control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
      SUBROUTINE SB08FD( DICO, N, M, P, ALPHA, A, LDA, B, LDB, C, LDC,
     $                   D, LDD, NQ, NR, CR, LDCR, DR, LDDR, TOL, DWORK,
     $                   LDWORK, IWARN, INFO )
C
C     PURPOSE
C
C     To construct, for a given system G = (A,B,C,D), a feedback
C     matrix F and an orthogonal transformation matrix Z, such that
C     the systems
C
C          Q = (Z'*(A+B*F)*Z, Z'*B, (C+D*F)*Z, D)
C     and
C          R = (Z'*(A+B*F)*Z, Z'*B, F*Z, I)
C
C     provide a stable right coprime factorization of G in the form
C                       -1
C              G = Q * R  ,
C
C     where G, Q and R are the corresponding transfer-function matrices.
C     The resulting state dynamics matrix of the systems Q and R has
C     eigenvalues lying inside a given stability domain.
C     The Z matrix is not explicitly computed.
C
C     Note: If the given state-space representation is not stabilizable,
C     the unstabilizable part of the original system is automatically
C     deflated and the order of the systems Q and R is accordingly
C     reduced.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     DICO    CHARACTER*1
C             Specifies the type of the original system as follows:
C             = 'C':  continuous-time system;
C             = 'D':  discrete-time system.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The dimension of the state vector, i.e. the order of the
C             matrix A, and also the number of rows of the matrix B and
C             the number of columns of the matrices C and CR.  N >= 0.
C
C     M       (input) INTEGER
C             The dimension of input vector, i.e. the number of columns
C             of the matrices B, D and DR and the number of rows of the
C             matrices CR and DR.  M >= 0.
C
C     P       (input) INTEGER
C             The dimension of output vector, i.e. the number of rows
C             of the matrices C and D.  P >= 0.
C
C     ALPHA   (input) DOUBLE PRECISION array, dimension (2)
C             ALPHA(1) contains the desired stability degree to be
C             assigned for the eigenvalues of A+B*F, and ALPHA(2)
C             the stability margin. The eigenvalues outside the
C             ALPHA(2)-stability region will be assigned to have the
C             real parts equal to ALPHA(1) < 0 and unmodified
C             imaginary parts for a continuous-time system
C             (DICO = 'C'), or moduli equal to 0 <= ALPHA(2) < 1
C             for a discrete-time system (DICO = 'D').
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading N-by-N part of this array must
C             contain the state dynamics matrix A.
C             On exit, the leading NQ-by-NQ part of this array contains
C             the leading NQ-by-NQ part of the matrix Z'*(A+B*F)*Z, the
C             state dynamics matrix of the numerator factor Q, in a
C             real Schur form. The trailing NR-by-NR part of this matrix
C             represents the state dynamics matrix of a minimal
C             realization of the denominator factor R.
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= MAX(1,N).
C
C     B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C             On entry, the leading N-by-M part of this array must
C             contain the input/state matrix.
C             On exit, the leading NQ-by-M part of this array contains
C             the leading NQ-by-M part of the matrix Z'*B, the
C             input/state matrix of the numerator factor Q. The last
C             NR rows of this matrix form the input/state matrix of
C             a minimal realization of the denominator factor R.
C
C     LDB     INTEGER
C             The leading dimension of array B.  LDB >= MAX(1,N).
C
C     C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C             On entry, the leading P-by-N part of this array must
C             contain the state/output matrix C.
C             On exit, the leading P-by-NQ part of this array contains
C             the leading P-by-NQ part of the matrix (C+D*F)*Z,
C             the state/output matrix of the numerator factor Q.
C
C     LDC     INTEGER
C             The leading dimension of array C.  LDC >= MAX(1,P).
C
C     D       (input) DOUBLE PRECISION array, dimension (LDD,M)
C             The leading P-by-M part of this array must contain the
C             input/output matrix. D represents also the input/output
C             matrix of the numerator factor Q.
