SUBROUTINE TG01ND( JOB, JOBT, N, M, P, A, LDA, E, LDE, B, LDB,
     $                   C, LDC, ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ,
     $                   NF, ND, NIBLCK, IBLCK, TOL, IWORK, DWORK,
     $                   LDWORK, INFO )
C
C     PURPOSE
C
C     To compute equivalence transformation matrices Q and Z which
C     reduce the regular pole pencil A-lambda*E of the descriptor system
C     (A-lambda*E,B,C) to the form (if JOB = 'F')
C
C                ( Af  0  )             ( Ef  0  )
C        Q*A*Z = (        ) ,   Q*E*Z = (        ) ,                 (1)
C                ( 0   Ai )             ( 0   Ei )
C
C     or to the form (if JOB = 'I')
C
C                ( Ai  0  )             ( Ei  0  )
C        Q*A*Z = (        ) ,   Q*E*Z = (        ) ,                 (2)
C                ( 0   Af )             ( 0   Ef )
C
C     where the pair (Af,Ef) is in a generalized real Schur form, with
C     Ef nonsingular and upper triangular and Af in real Schur form.
C     The subpencil Af-lambda*Ef contains the finite eigenvalues.
C     The pair (Ai,Ei) is in a generalized real Schur form with
C     both Ai and Ei upper triangular. The subpencil Ai-lambda*Ei,
C     with Ai nonsingular and Ei nilpotent contains the infinite
C     eigenvalues and is in a block staircase form (see METHOD).
C     This decomposition corresponds to an additive decomposition of
C     the transfer-function matrix of the descriptor system as the
C     sum of a proper term and a polynomial term.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     JOB     CHARACTER*1
C             = 'F':  perform the finite-infinite separation;
C             = 'I':  perform the infinite-finite separation.
C
C     JOBT    CHARACTER*1
C             = 'D':  compute the direct transformation matrices;
C             = 'I':  compute the inverse transformation matrices
C                     inv(Q) and inv(Z).
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The number of rows of the matrix B, the number of columns
C             of the matrix C and the order of the square matrices A
C             and E.  N >= 0.
C
C     M       (input) INTEGER
C             The number of columns of the matrix B.  M >= 0.
C
C     P       (input) INTEGER
C             The number of rows of the matrix C.  P >= 0.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading N-by-N part of this array must
C             contain the N-by-N state matrix A.
C             On exit, the leading N-by-N part of this array contains
C             the transformed state matrix Q*A*Z (if JOBT = 'D') or
C             inv(Q)*A*inv(Z) (if JOBT = 'I') in the form
C
C             ( Af  0  )                    ( Ai  0  )
C             (        ) for JOB = 'F', or  (        )  for JOB = 'I',
C             ( 0   Ai )                    ( 0   Af )
C
C             where Af is an NF-by-NF matrix in real Schur form, and Ai
C             is an (N-NF)-by-(N-NF) nonsingular and upper triangular
C             matrix. Ai has a block structure as in (3) or (4), where
C             A0,0 is ND-by-ND and Ai,i , for i = 1, ..., NIBLCK, is
C             IBLCK(i)-by-IBLCK(i). (See METHOD.)
C
C     LDA     INTEGER
C             The leading dimension of the array A.  LDA >= MAX(1,N).
C
C     E       (input/output) DOUBLE PRECISION array, dimension (LDE,N)
C             On entry, the leading N-by-N part of this array must
C             contain the N-by-N descriptor matrix E.
C             On exit, the leading N-by-N part of this array contains
C             the transformed descriptor matrix Q*E*Z (if JOBT = 'D') or
C             inv(Q)*E*inv(Z) (if JOBT = 'I') in the form
C
C             ( Ef  0  )                    ( Ei  0  )
C             (        ) for JOB = 'F', or  (        )  for JOB = 'I',
C             ( 0   Ei )                    ( 0   Ef )
C
C             where Ef is an NF-by-NF nonsingular and upper triangular
C             matrix, and Ei is an (N-NF)-by-(N-NF) nilpotent matrix in
C             an upper triangular block form as in (3) or (4).
C
C     LDE     INTEGER
C             The leading dimension of the array E.  LDE >= MAX(1,N).
C
C     B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C             On entry, the leading N-by-M part of this array must
C             contain the N-by-M input matrix B.
