control_systems_torbox 0.2.1

Control systems toolbox
Documentation
      SUBROUTINE MB03AE( SHFT, K, N, AMAP, S, SINV, A, LDA1, LDA2, C1,
     $                   S1, C2, S2 )
C
C     PURPOSE
C
C     To compute two Givens rotations (C1,S1) and (C2,S2) such that the
C     orthogonal matrix
C
C               [ Q  0 ]        [  C1  S1  0 ]   [ 1  0   0  ]
C           Z = [      ],  Q := [ -S1  C1  0 ] * [ 0  C2  S2 ],
C               [ 0  I ]        [  0   0   1 ]   [ 0 -S2  C2 ]
C
C     makes the first column of the real Wilkinson double shift
C     polynomial of the product of matrices in periodic upper Hessenberg
C     form, stored in the array A, parallel to the first unit vector.
C     Only the rotation defined by C1 and S1 is used for the real
C     Wilkinson single shift polynomial (see SLICOT Library routines
C     MB03BE or MB03BF). All factors whose exponents differ from that of 
C     the Hessenberg factor are assumed nonsingular. The trailing 2-by-2
C     submatrix and the five nonzero elements in the first two columns
C     of the matrix product are evaluated when a double shift is used.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     SHFT    CHARACTER*1
C             Specifies the number of shifts employed by the shift
C             polynomial, as follows:
C             = 'D':  two shifts (assumes N > 2);
C             = 'S':  one real shift.
C
C     Input/Output Parameters
C
C     K       (input)  INTEGER
C             The number of factors.  K >= 1.
C
C     N       (input)  INTEGER
C             The order of the factors.  N >= 2.
C
C     AMAP    (input)  INTEGER array, dimension (K)
C             The map for accessing the factors, i.e., if AMAP(I) = J,
C             then the factor A_I is stored at the J-th position in A.
C             AMAP(1) is the pointer to the Hessenberg matrix.
C
C     S       (input)  INTEGER array, dimension (K)
C             The signature array. Each entry of S must be 1 or -1.
C
C     SINV    (input)  INTEGER
C             Signature multiplier. Entries of S are virtually
C             multiplied by SINV.
C
C     A       (input)  DOUBLE PRECISION array, dimension (LDA1,LDA2,K)
C             The leading N-by-N-by-K part of this array must contain
C             the product (implicitly represented by its K factors)
C             in periodic upper Hessenberg form.
C
C     LDA1    INTEGER
C             The first leading dimension of the array A.  LDA1 >= N.
C
C     LDA2    INTEGER
C             The second leading dimension of the array A.  LDA2 >= N.
C
C     C1      (output)  DOUBLE PRECISION
C     S1      (output)  DOUBLE PRECISION
C             On exit, C1 and S1 contain the parameters for the first
C             Givens rotation.
C
C     C2      (output)  DOUBLE PRECISION
C     S2      (output)  DOUBLE PRECISION
C             On exit, if SHFT = 'D' and N > 2, C2 and S2 contain the
C             parameters for the second Givens rotation. Otherwise,
C             C2 = 1, S2 = 0.
C
C     METHOD
C
C     The necessary elements of the real Wilkinson double/single shift
C     polynomial are computed, and suitable Givens rotations are found.
C     For numerical reasons, this routine should be called when
C     convergence difficulties are encountered.
C
C     CONTRIBUTOR
C
C     V. Sima, Research Institute for Informatics, Bucharest, Romania,
C     Aug. 2019.
C
C     REVISIONS
C
C     V. Sima, Sep. 2019, Dec. 2019.
C
C     KEYWORDS
C
C     Eigenvalues, QZ algorithm, periodic QZ algorithm, orthogonal
C     transformation.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ONE, TWO, ZERO
      PARAMETER         ( ONE = 1.0D0, TWO = 2.0D0, ZERO = 0.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         SHFT
      INTEGER           K, LDA1, LDA2, N, SINV
      DOUBLE PRECISION  C1, C2, S1, S2
C     .. Array Arguments ..
      INTEGER           AMAP(*), S(*)
      DOUBLE PRECISION  A(LDA1,LDA2,*)
C     .. Local Scalars ..
      LOGICAL           SGLE
      INTEGER           I, IC, IND, J, L, M, MM
      DOUBLE PRECISION  E1, E2, P1, P2, P3, PR, SCL, SM, T
C     .. Local Arrays ..
      INTEGER           IP(3), JP(3)
      DOUBLE PRECISION  DWORK(9), WI(2), WR(2), Y(9), Z(2,2)
C     .. External Functions ..
      LOGICAL           LSAME
      DOUBLE PRECISION  DDOT
      EXTERNAL          DDOT, LSAME
C     .. External Subroutines ..
      EXTERNAL          DCOPY, DGESC2, DGETC2, DLACPY, DLANV2, DLARTG,
     $                  DLASET, DTRMV
C     .. Intrinsic Functions ..
      INTRINSIC         ABS, MIN
C
C     .. Executable Statements ..
C
C     For efficiency reasons, the parameters are not checked for errors.
C
C     Evaluate the needed part of the matrix product.
C
      SGLE = LSAME( SHFT, 'S' ) .OR. N.EQ.2
C
      M  = MIN( N, 3 )
      MM = M*M
      L  = N - M + 1
      T  = ONE
C
      CALL DLASET( 'Full', M, M, ZERO, ONE, DWORK, M )
C
      IF ( SGLE ) THEN
C
C        Compute the two nonzero elements, E1 and E2, of the first
C        column of the product, as well as the bottom M-by-M part of the
C        product of triangular factors. Complete pivoting is used for
C        triangular factors whose exponents differ from SINV.
