -1
      ELSE IF( .NOT.( LSAME( COMPQ, 'N' ) .OR. LCMPQ ) ) THEN
         INFO = -2
      ELSE IF( .NOT.( LSAME( COMPU, 'N' ) .OR. LCMPU ) ) THEN
         INFO = -3
      ELSE IF( N.LT.0 .OR. MOD( N, 2 ).NE.0 ) THEN
         INFO = -4
      ELSE IF(  LDZ.LT.MAX( 1, N ) ) THEN
         INFO = -6
      ELSE IF(  LDB.LT.K ) THEN
         INFO = -8
      ELSE IF( LDFG.LT.K ) THEN
         INFO = -10
      ELSE IF(  LDD.LT.1 .OR. (  LTRI .AND. LDD.LT.N  ) ) THEN
         INFO = -12
      ELSE IF(  LDC.LT.1 .OR. (  LTRI .AND. LDC.LT.N  ) ) THEN
         INFO = -14
      ELSE IF(  LDQ.LT.1 .OR. ( LCMPQ .AND. LDQ.LT.N2 ) ) THEN
         INFO = -16
      ELSE IF(  LDU.LT.1 .OR. ( LCMPU .AND. LDU.LT.N  ) ) THEN
         INFO = -18
      ELSE IF( LIWORK.LT.N2+9 ) THEN
         INFO = -23
      ELSE IF( .NOT. LQUERY ) THEN
         IF( LDWORK.LT.MINDW ) THEN
            DWORK( 1 ) = MINDW
            INFO = -25
         ELSE IF( LZWORK.LT.MINZW ) THEN
            ZWORK( 1 ) = MINZW
            INFO = -27
         END IF
      END IF
C
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'MB04AZ', -INFO )
         RETURN
      ELSE IF( N.GT.0 ) THEN
C
C        Compute optimal workspace.
C
         IF( LTRI ) THEN
            CALL ZGEQRF( N, N, Z, LDZ, ZWORK, ZWORK, -1, INFO )
            I  = INT( ZWORK( 1 ) )
            NB = MAX( I/N, 2 )
         END IF
C
         IF( LCMPQ ) THEN
            CMPQ = 'Initialize'
         ELSE
            CMPQ = COMPQ
         END IF
         IF( LCMPU ) THEN
            CMPU = 'Initialize'
         ELSE
            CMPU = COMPU
         END IF
C
         IF( LQUERY ) THEN
            CALL MB04ED( JOB, CMPQ, CMPU, N2, DWORK, N2, DWORK, N,
     $                   DWORK, N, DWORK, N2, DWORK, N, DWORK, N,
     $                   ALPHAI, ALPHAR, BETA, IWORK, LIWORK, DWORK,
     $                   -1, INFO )
            OPTDW = MAX( MINDW, MINDB + INT( DWORK( 1 ) ) )
C
            IF( LTRI ) THEN
               OPTZW = MAX( MINZW, I )
            ELSE
               OPTZW = MINZW
            END IF
            DWORK( 1 ) = OPTDW
            ZWORK( 1 ) = OPTZW
            RETURN
         ELSE
            OPTZW = MINZW
         END IF
      END IF
C
C     Quick return if possible.
C
      IF( N.EQ.0 ) THEN
         IWORK( 1 ) = 0
         DWORK( 1 ) = FOUR
         DWORK( 2 ) = ZERO
         DWORK( 3 ) = ZERO
         DWORK( 4 ) = ZERO
         ZWORK( 1 ) = CONE
         RETURN
      END IF
C
C     Determine machine constants.
C
      EPS = DLAMCH( 'Precision' )
C
C     Set up the embeddings of the matrices Z and H.
C     Real workspace:    need   w1, where
C                        w1 = 12*N**2+N, if COMPU = 'C';
C                        w1 = 10*N**2+N, if COMPU = 'N'.
C
      IQ = 1
      IF( LCMPU ) THEN
         IU   = IQ + N2*N2
         IZ11 = IU + N2*N
      ELSE
         IU   = 1
         IZ11 = IQ + N2*N2
      END IF
      IB   = IZ11 + N2*N2
      IFG  = IB   + NN
      IWRK = IFG  + NN + N
C
C     Build the embedding of Z.