C
C     LDD     INTEGER
C             The leading dimension of array D.  LDD >= MAX(1,P).
C
C     NQ      (output) INTEGER
C             The order of the resulting factors Q and R.
C             Generally, NQ = N - NS, where NS is the number of
C             uncontrollable eigenvalues outside the stability region.
C
C     NR      (output) INTEGER
C             The order of the minimal realization of the factor R.
C             Generally, NR is the number of controllable eigenvalues
C             of A outside the stability region (the number of modified
C             eigenvalues).
C
C     CR      (output) DOUBLE PRECISION array, dimension (LDCR,N)
C             The leading M-by-NQ part of this array contains the
C             leading M-by-NQ part of the feedback matrix F*Z, which
C             moves the eigenvalues of A lying outside the ALPHA-stable
C             region to values which are on the ALPHA-stability
C             boundary.  The last NR columns of this matrix form the
C             state/output matrix of a minimal realization of the
C             denominator factor R.
C
C     LDCR    INTEGER
C             The leading dimension of array CR.  LDCR >= MAX(1,M).
C
C     DR      (output) DOUBLE PRECISION array, dimension (LDDR,M)
C             The leading M-by-M part of this array contains an
C             identity matrix representing the input/output matrix
C             of the denominator factor R.
C
C     LDDR    INTEGER
C             The leading dimension of array DR.  LDDR >= MAX(1,M).
C
C     Tolerances
C
C     TOL     DOUBLE PRECISION
C             The absolute tolerance level below which the elements of
C             B are considered zero (used for controllability tests).
C             If the user sets TOL <= 0, then an implicitly computed,
C             default tolerance, defined by  TOLDEF = N*EPS*NORM(B),
C             is used instead, where EPS is the machine precision
C             (see LAPACK Library routine DLAMCH) and NORM(B) denotes
C             the 1-norm of B.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) returns the optimal value
C             of LDWORK.
C
C     LDWORK  INTEGER
C             The dimension of working array DWORK.
C             LWORK >= MAX( 1, N*(N+5), 5*M, 4*P ).
C             For optimum performance LDWORK should be larger.
C
C     Warning Indicator
C
C     IWARN   INTEGER
C             = 0:  no warning;
C             = K:  K violations of the numerical stability condition
C                   NORM(F) <= 10*NORM(A)/NORM(B) occured during the
C                   assignment of eigenvalues.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = 1:  the reduction of A to a real Schur form failed;
C             = 2:  a failure was detected during the ordering of the
C                   real Schur form of A, or in the iterative process
C                   for reordering the eigenvalues of Z'*(A + B*F)*Z
C                   along the diagonal.
C
C     METHOD
C
C     The subroutine is based on the factorization algorithm of [1].
C
C     REFERENCES
C
C     [1] Varga A.
C         Coprime factors model reduction method based on
C         square-root balancing-free techniques.
C         System Analysis, Modelling and Simulation,
C         vol. 11, pp. 303-311, 1993.
C
C     NUMERICAL ASPECTS
C                                            3
C     The algorithm requires no more than 14N  floating point
C     operations.
C
C     CONTRIBUTOR
C
C     A. Varga, German Aerospace Center,
C     DLR Oberpfaffenhofen, July 1998.
C     Based on the RASP routine RCFS.
C
C     REVISIONS
C
C     Nov. 1998, V. Sima, Research Institute for Informatics, Bucharest.
C     Dec. 1998, V. Sima, Katholieke Univ. Leuven, Leuven.
C     Mar. 2003, May 2003, A. Varga, German Aerospace Center.
C     May 2003, V. Sima, Research Institute for Informatics, Bucharest.
C     Sep. 2005, A. Varga, German Aerospace Center.