C             On exit, the leading N-by-M part of this array contains
C             the transformed input matrix Q*B (if JOBT = 'D') or
C             inv(Q)*B (if JOBT = 'I').
C
C     LDB     INTEGER
C             The leading dimension of the array B.  LDB >= MAX(1,N).
C
C     C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C             On entry, the leading P-by-N part of this array must
C             contain the state/output matrix C.
C             On exit, the leading P-by-N part of this array contains
C             the transformed matrix C*Z (if JOBT = 'D') or C*inv(Z)
C             (if JOBT = 'I').
C
C     LDC     INTEGER
C             The leading dimension of the array C.  LDC >= MAX(1,P).
C
C     ALPHAR  (output) DOUBLE PRECISION array, dimension (N)
C             ALPHAR(1:NF) will be set to the real parts of the diagonal
C             elements of Af that would result from reducing A and E to
C             the Schur form, and then further reducing both of them to
C             triangular form using unitary transformations, subject to
C             having the diagonal of E positive real. Thus, if Af(j,j)
C             is in a 1-by-1 block (i.e., Af(j+1,j) = Af(j,j+1) = 0),
C             then ALPHAR(j) = Af(j,j). Note that the (real or complex)
C             values (ALPHAR(j) + i*ALPHAI(j))/BETA(j), j=1,...,NF, are
C             the finite generalized eigenvalues of the matrix pencil
C             A - lambda*E.
C
C     ALPHAI  (output) DOUBLE PRECISION array, dimension (N)
C             ALPHAI(1:NF) will be set to the imaginary parts of the
C             diagonal elements of Af that would result from reducing A
C             and E to Schur form, and then further reducing both of
C             them to triangular form using unitary transformations,
C             subject to having the diagonal of E positive real. Thus,
C             if Af(j,j) is in a 1-by-1 block (see above), then
C             ALPHAI(j) = 0. Note that the (real or complex) values
C             (ALPHAR(j) + i*ALPHAI(j))/BETA(j), j=1,...,NF, are the
C             finite generalized eigenvalues of the matrix pencil
C             A - lambda*E.
C
C     BETA    (output) DOUBLE PRECISION array, dimension (N)
C             BETA(1:NF) will be set to the (real) diagonal elements of
C             Ef that would result from reducing A and E to Schur form,
C             and then further reducing both of them to triangular form
C             using unitary transformations, subject to having the
C             diagonal of E positive real. Thus, if Af(j,j) is in a
C             1-by-1 block (see above), then BETA(j) = Ef(j,j).
C             Note that the (real or complex) values
C             (ALPHAR(j) + i*ALPHAI(j))/BETA(j), j=1,...,NF, are the
C             finite generalized eigenvalues of the matrix pencil
C             A - lambda*E.
C
C     Q       (output) DOUBLE PRECISION array, dimension (LDQ,N)
C             The leading N-by-N part of this array contains the
C             left transformation matrix Q, if JOBT = 'D', or its
C             inverse inv(Q), if JOBT = 'I'.
C
C     LDQ     INTEGER
C             The leading dimension of the array Q.  LDQ >= MAX(1,N).
C
C     Z       (output) DOUBLE PRECISION array, dimension (LDZ,N)
C             The leading N-by-N part of this array contains the
C             right transformation matrix Z, if JOBT = 'D', or its
C             inverse inv(Z), if JOBT = 'I'.
C
C     LDZ     INTEGER
C             The leading dimension of the array Z.  LDZ >= MAX(1,N).
C
C     NF      (output) INTEGER
C             The order of the reduced matrices Af and Ef; also, the
C             number of finite generalized eigenvalues of the pencil
C             A-lambda*E.
C
C     ND      (output) INTEGER
C             The number of non-dynamic infinite eigenvalues of the
C             matrix pair (A,E). Note: N-ND is the rank of the matrix E.
C
C     NIBLCK  (output) INTEGER
C             If ND > 0, the number of infinite blocks minus one.
C             If ND = 0, then NIBLCK = 0.
C
C     IBLCK   (output) INTEGER array, dimension (N)
C             IBLCK(i) contains the dimension of the i-th block in the
C             staircase form (3), where i = 1,2,...,NIBLCK.