C
      IW = IZ11
      IS = IW + N2*M
      DO 50 J = 1, N
         IW1 = IW
         DO 10 I = 1, M
            DWORK( IW ) = DBLE( Z( I, J ) )
            IW = IW + 1
   10    CONTINUE
C
         DO 20 I = 1, M
            DWORK( IW ) =  DIMAG( Z( I, J ) )
            DWORK( IS ) = -DWORK( IW )
            IW = IW + 1
            IS = IS + 1
   20    CONTINUE
         CALL DCOPY( M, DWORK( IW1 ), 1, DWORK( IS ), 1 )
         IW1 = IW
         IS  = IS + M
C
         DO 30 I = M + 1, N
            DWORK( IW ) = DBLE( Z( I, J ) )
            IW = IW + 1
   30    CONTINUE
C
         DO 40 I = M + 1, N
            DWORK( IW ) =  DIMAG( Z( I, J ) )
            DWORK( IS ) = -DWORK( IW )
            IW = IW + 1
            IS = IS + 1
   40    CONTINUE
C
         CALL DCOPY( M, DWORK( IW1 ), 1, DWORK( IS ), 1 )
         IW1 = IW
         IS  = IS + M
         IF( MOD( J, M ).EQ.0 ) THEN
            IW = IW + N2*M
            IS = IS + N2*M
         END IF
   50 CONTINUE
C
C     Build the embedding of B.
C
      IW = IB
      IS = IW + N*M
      DO 80 J = 1, M
         IW1 = IW
         DO 60 I = 1, M
            DWORK( IW ) = -DIMAG( B( I, J ) )
            IW = IW + 1
   60    CONTINUE
C
         DO 70 I = 1, M
            DWORK( IW ) =   DBLE( B( I, J ) )
            DWORK( IS ) = -DWORK( IW )
            IW = IW + 1
            IS = IS + 1
   70    CONTINUE
         CALL DCOPY( M, DWORK( IW1 ), 1, DWORK( IS ), 1 )
         IS = IS + M
   80 CONTINUE
C
C     Build the embeddings of F and G.
C
      IW = IFG
      DO 110 J = 1, M + 1
         DO 90 I = 1, M
            DWORK( IW ) = -DIMAG( FG( I, J ) )
            IW = IW + 1
   90    CONTINUE
C
         IW = IW + J - 1
         IS = IW
         DO 100 I = J, M
            DWORK( IW ) =  DBLE( FG( I, J ) )
            DWORK( IS ) = DWORK( IW )
            IW = IW + 1
            IS = IS + N
  100    CONTINUE
  110 CONTINUE
C
      IW1 = IW
      I1  = IW
      DO 130 J = 2, M + 1
         IS = I1
         I1 = I1 + 1
         DO 120 I = 1, J - 1
            DWORK( IW ) = -DBLE( FG( I, J ) )
            DWORK( IS ) = DWORK( IW )
            IW = IW + 1
            IS = IS + N
  120    CONTINUE
         IW = IW + N - J + 1
  130 CONTINUE
      CALL DLACPY( 'Full', M, M+1, DWORK( IFG ), N, DWORK( IW1-M ), N )
C
C     Apply MB04ED to transform the extended pencil to real
C     skew-Hamiltonian/skew-Hamiltonian Schur form.
C
C     Real workspace:    need   w1 + w2, where
C                        w2 = 6*N**2+MAX(6*N, 27),
C                                        if COMPQ = 'C' or  COMPU = 'C';
C                        w2 = 3*N**2+MAX(6*N, 27),
C                                        if COMPQ = 'N' and COMPU = 'N';
C                        prefer larger.
C     Integer workspace: need   2*N+9.
C
      CALL MB04ED( JOB, CMPQ, CMPU, N2, DWORK( IZ11 ), N2, DWORK( IB ),
     $             N, DWORK( IFG ), N, DWORK( IQ ), N2, DWORK( IU ), N,
     $             DWORK( IU+NN ), N, ALPHAI, ALPHAR, BETA, IWORK,
     $             LIWORK, DWORK( IWRK ), LDWORK-IWRK+1, INFO )
      IF( INFO.GT.0 .AND. INFO.LT.3 )
     $   RETURN
      OPTDW = MAX( MINDW, MINDB + INT( DWORK( IWRK ) ) )
C
C     Scale the eigenvalues.