C
C     KEYWORDS
C
C     Coprime factorization, eigenvalue, eigenvalue assignment,
C     feedback control, pole placement, state-space model.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ONE, TEN, ZERO
      PARAMETER         ( ONE = 1.0D0, TEN = 1.0D1, ZERO = 0.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         DICO
      INTEGER           INFO, IWARN, LDA, LDB, LDC, LDCR, LDD, LDDR,
     $                  LDWORK, M, N, NQ, NR, P
      DOUBLE PRECISION  TOL
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), ALPHA(*), B(LDB,*), C(LDC,*),
     $                  CR(LDCR,*), D(LDD,*), DR(LDDR,*), DWORK(*)
C     .. Local Scalars ..
      LOGICAL           DISCR
      INTEGER           I, IB, IB1, J, K, KFI, KG, KW, KWI, KWR, KZ, L,
     $                  L1, NB, NCUR, NCUR1, NFP, NLOW, NMOVES, NSUP
      DOUBLE PRECISION  BNORM, CS, PR, RMAX, SM, SN, TOLER, WRKOPT, X, Y
C     .. Local Arrays ..
      DOUBLE PRECISION  A2(2,2), Z(4,4)
C     .. External Functions ..
      DOUBLE PRECISION  DLAMCH, DLANGE, DLAPY2
      LOGICAL           LSAME
      EXTERNAL          DLAMCH, DLANGE, DLAPY2, LSAME
C     .. External Subroutines ..
      EXTERNAL          DGEMM, DLACPY, DLAEXC, DLANV2, DLASET, DROT,
     $                  SB01BY, TB01LD, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         ABS, DBLE, MAX, MIN, SIGN, SQRT
C
C     .. Executable Statements ..
C
      DISCR = LSAME( DICO, 'D' )
      IWARN = 0
      INFO  = 0
C
C     Check the scalar input parameters.
C
      IF( .NOT. ( LSAME( DICO, 'C' ) .OR. DISCR ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( M.LT.0 ) THEN
         INFO = -3
      ELSE IF( P.LT.0 ) THEN
         INFO = -4
      ELSE IF( ( DISCR .AND. ( ALPHA(1).LT.ZERO .OR. ALPHA(1).GE.ONE
     $                  .OR.   ALPHA(2).LT.ZERO .OR. ALPHA(2).GE.ONE ) )
     $    .OR.
     $    ( .NOT.DISCR .AND. ( ALPHA(1).GE.ZERO .OR. ALPHA(2).GE.ZERO )
     $    ) ) THEN
         INFO = -5
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -7
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -9
      ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
         INFO = -11
      ELSE IF( LDD.LT.MAX( 1, P ) ) THEN
         INFO = -13
      ELSE IF( LDCR.LT.MAX( 1, M ) ) THEN
         INFO = -17
      ELSE IF( LDDR.LT.MAX( 1, M ) ) THEN
         INFO = -19
      ELSE IF( LDWORK.LT.MAX( 1, N*(N+5), 5*M, 4*P ) ) THEN
         INFO = -22
      END IF
      IF( INFO.NE.0 )THEN
C
C        Error return.
C
         CALL XERBLA( 'SB08FD', -INFO )
         RETURN
      END IF
C
C     Set DR = I and quick return if possible.
C
      NR = 0
      CALL DLASET( 'Full', M, M, ZERO, ONE, DR, LDDR )
      IF( MIN( N, M ).EQ.0 ) THEN
         NQ = 0
         DWORK(1) = ONE
         RETURN
      END IF
C
C     Set F = 0 in the array CR.
C
      CALL DLASET( 'Full', M, N, ZERO, ZERO, CR, LDCR )
C
C     Compute the norm of B and set the default tolerance if necessary.
C
      BNORM = DLANGE( '1-norm', N, M, B, LDB, DWORK )
      TOLER = TOL
      IF( TOLER.LE.ZERO )
     $   TOLER = DBLE( N ) * BNORM * DLAMCH( 'Epsilon' )
      IF( BNORM.LE.TOLER ) THEN
         NQ = 0
         DWORK(1) = ONE
         RETURN
      END IF
C
C     Compute the bound for the numerical stability condition.
