control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
      SUBROUTINE TG01ND( JOB, JOBT, N, M, P, A, LDA, E, LDE, B, LDB,
     $                   C, LDC, ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ,
     $                   NF, ND, NIBLCK, IBLCK, TOL, IWORK, DWORK,
     $                   LDWORK, INFO )
C
C     PURPOSE
C
C     To compute equivalence transformation matrices Q and Z which
C     reduce the regular pole pencil A-lambda*E of the descriptor system
C     (A-lambda*E,B,C) to the form (if JOB = 'F')
C
C                ( Af  0  )             ( Ef  0  )
C        Q*A*Z = (        ) ,   Q*E*Z = (        ) ,                 (1)
C                ( 0   Ai )             ( 0   Ei )
C
C     or to the form (if JOB = 'I')
C
C                ( Ai  0  )             ( Ei  0  )
C        Q*A*Z = (        ) ,   Q*E*Z = (        ) ,                 (2)
C                ( 0   Af )             ( 0   Ef )
C
C     where the pair (Af,Ef) is in a generalized real Schur form, with
C     Ef nonsingular and upper triangular and Af in real Schur form.
C     The subpencil Af-lambda*Ef contains the finite eigenvalues.
C     The pair (Ai,Ei) is in a generalized real Schur form with
C     both Ai and Ei upper triangular. The subpencil Ai-lambda*Ei,
C     with Ai nonsingular and Ei nilpotent contains the infinite
C     eigenvalues and is in a block staircase form (see METHOD).
C     This decomposition corresponds to an additive decomposition of
C     the transfer-function matrix of the descriptor system as the
C     sum of a proper term and a polynomial term.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     JOB     CHARACTER*1
C             = 'F':  perform the finite-infinite separation;
C             = 'I':  perform the infinite-finite separation.
C
C     JOBT    CHARACTER*1
C             = 'D':  compute the direct transformation matrices;
C             = 'I':  compute the inverse transformation matrices
C                     inv(Q) and inv(Z).
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The number of rows of the matrix B, the number of columns
C             of the matrix C and the order of the square matrices A
C             and E.  N >= 0.
C
C     M       (input) INTEGER
C             The number of columns of the matrix B.  M >= 0.
C
C     P       (input) INTEGER
C             The number of rows of the matrix C.  P >= 0.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading N-by-N part of this array must
C             contain the N-by-N state matrix A.
C             On exit, the leading N-by-N part of this array contains
C             the transformed state matrix Q*A*Z (if JOBT = 'D') or
C             inv(Q)*A*inv(Z) (if JOBT = 'I') in the form
C
C             ( Af  0  )                    ( Ai  0  )
C             (        ) for JOB = 'F', or  (        )  for JOB = 'I',
C             ( 0   Ai )                    ( 0   Af )
C
C             where Af is an NF-by-NF matrix in real Schur form, and Ai
C             is an (N-NF)-by-(N-NF) nonsingular and upper triangular
C             matrix. Ai has a block structure as in (3) or (4), where
C             A0,0 is ND-by-ND and Ai,i , for i = 1, ..., NIBLCK, is
C             IBLCK(i)-by-IBLCK(i). (See METHOD.)
C
C     LDA     INTEGER
C             The leading dimension of the array A.  LDA >= MAX(1,N).
C
C     E       (input/output) DOUBLE PRECISION array, dimension (LDE,N)
C             On entry, the leading N-by-N part of this array must
C             contain the N-by-N descriptor matrix E.
C             On exit, the leading N-by-N part of this array contains
C             the transformed descriptor matrix Q*E*Z (if JOBT = 'D') or
C             inv(Q)*E*inv(Z) (if JOBT = 'I') in the form
C
C             ( Ef  0  )                    ( Ei  0  )
C             (        ) for JOB = 'F', or  (        )  for JOB = 'I',
C             ( 0   Ei )                    ( 0   Ef )
C
C             where Ef is an NF-by-NF nonsingular and upper triangular
C             matrix, and Ei is an (N-NF)-by-(N-NF) nilpotent matrix in
C             an upper triangular block form as in (3) or (4).
C
C     LDE     INTEGER
C             The leading dimension of the array E.  LDE >= MAX(1,N).
C
C     B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C             On entry, the leading N-by-M part of this array must
C             contain the N-by-M input matrix B.