C
C     Tolerances
C
C     TOL     DOUBLE PRECISION
C             A tolerance used in rank decisions to determine the
C             effective rank, which is defined as the order of the
C             largest leading (or trailing) triangular submatrix in the
C             QR factorization with column pivoting whose estimated
C             condition number is less than 1/TOL. If the user sets
C             TOL <= 0, then an implicitly computed, default tolerance
C             TOLDEF = N**2*EPS,  is used instead, where EPS is the
C             machine precision (see LAPACK Library routine DLAMCH).
C             TOL < 1.
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (N+6)
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) returns the optimal value
C             of LDWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.  LDWORK >= 1, and if N > 0,
C             LDWORK >= 4*N.
C
C             If LDWORK = -1, then a workspace query is assumed; the
C             routine only calculates the optimal size of the DWORK
C             array, returns this value as the first entry of the DWORK
C             array, and no error message related to LDWORK is issued by
C             XERBLA.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = 1:  the pencil A-lambda*E is not regular;
C             = 2:  the QZ iteration did not converge;
C             = 3:  (Af,Ef) and (Ai,Ei) have too close generalized
C                   eigenvalues.
C
C     METHOD
C
C     For the separation of infinite structure, the reduction algorithm
C     of [1] is employed. This separation is achieved by computing
C     orthogonal matrices Q1 and Z1 such that Q1*A*Z1 and Q1*E*Z1
C     have the form (if JOB = 'F')
C
C                 ( Af  Ao )              ( Ef  Eo )
C       Q1*A*Z1 = (        ) ,  Q1*E*Z1 = (        ) ,
C                 ( 0   Ai )              ( 0   Ei )
C
C     or to the form (if JOB = 'I')
C
C                 ( Ai  Ao )              ( Ei  Eo )
C       Q1*A*Z1 = (        ) ,  Q1*E*Z1 = (        ) .
C                 ( 0   Af )              ( 0   Ef )
C
C     If JOB = 'F', the matrices Ai and Ei have the form
C
C           ( A0,0  A0,k ... A0,1 )         ( 0  E0,k ... E0,1 )
C      Ai = (  0    Ak,k ... Ak,1 ) ,  Ei = ( 0   0   ... Ek,1 ) ;   (3)
C           (  :     :    .    :  )         ( :   :    .    :  )
C           (  0     0   ... A1,1 )         ( 0   0   ...   0  )
C
C     if JOB = 'I' the matrices Ai and Ei have the form
C
C           ( A1,1 ... A1,k  A1,0 )         ( 0 ... E1,k  E1,0 )
C      Ai = (  :    .    :    :   ) ,  Ei = ( :  .    :    :   ) ,   (4)
C           (  :   ... Ak,k  Ak,0 )         ( : ...   0   Ek,0 )
C           (  0   ...   0   A0,0 )         ( 0 ...   0     0  )
C
C     where Ai,i, for i = 0, 1, ..., k, are nonsingular upper triangular
C     matrices. A0,0 corresponds to the non-dynamic infinite modes of
C     the system.
C
C     In a second step, the transformation matrices Q2 and Z2 are
C     determined, of the form
C
C             ( I -X )          ( I  Y )
C        Q2 = (      ) ,   Z2 = (      )
C             ( 0  I )          ( 0  I )
C
C     such that with Q = Q2*Q1 and Z = Z1*Z2, Q*A*Z and Q*E*Z are
C     block diagonal as in (1) (if JOB = 'F') or in (2) (if JOB = 'I').
C     X and Y are computed by solving generalized Sylvester equations.
C
C     If we partition Q*B and C*Z according to (1) or (2) in the form
C     ( Bf ) and ( Cf Ci ), if JOB = 'F', or ( Bi ) and ( Ci Cf ), if
C     ( Bi )                                 ( Bf )
C     JOB = 'I', then (Af-lambda*Ef,Bf,Cf) is the strictly proper part
C     of the original descriptor system and (Ai-lambda*Ei,Bi,Ci) is its
C     polynomial part.
C
C     REFERENCES
C
C     [1] Misra, P., Van Dooren, P., and Varga, A.
C         Computation of structural invariants of generalized
C         state-space systems.
C         Automatica, 30, pp. 1921-1936, 1994.