C
      RMAX = TEN * DLANGE( '1-norm', N, N, A, LDA, DWORK ) / BNORM
C
C     Allocate working storage.
C
      KZ  = 1
      KWR = KZ  + N*N
      KWI = KWR + N
      KW  = KWI + N
C
C     Reduce A to an ordered real Schur form using an orthogonal
C     similarity transformation A <- Z'*A*Z and accumulate the
C     transformations in Z.  The separation of spectrum of A is
C     performed such that the leading NFP-by-NFP submatrix of A
C     corresponds to the "stable" eigenvalues which will be not
C     modified. The bottom (N-NFP)-by-(N-NFP) diagonal block of A
C     corresponds to the "unstable" eigenvalues to be modified.
C     Apply the transformation to B and C: B <- Z'*B and C <- C*Z.
C
C     Workspace needed:      N*(N+2);
C     Additional workspace:  need   3*N;
C                            prefer larger.
C
      CALL TB01LD( DICO, 'Stable', 'General', N, M, P, ALPHA(2), A, LDA,
     $             B, LDB, C, LDC, NFP, DWORK(KZ), N, DWORK(KWR),
     $             DWORK(KWI), DWORK(KW), LDWORK-KW+1, INFO )
      IF( INFO.NE.0 )
     $    RETURN
C
      WRKOPT = DWORK(KW) + DBLE( KW-1 )
C
C     Perform the pole assignment if there exist "unstable" eigenvalues.
C
      NQ = N
      IF( NFP.LT.N ) THEN
         KG  = 1
         KFI = KG  + 2*M
         KW  = KFI + 2*M
C
C        Set the limits for the bottom diagonal block.
C
         NLOW = NFP + 1
         NSUP = N
C
C        WHILE (NLOW <= NSUP) DO
   10    IF( NLOW.LE.NSUP ) THEN
C
C           Main loop for assigning one or two poles.
C
C           Determine the dimension of the last block.
C
            IB = 1
            IF( NLOW.LT.NSUP ) THEN
               IF( A(NSUP,NSUP-1).NE.ZERO ) IB = 2
            END IF
            L = NSUP - IB + 1
C
C           Save the last IB rows of B in G.
C
            CALL DLACPY( 'Full', IB, M, B(L,1), LDB, DWORK(KG), IB )
C
C           Check the controllability of the last block.
C
            IF( DLANGE( '1-norm', IB, M, DWORK(KG), IB, DWORK(KW) )
     $            .LE.TOLER )THEN
C
C              Deflate the uncontrollable block and resume the
C              main loop.
C
               NSUP = NSUP - IB
            ELSE
C
C              Form the IBxIB matrix A2 from the last diagonal block and
C              set the pole(s) to be assigned.
C
               A2(1,1) = A(L,L)
               IF( IB.EQ.1 ) THEN
                  SM = ALPHA(1)
                  IF( DISCR ) SM = SIGN( ALPHA(1), A2(1,1) )
                  PR = ALPHA(1)
               ELSE
                  A2(1,2) = A(L,NSUP)
                  A2(2,1) = A(NSUP,L)
                  A2(2,2) = A(NSUP,NSUP)
                  SM = ALPHA(1) + ALPHA(1)
                  PR = ALPHA(1)*ALPHA(1)
                  IF( DISCR ) THEN
                     X  = A2(1,1)
                     Y  = SQRT( ABS( A2(1,2)*A2(2,1) ) )
                     SM = SM * X / DLAPY2( X, Y )
                  ELSE
                     PR = PR - A2(1,2)*A2(2,1)
                  END IF
               END IF
C
C              Determine the M-by-IB feedback matrix FI which assigns
C              the selected IB poles for the pair (A2,G).
C
C              Workspace needed: 5*M.