C             On exit, the leading N-by-M part of this array contains
C             the transformed input matrix Q*B (if JOBT = 'D') or
C             inv(Q)*B (if JOBT = 'I').
C
C     LDB     INTEGER
C             The leading dimension of the array B.  LDB >= MAX(1,N).
C
C     C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C             On entry, the leading P-by-N part of this array must
C             contain the state/output matrix C.
C             On exit, the leading P-by-N part of this array contains
C             the transformed matrix C*Z (if JOBT = 'D') or C*inv(Z)
C             (if JOBT = 'I').
C
C     LDC     INTEGER
C             The leading dimension of the array C.  LDC >= MAX(1,P).
C
C     ALPHAR  (output) DOUBLE PRECISION array, dimension (N)
C             ALPHAR(1:NF) will be set to the real parts of the diagonal
C             elements of Af that would result from reducing A and E to
C             the Schur form, and then further reducing both of them to
C             triangular form using unitary transformations, subject to
C             having the diagonal of E positive real. Thus, if Af(j,j)
C             is in a 1-by-1 block (i.e., Af(j+1,j) = Af(j,j+1) = 0),
C             then ALPHAR(j) = Af(j,j). Note that the (real or complex)
C             values (ALPHAR(j) + i*ALPHAI(j))/BETA(j), j=1,...,NF, are
C             the finite generalized eigenvalues of the matrix pencil
C             A - lambda*E.
C
C     ALPHAI  (output) DOUBLE PRECISION array, dimension (N)
C             ALPHAI(1:NF) will be set to the imaginary parts of the
C             diagonal elements of Af that would result from reducing A
C             and E to Schur form, and then further reducing both of
C             them to triangular form using unitary transformations,
C             subject to having the diagonal of E positive real. Thus,
C             if Af(j,j) is in a 1-by-1 block (see above), then
C             ALPHAI(j) = 0. Note that the (real or complex) values
C             (ALPHAR(j) + i*ALPHAI(j))/BETA(j), j=1,...,NF, are the
C             finite generalized eigenvalues of the matrix pencil
C             A - lambda*E.
C
C     BETA    (output) DOUBLE PRECISION array, dimension (N)
C             BETA(1:NF) will be set to the (real) diagonal elements of
C             Ef that would result from reducing A and E to Schur form,
C             and then further reducing both of them to triangular form
C             using unitary transformations, subject to having the
C             diagonal of E positive real. Thus, if Af(j,j) is in a
C             1-by-1 block (see above), then BETA(j) = Ef(j,j).
C             Note that the (real or complex) values
C             (ALPHAR(j) + i*ALPHAI(j))/BETA(j), j=1,...,NF, are the
C             finite generalized eigenvalues of the matrix pencil
C             A - lambda*E.
C
C     Q       (output) DOUBLE PRECISION array, dimension (LDQ,N)
C             The leading N-by-N part of this array contains the
C             left transformation matrix Q, if JOBT = 'D', or its
C             inverse inv(Q), if JOBT = 'I'.
C
C     LDQ     INTEGER
C             The leading dimension of the array Q.  LDQ >= MAX(1,N).
C
C     Z       (output) DOUBLE PRECISION array, dimension (LDZ,N)
C             The leading N-by-N part of this array contains the
C             right transformation matrix Z, if JOBT = 'D', or its
C             inverse inv(Z), if JOBT = 'I'.
C
C     LDZ     INTEGER
C             The leading dimension of the array Z.  LDZ >= MAX(1,N).
C
C     NF      (output) INTEGER
C             The order of the reduced matrices Af and Ef; also, the
C             number of finite generalized eigenvalues of the pencil
C             A-lambda*E.
C
C     ND      (output) INTEGER
C             The number of non-dynamic infinite eigenvalues of the
C             matrix pair (A,E). Note: N-ND is the rank of the matrix E.
C
C     NIBLCK  (output) INTEGER
C             If ND > 0, the number of infinite blocks minus one.
C             If ND = 0, then NIBLCK = 0.
C
C     IBLCK   (output) INTEGER array, dimension (N)
C             IBLCK(i) contains the dimension of the i-th block in the
C             staircase form (3), where i = 1,2,...,NIBLCK.