C        It is assumed that no overflow could appear when solving linear
C        systems, hence SCL = 1.
C
         DO 30  J = K, 2, -1
            I = AMAP(J)
            IF ( S(I).EQ.SINV ) THEN
               T = T*A(1,1,I)
C
               DO 10  IC = 1, MM, M
                  CALL DTRMV( 'Upper', 'NoTran', 'NonUnit', M, A(L,L,I),
     $                        LDA1, DWORK(IC), 1 )
   10          CONTINUE
C
            ELSE
               T = T/A(1,1,I)
C
               CALL DLACPY( 'Upper', M, M, A(L,L,I), LDA1, Y, M )
               CALL DLASET( 'Lower', M-1, M-1, ZERO, ZERO, Y(2), M )
               CALL DGETC2( M, Y, M, IP, JP, IND )
C
               DO 20  IC = 1, MM, M
                  CALL DGESC2( M, Y, M, DWORK(IC), IP, JP, SCL )
   20          CONTINUE
C
            END IF
   30    CONTINUE
C
         I  = AMAP(1)
         E1 = A(1,1,I)*T
         E2 = A(2,1,I)*T
C
C        Compute the (N,N) element of the product and the rotations.
C
         P1 = DDOT( 2, A(N,N-1,I), LDA1, DWORK(M+1), 1 )
         CALL DLARTG( E1 - P1, E2, C1, S1, E1 )
         C2 = ONE
         S2 = ZERO
C
      ELSE
C
C        Compute the nonzero elements of the first two columns and the
C        bottom M-by-M part of the product of triangular factors.
C
         CALL DLASET( 'Full', 2, 2, ZERO, ONE, Z, 2 )
C
         DO 60  J = K, 2, -1
            I = AMAP(J)
            IF ( S(I).EQ.SINV ) THEN
               Z(1,1) = A(1,1,I)*Z(1,1)
               Z(1,2) = A(1,1,I)*Z(1,2) + A(1,2,I)*Z(2,2)
               Z(2,2) = A(2,2,I)*Z(2,2)
C
               DO 40  IC = 1, MM, M
                  CALL DTRMV( 'Upper', 'NoTran', 'NonUnit', M, A(L,L,I),
     $                        LDA1, DWORK(IC), 1 )
   40          CONTINUE
C
            ELSE
C
               Y(1) = A(1,1,I)
               Y(2) = ZERO
               CALL DCOPY(  2, A(1,2,I), 1, Y(3), 1 )
               CALL DGETC2( 2, Y, 2, IP, JP, IND )
               CALL DGESC2( 2, Y, 2, Z, IP, JP, SCL )
               CALL DGESC2( 2, Y, 2, Z(1,2), IP, JP, SCL )
C
               CALL DLACPY( 'Upper', M, M, A(L,L,I), LDA1, Y, M )
               CALL DLASET( 'Lower', M-1, M-1, ZERO, ZERO, Y(2), M )
               CALL DGETC2( M, Y, M, IP, JP, IND )
C
               DO 50  IC = 1, MM, M
                  CALL DGESC2( M, Y, M, DWORK(IC), IP, JP, SCL )
   50          CONTINUE
C
            END IF
   60    CONTINUE
C
C        Save the nonzero elements of the first column of the product.
C
         I  = AMAP(1)
         E1 = A(1,1,I)*Z(1,1)
         E2 = A(2,1,I)*Z(1,1)
C
C        Save the nonzero elements of the second column of the product. 
C
         P1 = A(1,1,I)*Z(1,2) + A(1,2,I)*Z(2,2)
         P2 = A(2,1,I)*Z(1,2) + A(2,2,I)*Z(2,2)
         P3 = A(3,2,I)*Z(2,2)
C
C        Compute the bottom 2-by-2 part of the product.
C
         L = N - 1
C
         Z(1,1) = DDOT( 2, A(L,L-1,I), LDA1, DWORK(M+1), 1 )
         Z(2,1) = A(N,L,I)*DWORK(M+2)
         Z(1,2) = DDOT( M, A(L,L-1,I), LDA1, DWORK(MM-M+1), 1 )
         Z(2,2) = DDOT( 2, A(N,L,I),   LDA1, DWORK(MM-1),   1 )
C
C        Compute the eigenvalues of the bottom 2-by-2 part.
C        If there are two real eigenvalues, both shifts are chosen equal
C        to the eigenvalue with minimum modulus. Only the sum and
C        product of the shifts are needed.
C
         CALL DLANV2( Z(1,1), Z(1,2), Z(2,1), Z(2,2), WR(1), WI(1),
     $                WR(2), WI(2), C1, S1 )
         IF ( WI(1).EQ.ZERO ) THEN
            IF ( ABS( WR(1) ).LT.ABS( WR(2) ) ) THEN
               T = WR(1)
            ELSE
               T = WR(2)
            END IF
            SM = TWO*T
            PR = T**2
         ELSE
            SM = TWO*WR(1)
            PR = WR(1)**2 + WI(1)**2
         END IF
C
C        Compute a multiple of the first column of the real Wilkinson
C        double shift polynomial, having only three nonzero elements.
C
         P1 = P1 + ( ( E1 - SM )*E1 + PR )/E2
         P2 = P2 + E1 - SM
C
C        Compute the rotations to annihilate P2 and P3.
C
         CALL DLARTG( P2, P3, C2, S2, E1 )
         CALL DLARTG( P1, E1, C1, S1, E2 )
      END IF
C
      RETURN
C *** Last line of MB03AE ***
      END