C
               CALL SB01BY( IB, M, SM, PR, A2, DWORK(KG), DWORK(KFI),
     $                      TOLER, DWORK(KW), INFO )
               IF( INFO.NE.0 ) THEN
C
C                 Uncontrollable 2x2 block with double real eigenvalues
C                 which due to roundoff appear as a pair of complex
C                 conjugated eigenvalues.
C                 One of them can be elliminated using the information
C                 in DWORK(KFI) and DWORK(KFI+M).
C
                  CS = DWORK(KFI)
                  SN = -DWORK(KFI+M)
C
C                 Apply the Givens transformation to A, B, C and F.
C
                  L1 = L + 1
                  CALL DROT( NSUP-L+1, A(L1,L), LDA, A(L,L),
     $                       LDA, CS, SN )
                  CALL DROT( L1, A(1,L1), 1, A(1,L), 1, CS, SN )
                  CALL DROT( M, B(L1,1), LDB, B(L,1), LDB, CS, SN )
                  IF( P.GT.0 )
     $               CALL DROT( P, C(1,L1), 1, C(1,L), 1, CS, SN )
                  CALL DROT( M, CR(1,L1), 1, CR(1,L), 1, CS, SN )
C
C                 Deflate the uncontrollable block and resume the
C                 main loop.
C
                  A(L1,L) = ZERO
                  NSUP = NSUP - 1
                  INFO = 0
                  GO TO 10
               END IF
C
C              Check for possible numerical instability.
C
               IF( DLANGE( '1-norm', M, IB, DWORK(KFI), M, DWORK(KW) )
     $             .GT.RMAX ) IWARN = IWARN + 1
C
C              Update the feedback matrix F <-- F + [0 FI] in CR.
C
               K = KFI
               DO 30 J = L, L + IB - 1
                  DO 20 I = 1, M
                     CR(I,J) = CR(I,J) + DWORK(K)
                     K = K + 1
   20             CONTINUE
   30          CONTINUE
C
C              Update the state matrix A <-- A + B*[0 FI].
C
               CALL DGEMM( 'NoTranspose', 'NoTranspose', NSUP, IB, M,
     $                     ONE, B, LDB, DWORK(KFI), M, ONE, A(1,L),
     $                     LDA )
               IF( IB.EQ.2 ) THEN
C
C                 Try to split the 2x2 block and standardize it.
C
                  L1 = L + 1
                  CALL DLANV2( A(L,L), A(L,L1), A(L1,L), A(L1,L1),
     $                         X, Y, PR, SM, CS, SN )
C
C                 Apply the transformation to A, B, C and F.
C
                  IF( L1.LT.NSUP )
     $               CALL DROT( NSUP-L1, A(L,L1+1), LDA, A(L1,L1+1),
     $                          LDA, CS, SN )
                  CALL DROT( L-1, A(1,L), 1, A(1,L1), 1, CS, SN )
                  CALL DROT( M, B(L,1), LDB, B(L1,1), LDB, CS, SN )
                  IF( P.GT.0 )
     $               CALL DROT( P, C(1,L), 1, C(1,L1), 1, CS, SN )
                  CALL DROT( M, CR(1,L), 1, CR(1,L1), 1, CS, SN )
               END IF
               IF( NLOW+IB.LE.NSUP ) THEN
C
C                 Move the last block(s) to the leading position(s) of
C                 the bottom block.
C
C                 Workspace:     need MAX(4*N, 4*M, 4*P).
C
                  NCUR1 = NSUP - IB
                  NMOVES = 1
                  IF( IB.EQ.2 .AND. A(NSUP,NSUP-1).EQ.ZERO ) THEN
                     IB = 1
                     NMOVES = 2
                  END IF
C
C                 WHILE (NMOVES > 0) DO
   40             IF( NMOVES.GT.0 ) THEN
                     NCUR = NCUR1
C
C                    WHILE (NCUR >= NLOW) DO
   50                IF( NCUR.GE.NLOW ) THEN
C
C                       Loop for positioning of the last block.
