control_systems_torbox 0.2.1

Control systems toolbox
Documentation
      SUBROUTINE MB02TD( NORM, N, HNORM, H, LDH, IPIV, RCOND, IWORK,
     $                   DWORK, INFO )
C
C     PURPOSE
C
C     To estimate the reciprocal of the condition number of an upper
C     Hessenberg matrix H, in either the 1-norm or the infinity-norm,
C     using the LU factorization computed by MB02SD.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     NORM    CHARACTER*1
C             Specifies whether the 1-norm condition number or the
C             infinity-norm condition number is required:
C             = '1' or 'O':  1-norm;
C             = 'I':         Infinity-norm.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrix H.  N >= 0.
C
C     HNORM   (input) DOUBLE PRECISION
C             If NORM = '1' or 'O', the 1-norm of the original matrix H.
C             If NORM = 'I', the infinity-norm of the original matrix H.
C
C     H       (input) DOUBLE PRECISION array, dimension (LDH,N)
C             The factors L and U from the factorization H = P*L*U
C             as computed by MB02SD.
C
C     LDH     INTEGER
C             The leading dimension of the array H.  LDH >= max(1,N).
C
C     IPIV    (input) INTEGER array, dimension (N)
C             The pivot indices; for 1 <= i <= N, row i of the matrix
C             was interchanged with row IPIV(i).
C
C     RCOND   (output) DOUBLE PRECISION
C             The reciprocal of the condition number of the matrix H,
C             computed as RCOND = 1/(norm(H) * norm(inv(H))).
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (N)
C
C     DWORK   DOUBLE PRECISION array, dimension (3*N)
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     An estimate is obtained for norm(inv(H)), and the reciprocal of
C     the condition number is computed as
C        RCOND = 1 / ( norm(H) * norm(inv(H)) ).
C
C     REFERENCES
C
C     -
C
C     NUMERICAL ASPECTS
C                                2
C     The algorithm requires 0( N ) operations.
C
C     CONTRIBUTOR
C
C     V. Sima, Katholieke Univ. Leuven, Belgium, June 1998.
C
C     REVISIONS
C
C     V. Sima, May 2020.
C
C     KEYWORDS
C
C     Hessenberg form, matrix algebra.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
C     .. Scalar Arguments ..
      CHARACTER          NORM
      INTEGER            INFO, LDH, N
      DOUBLE PRECISION   HNORM, RCOND
C     ..
C     .. Array Arguments ..
      INTEGER            IPIV( * ), IWORK( * )
      DOUBLE PRECISION   DWORK( * ), H( LDH, * )
C     .. Local Scalars ..
      LOGICAL            ONENRM
      CHARACTER          NORMIN
      INTEGER            IX, J, JP, KASE, KASE1
      DOUBLE PRECISION   HINVNM, SCALE, SMLNUM, T
C     .. Local Arrays ..
      INTEGER            ISAVE( 3 )
C     ..
C     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            IDAMAX
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           DLAMCH, IDAMAX, LSAME
C     ..
C     .. External Subroutines ..
      EXTERNAL           DLACN2, DLATRS, DRSCL, XERBLA
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX
C     ..
C     .. Executable Statements ..
C
C     Test the input parameters.
C
      INFO = 0
      ONENRM = NORM.EQ.'1' .OR. LSAME( NORM, 'O' )
      IF( .NOT.ONENRM .AND. .NOT.LSAME( NORM, 'I' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( HNORM.LT.ZERO ) THEN
         INFO = -3
      ELSE IF( LDH.LT.MAX( 1, N ) ) THEN
         INFO = -5
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'MB02TD', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      RCOND = ZERO
      IF( N.EQ.0 ) THEN
         RCOND = ONE
         RETURN
      ELSE IF( HNORM.EQ.ZERO ) THEN
         RETURN
      END IF
C
      SMLNUM = DLAMCH( 'Safe minimum' )
C
C     Estimate the norm of inv(H).
C
      HINVNM = ZERO
      NORMIN = 'N'
      IF( ONENRM ) THEN
         KASE1 = 1
      ELSE
         KASE1 = 2
      END IF
      KASE = 0
   10 CONTINUE
      CALL DLACN2( N, DWORK( N+1 ), DWORK, IWORK, HINVNM, KASE, ISAVE )
      IF( KASE.NE.0 ) THEN
         IF( KASE.EQ.KASE1 ) THEN
C
C           Multiply by inv(L).
C
            DO 20 J = 1, N - 1
               JP = IPIV( J )
               T = DWORK( JP )
               IF( JP.NE.J ) THEN
                  DWORK( JP ) = DWORK( J )
                  DWORK( J ) = T
               END IF
               DWORK( J+1 ) = DWORK( J+1 ) - T * H( J+1, J )
   20       CONTINUE
C
C           Multiply by inv(U).
C
            CALL DLATRS( 'Upper', 'No transpose', 'Non-unit', NORMIN, N,
     $                   H, LDH, DWORK, SCALE, DWORK( 2*N+1 ), INFO )
         ELSE
C
C           Multiply by inv(U').
C
            CALL DLATRS( 'Upper', 'Transpose', 'Non-unit', NORMIN, N, H,
     $                   LDH, DWORK, SCALE, DWORK( 2*N+1 ), INFO )
C
C           Multiply by inv(L').
C
            DO 30 J = N - 1, 1, -1
               DWORK( J ) = DWORK( J ) - H( J+1, J ) * DWORK( J+1 )
               JP = IPIV( J )
               IF( JP.NE.J ) THEN
                  T = DWORK( JP )
                  DWORK( JP ) = DWORK( J )
                  DWORK( J ) = T
               END IF
   30       CONTINUE
         END IF
C
C        Divide X by 1/SCALE if doing so will not cause overflow.
C
         NORMIN = 'Y'
         IF( SCALE.NE.ONE ) THEN
            IX = IDAMAX( N, DWORK, 1 )
            IF( SCALE.LT.ABS( DWORK( IX ) )*SMLNUM .OR. SCALE.EQ.ZERO
     $        ) GO TO 40
            CALL DRSCL( N, SCALE, DWORK, 1 )
         END IF
         GO TO 10
      END IF
C
C     Compute the estimate of the reciprocal condition number.
C
      IF( HINVNM.NE.ZERO )
     $   RCOND = ( ONE / HINVNM ) / HNORM
C
   40 CONTINUE
      RETURN
C *** Last line of MB02TD ***
      END