C
      CALL DSCAL( N, -ONE, ALPHAI, 1 )
C
C     Convert the transformation matrices to complex datatype.
C
      IF( LCMPQ ) THEN
         IW = IQ
         DO 150 J = 1, N2
            DO 140 I = 1, N2
               Q( I, J ) = DCMPLX( DWORK( IW ) )
               IW = IW + 1
  140       CONTINUE
  150    CONTINUE
      END IF
C
      IF( LCMPU ) THEN
         IW = IU
         DO 170 J = 1, N2
            DO 160 I = 1, N
               U( I, J ) = DCMPLX( DWORK( IW ) )
               IW = IW + 1
  160       CONTINUE
  170    CONTINUE
      END IF
C
C     Return if only the eigenvalues are desired.
C
      IF( .NOT.LTRI ) THEN
         ZWORK( 1 ) = OPTZW
         DWORK( 1 ) = OPTDW
         IW1 = IWORK( 1 )
         IW  = IWORK( 2*IW1+4 )
         K   = 3*( N - 2*IW + 1 ) + 12*IW
         CALL DCOPY( K, DWORK( IWRK+1 ), 1, DWORK( 2 ), 1 )
         RETURN
      END IF
C
C     Convert the other results to complex datatype.
C
      IW = IZ11
      DO 190 J = 1, N
         DO 180 I = 1, J
            Z( I, J ) = DCMPLX( DWORK( IW ) )
            IW = IW + 1
  180    CONTINUE
         IW = IW + N2 - J
  190 CONTINUE
C
      IW = IZ11 + N2*N
      DO 220 J = 1, N
         DO 200 I = 1, N
            D( I, J ) = DCMPLX( DWORK( IW ) )
            IW = IW + 1
  200    CONTINUE
         IW = IW + J - 1
C
         DO 210 I = J, N
            C( I, J ) = DCMPLX( DWORK( IW ) )
            IW = IW + 1
  210    CONTINUE
  220 CONTINUE
C
      IW = IB
      DO 240 J = 1, N
         DO 230 I = 1, MIN( J + 1, N )
            B( I, J ) = DCMPLX( DWORK( IW ) )
            IW = IW + 1
  230    CONTINUE
         IW = IW + N - J - 1
  240 CONTINUE
C
      IW = IFG + N
      DO 260 J = 1, N
         DO 250 I = 1, J - 1
            FG( I, J ) = DCMPLX( DWORK( IW ) )
            IW = IW + 1
  250    CONTINUE
         FG( J, J ) = CZERO
         IW = IW + N - J + 1
  260 CONTINUE
C
C     Triangularize the 2-by-2 diagonal blocks in B using the complex
C     version of the periodic QZ algorithm.
C
C     Set up pointers on the inputs and outputs of MB03BZ.
C     A block algorithm is used for updating the matrices for large N.
C
      IS   = IWRK
      IQ2  = 1
      IQ   = IQ2  + 4
      IU   = IQ   + 4
      IB   = IU   + 4
      IZ11 = IB   + 4
      IZ22 = IZ11 + 4
      IEV  = IZ22 + 4
      IQB  = IEV  + 4
      IUB  = IQB  + 4*M
      IWRK = IUB  + 4*M
C
C     Set the signatures of the input matrices of MB03BZ.
C
      IWORKZ( 1 ) =  1
      IWORKZ( 2 ) = -1
      IWORKZ( 3 ) = -1
C
      J  = 1
      J1 = 1
      J2 = MIN( N, NB )
C     WHILE( J.LT.N ) DO
  270 CONTINUE
      IF( J.LT.N ) THEN
         NRMB = ABS( B( J, J ) ) + ABS( B( J+1, J+1 ) )
         IF( ABS( B( J+1, J ) ).GT.NRMB*EPS ) THEN
C
C           Triangularization step. Row transformations are blocked.
C           Complex workspace:    need   8*N + 28, if COMPQ = 'C';
C                                        6*N + 28, if COMPQ = 'N'.
C           Real workspace:       need   2.
C           Integer workspace:    need   5.