C
C                       Determine the dimension of the current block.
C
                        IB1 = 1
                        IF( NCUR.GT.NLOW ) THEN
                           IF( A(NCUR,NCUR-1).NE.ZERO ) IB1 = 2
                        END IF
                        NB = IB1 + IB
C
C                       Initialize the local transformation matrix Z.
C
                        CALL DLASET( 'Full', NB, NB, ZERO, ONE, Z, 4 )
                        L = NCUR - IB1 + 1
C
C                       Exchange two adjacent blocks and accumulate the
C                       transformations in Z.
C
                        CALL DLAEXC( .TRUE., NB, A(L,L), LDA, Z, 4, 1,
     $                               IB1, IB, DWORK, INFO )
                        IF( INFO.NE.0 ) THEN
                           INFO = 2
                           RETURN
                        END IF
C
C                       Apply the transformation to the rest of A.
C
                        L1 = L + NB
                        IF( L1.LE.NSUP ) THEN
                           CALL DGEMM( 'Transpose', 'NoTranspose', NB,
     $                                 NSUP-L1+1, NB, ONE, Z, 4,
     $                                 A(L,L1), LDA, ZERO, DWORK, NB )
                           CALL DLACPY( 'Full', NB, NSUP-L1+1, DWORK,
     $                                  NB, A(L,L1), LDA )
                        END IF
                        CALL DGEMM( 'NoTranspose', 'NoTranspose', L-1,
     $                              NB, NB, ONE, A(1,L), LDA, Z, 4,
     $                              ZERO, DWORK, N )
                        CALL DLACPY( 'Full', L-1, NB, DWORK, N, A(1,L),
     $                               LDA )
C
C                       Apply the transformation to B, C and F.
C
                        CALL DGEMM( 'Transpose', 'NoTranspose', NB, M,
     $                              NB, ONE, Z, 4, B(L,1), LDB, ZERO,
     $                              DWORK, NB )
                        CALL DLACPY( 'Full', NB, M, DWORK, NB, B(L,1),
     $                               LDB )
C
                        IF( P.GT.0 ) THEN
                           CALL DGEMM( 'NoTranspose', 'NoTranspose', P,
     $                                 NB, NB, ONE, C(1,L), LDC, Z, 4,
     $                                 ZERO, DWORK, P )
                           CALL DLACPY( 'Full', P, NB, DWORK, P,
     $                                  C(1,L), LDC )
                        END IF
C
                        CALL DGEMM( 'NoTranspose', 'NoTranspose', M, NB,
     $                              NB, ONE, CR(1,L), LDCR, Z, 4, ZERO,
     $                              DWORK, M )
                        CALL DLACPY( 'Full', M, NB, DWORK, M, CR(1,L),
     $                               LDCR )
C
                        NCUR = NCUR - IB1
                        GO TO 50
                     END IF
C                    END WHILE 50
C
                     NMOVES = NMOVES - 1
                     NCUR1  = NCUR1 + 1
                     NLOW   = NLOW + IB
                     GO TO 40
                  END IF
C                 END WHILE 40
C
               ELSE
                  NLOW = NLOW + IB
               END IF
            END IF
            GO TO 10
         END IF
C        END WHILE 10
C
         NQ = NSUP
         NR = NSUP - NFP
C
C        Annihilate the elements below the first subdiagonal of A.
C
         IF( NQ.GT.2 )
     $      CALL DLASET( 'Lower', NQ-2, NQ-2, ZERO, ZERO, A(3,1), LDA )
      END IF
C
C     Compute C <-- CQ = C + D*F.
C
      CALL DGEMM( 'NoTranspose', 'NoTranspose', P, NQ, M, ONE, D, LDD,
     $            CR, LDCR, ONE, C, LDC )
C
      DWORK(1) = MAX( WRKOPT, DBLE( MAX( 5*M, 4*P ) ) )
C
      RETURN
C *** Last line of SB08FD ***
      END