C
C     Tolerances
C
C     TOL     DOUBLE PRECISION
C             A tolerance used in rank decisions to determine the
C             effective rank, which is defined as the order of the
C             largest leading (or trailing) triangular submatrix in the
C             QR factorization with column pivoting whose estimated
C             condition number is less than 1/TOL. If the user sets
C             TOL <= 0, then an implicitly computed, default tolerance
C             TOLDEF = N**2*EPS,  is used instead, where EPS is the
C             machine precision (see LAPACK Library routine DLAMCH).
C             TOL < 1.
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (N+6)
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) returns the optimal value
C             of LDWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.  LDWORK >= 1, and if N > 0,
C             LDWORK >= 4*N.
C
C             If LDWORK = -1, then a workspace query is assumed; the
C             routine only calculates the optimal size of the DWORK
C             array, returns this value as the first entry of the DWORK
C             array, and no error message related to LDWORK is issued by
C             XERBLA.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = 1:  the pencil A-lambda*E is not regular;
C             = 2:  the QZ iteration did not converge;
C             = 3:  (Af,Ef) and (Ai,Ei) have too close generalized
C                   eigenvalues.
C
C     METHOD
C
C     For the separation of infinite structure, the reduction algorithm
C     of [1] is employed. This separation is achieved by computing
C     orthogonal matrices Q1 and Z1 such that Q1*A*Z1 and Q1*E*Z1
C     have the form (if JOB = 'F')
C
C                 ( Af  Ao )              ( Ef  Eo )
C       Q1*A*Z1 = (        ) ,  Q1*E*Z1 = (        ) ,
C                 ( 0   Ai )              ( 0   Ei )
C
C     or to the form (if JOB = 'I')
C
C                 ( Ai  Ao )              ( Ei  Eo )
C       Q1*A*Z1 = (        ) ,  Q1*E*Z1 = (        ) .
C                 ( 0   Af )              ( 0   Ef )
C
C     If JOB = 'F', the matrices Ai and Ei have the form
C
C           ( A0,0  A0,k ... A0,1 )         ( 0  E0,k ... E0,1 )
C      Ai = (  0    Ak,k ... Ak,1 ) ,  Ei = ( 0   0   ... Ek,1 ) ;   (3)
C           (  :     :    .    :  )         ( :   :    .    :  )
C           (  0     0   ... A1,1 )         ( 0   0   ...   0  )
C
C     if JOB = 'I' the matrices Ai and Ei have the form
C
C           ( A1,1 ... A1,k  A1,0 )         ( 0 ... E1,k  E1,0 )
C      Ai = (  :    .    :    :   ) ,  Ei = ( :  .    :    :   ) ,   (4)
C           (  :   ... Ak,k  Ak,0 )         ( : ...   0   Ek,0 )
C           (  0   ...   0   A0,0 )         ( 0 ...   0     0  )
C
C     where Ai,i, for i = 0, 1, ..., k, are nonsingular upper triangular
C     matrices. A0,0 corresponds to the non-dynamic infinite modes of
C     the system.
C
C     In a second step, the transformation matrices Q2 and Z2 are
C     determined, of the form
C
C             ( I -X )          ( I  Y )
C        Q2 = (      ) ,   Z2 = (      )
C             ( 0  I )          ( 0  I )
C
C     such that with Q = Q2*Q1 and Z = Z1*Z2, Q*A*Z and Q*E*Z are
C     block diagonal as in (1) (if JOB = 'F') or in (2) (if JOB = 'I').
C     X and Y are computed by solving generalized Sylvester equations.
C
C     If we partition Q*B and C*Z according to (1) or (2) in the form
C     ( Bf ) and ( Cf Ci ), if JOB = 'F', or ( Bi ) and ( Ci Cf ), if
C     ( Bi )                                 ( Bf )
C     JOB = 'I', then (Af-lambda*Ef,Bf,Cf) is the strictly proper part
C     of the original descriptor system and (Ai-lambda*Ei,Bi,Ci) is its
C     polynomial part.
C
C     REFERENCES
C
C     [1] Misra, P., Van Dooren, P., and Varga, A.
C         Computation of structural invariants of generalized
C         state-space systems.
C         Automatica, 30, pp. 1921-1936, 1994.