C
            NC  = MAX( J2-J-1,  0 )
            J3  = MIN( J2-J1+1, J-1 )
            JM1 = MAX( J-1, 1 )
            JP2 = MIN( J+2, N )
            NJ1 = MAX( N-J-1, 1 )
            CALL ZLACPY( 'Full',  2, 2, B( J, J ), LDB, ZWORK( IB ), 2 )
            CALL ZLACPY( 'Upper', 2, 2, Z( J, J ), LDZ, ZWORK( IZ11 ),
     $                   2 )
            ZWORK( IZ11+1 ) = CZERO
            ZWORK( IZ22 )   = DCONJG( C( J, J ) )
            ZWORK( IZ22+1 ) = CZERO
            ZWORK( IZ22+2 ) = DCONJG( C( J+1, J ) )
            ZWORK( IZ22+3 ) = DCONJG( C( J+1, J+1 ) )
C
            CALL MB03BZ( 'Schur form', 'Initialize', 3, 2, 1, 2, IWORKZ,
     $                   ZWORK( IB ), 2, 2, ZWORK( IQ2 ), 2, 2,
     $                   ZWORK( IEV ), ZWORK( IEV+2 ), IWORKZ( 4 ),
     $                   DWORKZ, 2, ZWORK( IWRK ), LZWORK-IWRK+1, INFO )
            IF( INFO.GT.0 ) THEN
               INFO = 2
               RETURN
            END IF
C
C           Update a panel of Z.
C
            CALL ZGEMM(  'No Transpose', 'No Transpose', J-1, 2, 2,
     $                   CONE, Z( 1, J ), LDZ, ZWORK( IQ ), 2, CZERO,
     $                   ZWORK( IWRK ), JM1 )
            CALL ZLACPY( 'Full', J-1, 2, ZWORK( IWRK ), JM1, Z( 1, J ),
     $                   LDZ )
            CALL ZLACPY( 'Upper', 2, 2, ZWORK( IZ11 ), 2, Z( J, J ),
     $                   LDZ )
            Z( J+1, J ) = CZERO
            CALL ZGEMM(  'Conjugate Transpose', 'No Transpose', 2, NC,
     $                   2, CONE, ZWORK( IU ), 2, Z( J, JP2 ), LDZ,
     $                   CZERO, ZWORK( IWRK ), 2 )
            CALL ZLACPY( 'Full', 2, NC, ZWORK( IWRK ), 2, Z( J, JP2 ),
     $                   LDZ )
C
C           Update the columns J and J+1 of D.
C           The transformations on rows are made outside this loop.
C
            CALL ZGEMM(  'No Transpose', 'No Transpose', N, 2, 2, CONE,
     $                   D( 1, J ), LDD, ZWORK( IQ2 ), 2, CZERO,
     $                   ZWORK( IWRK ), N )
            CALL ZLACPY( 'Full', N, 2, ZWORK( IWRK ), N, D( 1, J ),
     $                   LDD )
C
C           Similarly, update C.
C
            C( J,   J   ) = DCONJG( ZWORK( IZ22 ) )
            C( J+1, J   ) = DCONJG( ZWORK( IZ22+2 ) )
            C( J,   J+1 ) = CZERO
            C( J+1, J+1 ) = DCONJG( ZWORK( IZ22+3 ) )
            CALL ZGEMM(  'No Transpose', 'No Transpose', N-J-1, 2, 2,
     $                   CONE, C( JP2, J ), LDC, ZWORK( IQ2 ), 2, CZERO,
     $                   ZWORK( IWRK ), NJ1 )
            CALL ZLACPY( 'Full', N-J-1, 2, ZWORK( IWRK ), NJ1,
     $                   C( JP2, J ), LDC )
C
C           Update a panel of B.
C
            CALL ZGEMM(  'No Transpose', 'No Transpose', J-1, 2, 2,
     $                   CONE, B( 1, J ), LDB, ZWORK( IQ ), 2, CZERO,
     $                   ZWORK( IWRK ), JM1 )
            CALL ZLACPY( 'Full', J-1, 2, ZWORK( IWRK ), JM1, B( 1, J ),
     $                   LDB )
            CALL ZLACPY( 'Upper', 2, 2, ZWORK( IB ), 2, B( J, J ),
     $                   LDB )
            B( J+1, J ) = CZERO
            CALL ZGEMM(  'Conjugate Transpose', 'No Transpose', 2, NC,
     $                   2, CONE, ZWORK( IQ2 ), 2, B( J, JP2 ), LDB,
     $                   CZERO, ZWORK( IWRK ), 2 )
            CALL ZLACPY( 'Full', 2, NC, ZWORK( IWRK ), 2, B( J, JP2 ),
     $                   LDB )
C
C           Update a panel of F.