C
C     NUMERICAL ASPECTS
C
C     The algorithm is numerically backward stable and requires
C     0( N**3 )  floating point operations.
C
C     FURTHER COMMENTS
C
C     The number of infinite poles is computed as
C
C                   NIBLCK
C        NINFP =     Sum  IBLCK(i) = N - ND - NF.
C                    i=1
C
C     The multiplicities of infinite poles can be computed as follows:
C     there are IBLCK(k)-IBLCK(k+1) infinite poles of multiplicity
C     k, for k = 1, ..., NIBLCK, where IBLCK(NIBLCK+1) = 0.
C     Note that each infinite pole of multiplicity k corresponds to
C     an infinite eigenvalue of multiplicity k+1.
C
C     CONTRIBUTOR
C
C     A. Varga, German Aerospace Center, DLR Oberpfaffenhofen.
C     July 1999. Based on the RASP routines SRISEP and RPDSGH.
C
C     REVISIONS
C
C     A. Varga, November 2002, September 2020.
C     V. Sima, December 2016.
C
C     KEYWORDS
C
C     Generalized eigenvalue problem, system poles, multivariable
C     system, orthogonal transformation, structural invariant.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          (ONE = 1.0D0, ZERO = 0.0D0)
C     .. Scalar Arguments ..
      CHARACTER          JOB, JOBT
      INTEGER            INFO, LDA, LDB, LDC, LDE, LDQ, LDWORK, LDZ, M,
     $                   N, ND, NF, NIBLCK, P
      DOUBLE PRECISION   TOL
C     .. Array Arguments ..
      INTEGER            IBLCK( * ), IWORK(*)
      DOUBLE PRECISION   A(LDA,*), ALPHAR(*), ALPHAI(*), B(LDB,*),
     $                   BETA(*),  C(LDC,*),  DWORK(*),  E(LDE,*),
     $                   Q(LDQ,*), Z(LDZ,*)
C     .. Local Scalars ..
      LOGICAL            LQUERY, TRINF, TRINV
      DOUBLE PRECISION   DIF, SCALE
      INTEGER            I, MINWRK, N1, N11, N2, WRKOPT
C     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
C     .. External Subroutines ..
      EXTERNAL           DGEMM, DLASET, DSWAP, DTGSYL, TG01MD, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC          INT, MAX, MIN
C     .. Executable Statements ..
C
C     Test the input parameters.
C
      INFO  = 0
      TRINF = LSAME( JOB,  'I' )
      TRINV = LSAME( JOBT, 'I' )
      IF(      .NOT.LSAME( JOB,  'F' ) .AND. .NOT.TRINF ) THEN
         INFO = -1
      ELSE IF( .NOT.LSAME( JOBT, 'D' ) .AND. .NOT.TRINV ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( M.LT.0 ) THEN
         INFO = -4
      ELSE IF( P.LT.0 ) THEN
         INFO = -5
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -7
      ELSE IF( LDE.LT.MAX( 1, N ) ) THEN
         INFO = -9
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -11
      ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
         INFO = -13
      ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
         INFO = -18
      ELSE IF( LDZ.LT.MAX( 1, N ) ) THEN
         INFO = -20
      ELSE IF( TOL.GE.ONE ) THEN
         INFO = -25
      ELSE
         LQUERY = LDWORK.EQ.-1
         IF( N.EQ.0 ) THEN
            MINWRK = 1
         ELSE
            MINWRK = 4*N
         END IF
         IF( LQUERY ) THEN
            CALL TG01MD( JOB, N, M, P, A, LDA, E, LDE, B, LDB, C, LDC,
     $                   ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, NF, ND,
     $                   NIBLCK, IBLCK, TOL, IWORK, DWORK, -1, INFO )
            WRKOPT = MAX( MINWRK, INT( DWORK(1) ) )
         ELSE IF( LDWORK.LT.MINWRK ) THEN
            INFO = -28
         END IF
      END IF
C
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'TG01ND', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         DWORK(1) = WRKOPT
         RETURN
      END IF
C
C     Quick return if possible
C
      IF( N.EQ.0 ) THEN
         NF = 0
         ND = 0
         NIBLCK = 0
         DWORK(1) = ONE
         RETURN
      END IF
C
C     Compute the finite-infinite separation with A in Schur form
C     and E upper triangular.