C
C     NUMERICAL ASPECTS
C
C     The algorithm is numerically backward stable and requires
C     0( N**3 )  floating point operations.
C
C     FURTHER COMMENTS
C
C     The number of infinite poles is computed as
C
C                   NIBLCK
C        NINFP =     Sum  IBLCK(i) = N - ND - NF.
C                    i=1
C
C     The multiplicities of infinite poles can be computed as follows:
C     there are IBLCK(k)-IBLCK(k+1) infinite poles of multiplicity
C     k, for k = 1, ..., NIBLCK, where IBLCK(NIBLCK+1) = 0.
C     Note that each infinite pole of multiplicity k corresponds to
C     an infinite eigenvalue of multiplicity k+1.
C
C     CONTRIBUTOR
C
C     A. Varga, German Aerospace Center, DLR Oberpfaffenhofen.
C     July 1999. Based on the RASP routines SRISEP and RPDSGH.
C
C     REVISIONS
C
C     A. Varga, November 2002, September 2020.
C     V. Sima, December 2016.
C
C     KEYWORDS
C
C     Generalized eigenvalue problem, system poles, multivariable
C     system, orthogonal transformation, structural invariant.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          (ONE = 1.0D0, ZERO = 0.0D0)
C     .. Scalar Arguments ..
      CHARACTER          JOB, JOBT
      INTEGER            INFO, LDA, LDB, LDC, LDE, LDQ, LDWORK, LDZ, M,
     $                   N, ND, NF, NIBLCK, P
      DOUBLE PRECISION   TOL
C     .. Array Arguments ..
      INTEGER            IBLCK( * ), IWORK(*)
      DOUBLE PRECISION   A(LDA,*), ALPHAR(*), ALPHAI(*), B(LDB,*),
     $                   BETA(*),  C(LDC,*),  DWORK(*),  E(LDE,*),
     $                   Q(LDQ,*), Z(LDZ,*)
C     .. Local Scalars ..
      LOGICAL            LQUERY, TRINF, TRINV
      DOUBLE PRECISION   DIF, SCALE
      INTEGER            I, MINWRK, N1, N11, N2, WRKOPT
C     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
C     .. External Subroutines ..
      EXTERNAL           DGEMM, DLASET, DSWAP, DTGSYL, TG01MD, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC          INT, MAX, MIN
C     .. Executable Statements ..
C
C     Test the input parameters.
C
      INFO  = 0
      TRINF = LSAME( JOB,  'I' )
      TRINV = LSAME( JOBT, 'I' )
      IF(      .NOT.LSAME( JOB,  'F' ) .AND. .NOT.TRINF ) THEN
         INFO = -1
      ELSE IF( .NOT.LSAME( JOBT, 'D' ) .AND. .NOT.TRINV ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( M.LT.0 ) THEN
         INFO = -4
      ELSE IF( P.LT.0 ) THEN
         INFO = -5
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -7
      ELSE IF( LDE.LT.MAX( 1, N ) ) THEN
         INFO = -9
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -11
      ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
         INFO = -13
      ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
         INFO = -18
      ELSE IF( LDZ.LT.MAX( 1, N ) ) THEN
         INFO = -20
      ELSE IF( TOL.GE.ONE ) THEN
         INFO = -25
      ELSE
         LQUERY = LDWORK.EQ.-1
         IF( N.EQ.0 ) THEN
            MINWRK = 1
         ELSE
            MINWRK = 4*N
         END IF
         IF( LQUERY ) THEN
            CALL TG01MD( JOB, N, M, P, A, LDA, E, LDE, B, LDB, C, LDC,
     $                   ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, NF, ND,
     $                   NIBLCK, IBLCK, TOL, IWORK, DWORK, -1, INFO )
            WRKOPT = MAX( MINWRK, INT( DWORK(1) ) )
         ELSE IF( LDWORK.LT.MINWRK ) THEN
            INFO = -28
         END IF
      END IF
C
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'TG01ND', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         DWORK(1) = WRKOPT
         RETURN
      END IF
C
C     Quick return if possible
C
      IF( N.EQ.0 ) THEN
         NF = 0
         ND = 0
         NIBLCK = 0
         DWORK(1) = ONE
         RETURN
      END IF
C
C     Compute the finite-infinite separation with A in Schur form
C     and E upper triangular.