C
            TMP          =  FG( J+1, J )
            FG( J+1, J ) = -FG( J, J+1 )
            CALL ZGEMM(  'No Transpose', 'No Transpose', J+1, 2, 2,
     $                   CONE, FG( 1, J ), LDFG, ZWORK( IQ2 ), 2, CZERO,
     $                   ZWORK( IWRK ), J+1 )
            CALL ZLACPY( 'Full', J+1, 2, ZWORK( IWRK ), J+1, FG( 1, J ),
     $                   LDFG )
            CALL ZGEMM(  'Conjugate Transpose', 'No Transpose', 2,
     $                   J2-J+1, 2, CONE, ZWORK( IQ2 ), 2, FG( J, J ),
     $                   LDFG, CZERO, ZWORK( IWRK ), 2 )
            CALL ZLACPY( 'Full', 2, J2-J+1, ZWORK( IWRK ), 2,
     $                   FG( J, J ), LDFG )
            FG( J+1, J ) = TMP
C
            IF( LCMPQ ) THEN
C
C              Update Q.
C
               CALL ZGEMM(  'No Transpose', 'No Transpose', N2, 2, 2,
     $                      CONE, Q( 1, J ), LDQ, ZWORK( IQ ), 2, CZERO,
     $                      ZWORK( IWRK ), N2 )
               CALL ZLACPY( 'Full', N2, 2, ZWORK( IWRK ), N2,
     $                      Q( 1, J ), LDQ )
               CALL ZGEMM(  'No Transpose', 'No Transpose', N2, 2, 2,
     $                      CONE, Q( 1, N+J ), LDQ, ZWORK( IQ2 ), 2,
     $                      CZERO, ZWORK( IWRK ), N2 )
               CALL ZLACPY( 'Full', N2, 2, ZWORK( IWRK ), N2,
     $                      Q( 1, N+J ), LDQ )
            END IF
C
            IF( LCMPU ) THEN
C
C              Update U.
C
               CALL ZGEMM(  'No Transpose', 'No Transpose', N, 2, 2,
     $                      CONE, U( 1, J ), LDU, ZWORK( IU ), 2, CZERO,
     $                      ZWORK( IWRK ), N )
               CALL ZLACPY( 'Full', N, 2, ZWORK( IWRK ), N, U( 1, J ),
     $                      LDU )
               CALL ZGEMM(  'No Transpose', 'No Transpose', N, 2, 2,
     $                      CONE, U( 1, N+J ), LDU, ZWORK( IU ), 2,
     $                      CZERO, ZWORK( IWRK ), N )
               CALL ZLACPY( 'Full', N, 2, ZWORK( IWRK ), N, U( 1, N+J ),
     $                      LDU )
            END IF
C
C           Save the needed transformations.
C
            BWORK( J ) = .TRUE.
            J = J + 2
            CALL ZLACPY( 'Full', 2, 2, ZWORK( IQ2 ), 2, ZWORK( IQB ),
     $                   2 )
            CALL ZLACPY( 'Full', 2, 2, ZWORK( IU ), 2, ZWORK( IUB ), 2 )
            IQB = IQB + 4
            IUB = IUB + 4
         ELSE
            BWORK( J )  = .FALSE.
            B( J+1, J ) = CZERO
            J = J + 1
         END IF
C
         IF( J.GE.J2 .AND. J.LE.N ) THEN
            IQB = IEV + 4
            IUB = IQB + 4*M
C
C           Start to update the next panel of Z, B, and F for previous
C           transformations on rows.