C     Workspace: need  4*N.
C
      CALL TG01MD( JOB, N, M, P, A, LDA, E, LDE, B, LDB, C, LDC,
     $             ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, NF, ND,
     $             NIBLCK, IBLCK, TOL, IWORK, DWORK, LDWORK, INFO )
C
      IF( INFO.NE.0 )
     $   RETURN
      WRKOPT = MAX( WRKOPT, INT( DWORK(1) ) )
C
      IF( TRINV ) THEN
C
C        Transpose Z in-situ.
C
         DO 10 I = 2, N
            CALL DSWAP( I-1, Z(1,I), 1, Z(I,1), LDZ )
   10    CONTINUE
      ELSE
C
C        Transpose Q in-situ.
C
         DO 20 I = 2, N
            CALL DSWAP( I-1, Q(1,I), 1, Q(I,1), LDQ )
   20    CONTINUE
      END IF
C
C     Let be A and E partitioned as ( A11 A12 ) and ( E11 E12 ).
C                                   (  0  A22 )     (  0  E22 )
C     Split the finite and infinite parts by using the following
C     left and right transformation matrices
C             ( I -X/scale )          ( I  Y/scale )
C        Qs = (            ) ,   Zs = (            ) ,
C             ( 0     I    )          ( 0     I    )
C     where X and Y are computed by solving the generalized
C     Sylvester equations
C
C              A11 * Y - X * A22 = scale * A12
C              E11 * Y - X * E22 = scale * E12.
C
C     -Y is computed in A12 and -X is computed in E12.
C
C     Integer workspace: need  N+6.
C
      IF( TRINF ) THEN
         N1 = N - NF
         N2 = NF
      ELSE
         N1 = NF
         N2 = N - NF
      END IF
      N11 = MIN( N1 + 1, N )
C
      IF( N1.GT.0 .AND. N2.GT.0 ) THEN
         CALL DTGSYL( 'No transpose', 0, N1, N2, A, LDA, A(N11,N11),
     $                LDA, A(1,N11), LDA, E, LDE, E(N11,N11), LDE,
     $                E(1,N11), LDE, SCALE, DIF, DWORK, LDWORK, IWORK,
     $                INFO )
         IF( INFO.NE.0 ) THEN
            INFO = 3
            RETURN
         END IF
C
C        Transform B and C.
C
         IF( SCALE.GT.0 )
     $       SCALE = ONE/SCALE
C
C        B1 <- B1 - X*B2.
C
         CALL DGEMM( 'N', 'N', N1, M, N2, SCALE, E(1,N11), LDE,
     $               B(N11,1), LDB, ONE, B, LDB )
C
C        C2 <- C2 + C1*Y.
C
         CALL DGEMM( 'N', 'N', P, N2, N1, -SCALE, C, LDC, A(1,N11),
     $               LDA, ONE, C(1,N11), LDC )
C
         IF( TRINV ) THEN
C
C           Q2 <- Q2 + Q1*X.
C
            CALL DGEMM( 'N', 'N', N, N2, N1, -SCALE, Q, LDQ, E(1,N11),
     $                  LDE, ONE, Q(1,N11), LDQ )
C
C           Z1 <- Z1 - Y*Z2.
C
            CALL DGEMM( 'N', 'N', N1, N, N2, SCALE, A(1,N11), LDA,
     $                  Z(N11,1), LDZ, ONE, Z, LDZ )
         ELSE
C
C           Q1 <- Q1 - X*Q2.
C
            CALL DGEMM( 'N', 'N', N1, N, N2, SCALE, E(1,N11), LDE,
     $                  Q(N11,1), LDQ, ONE, Q, LDQ )
C
C           Z2 <- Z2 + Z1*Y.
C
            CALL DGEMM( 'N', 'N', N, N2, N1, -SCALE, Z, LDZ, A(1,N11),
     $                  LDA, ONE, Z(1,N11), LDZ )
         END IF
C
C        Set A12 and E12 to zero.
C
         CALL DLASET( 'Full', N1, N2, ZERO, ZERO, A(1,N11), LDA )
         CALL DLASET( 'Full', N1, N2, ZERO, ZERO, E(1,N11), LDE )
      END IF
C
      RETURN
C *** Last line of TG01ND ***
      END