C     Workspace: need  4*N.
C
      CALL TG01MD( JOB, N, M, P, A, LDA, E, LDE, B, LDB, C, LDC,
     $             ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, NF, ND,
     $             NIBLCK, IBLCK, TOL, IWORK, DWORK, LDWORK, INFO )
C
      IF( INFO.NE.0 )
     $   RETURN
      WRKOPT = MAX( WRKOPT, INT( DWORK(1) ) )
C
      IF( TRINV ) THEN
C
C        Transpose Z in-situ.
C
         DO 10 I = 2, N
            CALL DSWAP( I-1, Z(1,I), 1, Z(I,1), LDZ )
   10    CONTINUE
      ELSE
C
C        Transpose Q in-situ.
C
         DO 20 I = 2, N
            CALL DSWAP( I-1, Q(1,I), 1, Q(I,1), LDQ )
   20    CONTINUE
      END IF
C
C     Let be A and E partitioned as ( A11 A12 ) and ( E11 E12 ).
C                                   (  0  A22 )     (  0  E22 )
C     Split the finite and infinite parts by using the following
C     left and right transformation matrices
C             ( I -X/scale )          ( I  Y/scale )
C        Qs = (            ) ,   Zs = (            ) ,
C             ( 0     I    )          ( 0     I    )
C     where X and Y are computed by solving the generalized
C     Sylvester equations
C
C              A11 * Y - X * A22 = scale * A12
C              E11 * Y - X * E22 = scale * E12.
C
C     -Y is computed in A12 and -X is computed in E12.
C
C     Integer workspace: need  N+6.
C
      IF( TRINF ) THEN
         N1 = N - NF
         N2 = NF
      ELSE
         N1 = NF
         N2 = N - NF
      END IF
      N11 = MIN( N1 + 1, N )
C
      IF( N1.GT.0 .AND. N2.GT.0 ) THEN
         CALL DTGSYL( 'No transpose', 0, N1, N2, A, LDA, A(N11,N11),
     $                LDA, A(1,N11), LDA, E, LDE, E(N11,N11), LDE,
     $                E(1,N11), LDE, SCALE, DIF, DWORK, LDWORK, IWORK,
     $                INFO )
         IF( INFO.NE.0 ) THEN
            INFO = 3
            RETURN
         END IF
C
C        Transform B and C.
C
         IF( SCALE.GT.0 )
     $       SCALE = ONE/SCALE
C
C        B1 <- B1 - X*B2.
C
         CALL DGEMM( 'N', 'N', N1, M, N2, SCALE, E(1,N11), LDE,
     $               B(N11,1), LDB, ONE, B, LDB )
C
C        C2 <- C2 + C1*Y.
C
         CALL DGEMM( 'N', 'N', P, N2, N1, -SCALE, C, LDC, A(1,N11),
     $               LDA, ONE, C(1,N11), LDC )
C
         IF( TRINV ) THEN
C
C           Q2 <- Q2 + Q1*X.
C
            CALL DGEMM( 'N', 'N', N, N2, N1, -SCALE, Q, LDQ, E(1,N11),
     $                  LDE, ONE, Q(1,N11), LDQ )
C
C           Z1 <- Z1 - Y*Z2.
C
            CALL DGEMM( 'N', 'N', N1, N, N2, SCALE, A(1,N11), LDA,
     $                  Z(N11,1), LDZ, ONE, Z, LDZ )
         ELSE
C
C           Q1 <- Q1 - X*Q2.
C
            CALL DGEMM( 'N', 'N', N1, N, N2, SCALE, E(1,N11), LDE,
     $                  Q(N11,1), LDQ, ONE, Q, LDQ )
C
C           Z2 <- Z2 + Z1*Y.
C
            CALL DGEMM( 'N', 'N', N, N2, N1, -SCALE, Z, LDZ, A(1,N11),
     $                  LDA, ONE, Z(1,N11), LDZ )
         END IF
C
C        Set A12 and E12 to zero.
C
         CALL DLASET( 'Full', N1, N2, ZERO, ZERO, A(1,N11), LDA )
         CALL DLASET( 'Full', N1, N2, ZERO, ZERO, E(1,N11), LDE )
      END IF
C
      RETURN
C *** Last line of TG01ND ***
      END