C
            I  = 1
            J1 = J2 + 1
            J2 = MIN( N, J1 + NB - 1 )
            NC = J2 - J1 + 1
C           WHILE( I.LT.J-1 ) DO
  280       CONTINUE
            IF( I.LT.J-1 ) THEN
               IF( BWORK( I ) ) THEN
                  CALL ZGEMM(  'Conjugate Transpose', 'No Transpose', 2,
     $                         NC, 2, CONE, ZWORK( IUB ), 2, Z( I, J1 ),
     $                         LDZ, CZERO, ZWORK( IWRK ), 2 )
                  CALL ZLACPY( 'Full', 2, NC, ZWORK( IWRK ), 2,
     $                         Z( I, J1 ), LDZ )
C
                  CALL ZGEMM(  'Conjugate Transpose', 'No Transpose', 2,
     $                         NC, 2, CONE, ZWORK( IQB ), 2, B( I, J1 ),
     $                         LDB, CZERO, ZWORK( IWRK ), 2 )
                  CALL ZLACPY( 'Full', 2, NC, ZWORK( IWRK ), 2,
     $                         B( I, J1 ), LDB )
C
                  CALL ZGEMM(  'Conjugate Transpose', 'No Transpose', 2,
     $                         NC, 2, CONE, ZWORK( IQB ), 2,
     $                         FG( I, J1 ), LDFG, CZERO, ZWORK( IWRK ),
     $                         2 )
                  CALL ZLACPY( 'Full', 2, NC, ZWORK( IWRK ), 2,
     $                         FG( I, J1 ), LDFG )
                  IQB = IQB + 4
                  IUB = IUB + 4
C
                  I = I + 2
               ELSE
                  I = I + 1
               END IF
               GO TO 280
            END IF
C           END WHILE 280
         END IF
         GO TO 270
      END IF
C     END WHILE 270
C
      J1 = 1
      J2 = MIN( N, NB )
C     WHILE( MAX( J1, J2 ).LE.N ) DO
  290 CONTINUE
      IF( MAX( J1, J2 ).LE.N ) THEN
         IQB = IEV + 4
         IUB = IQB + 4*M
C
C        Update the panel of columns J1 to J2 of D and C for the
C        transformations on rows.
C
         I  = 1
         NC = J2 - J1 + 1
C        WHILE( I.LT.N ) DO
  300    CONTINUE
         IF( I.LT.N ) THEN
            IF( BWORK( I ) ) THEN
               CALL ZGEMM(  'Conjugate Transpose', 'No Transpose', 2,
     $                     NC, 2, CONE, ZWORK( IUB ), 2, D( I, J1 ),
     $                     LDD, CZERO, ZWORK( IWRK ), 2 )
               CALL ZLACPY( 'Full', 2, NC, ZWORK( IWRK ), 2, D( I, J1 ),
     $                      LDD )
C
               IF( I.GT.J1 ) THEN
                  J3 = MIN( NC, I - J1 )
                  CALL ZGEMM(  'Conjugate Transpose', 'No Transpose', 2,
     $                         J3, 2, CONE, ZWORK( IUB ), 2, C( I, J1 ),
     $                         LDC, CZERO, ZWORK( IWRK ), 2 )
                  CALL ZLACPY( 'Full', 2, J3, ZWORK( IWRK ), 2,
     $                         C( I, J1 ), LDC )
               END IF
C
               IQB = IQB + 4
               IUB = IUB + 4
C
               I = I + 2
            ELSE
               I = I + 1
            END IF
            GO TO 300
         END IF
C        END WHILE 300
         J1 = J2 + 1
         J2 = MIN( N, J1 + NB - 1 )
         GO TO 290
C        END WHILE 290
      END IF
C
C     Scale B and F by -i.
C
      DO 310 I = 1, N
         CALL ZSCAL( I, -CIMAG, B( 1, I ), 1 )
  310 CONTINUE
C
      DO 320 I = 1, N
         CALL ZSCAL( I, -CIMAG, FG( 1, I ), 1 )
  320 CONTINUE
C
      ZWORK( 1 ) = OPTZW
      DWORK( 1 ) = OPTDW
      IW1 = IWORK( 1 )
      IW  = IWORK( 2*IW1+4 )
      K   = 3*( N - 2*IW + 1 ) + 12*IW
      CALL DCOPY( K, DWORK( IS+1 ), 1, DWORK( 2 ), 1 )
C
      RETURN
C *** Last line of MB04AZ ***
      END