control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
      SUBROUTINE MB02HD( TRIU, K, L, M, ML, N, NU, P, S, TC, LDTC, TR,
     $                   LDTR, RB, LDRB, DWORK, LDWORK, INFO )
C
C     PURPOSE
C
C     To compute, for a banded K*M-by-L*N block Toeplitz matrix T with
C     block size (K,L), specified by the nonzero blocks of its first
C     block column TC and row TR, a LOWER triangular matrix R (in band
C     storage scheme) such that
C                          T          T
C                         T  T  =  R R .                             (1)
C
C     It is assumed that the first MIN(M*K, N*L) columns of T are
C     linearly independent.
C
C     By subsequent calls of this routine, the matrix R can be computed
C     block column by block column.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     TRIU    CHARACTER*1
C             Specifies the structure, if any, of the last blocks in TC
C             and TR, as follows:
C             = 'N':  TC and TR have no special structure;
C             = 'T':  TC and TR are upper and lower triangular,
C                     respectively. Depending on the block sizes, two
C                     different shapes of the last blocks in TC and TR
C                     are possible, as illustrated below:
C
C                     1)    TC       TR     2)   TC         TR
C
C                          x x x    x 0 0      x x x x    x 0 0 0
C                          0 x x    x x 0      0 x x x    x x 0 0
C                          0 0 x    x x x      0 0 x x    x x x 0
C                          0 0 0    x x x
C
C     Input/Output Parameters
C
C     K       (input) INTEGER
C             The number of rows in the blocks of T.  K >= 0.
C
C     L       (input) INTEGER
C             The number of columns in the blocks of T.  L >= 0.
C
C     M       (input) INTEGER
C             The number of blocks in the first block column of T.
C             M >= 1.
C
C     ML      (input) INTEGER
C             The lower block bandwidth, i.e., ML + 1 is the number of
C             nonzero blocks in the first block column of T.
C             0 <= ML < M and (ML + 1)*K >= L and
C             if ( M*K <= N*L ),  ML >= M - INT( ( M*K - 1 )/L ) - 1;
C                                 ML >= M - INT( M*K/L ) or
C                                 MOD( M*K, L ) >= K;
C             if ( M*K >= N*L ),  ML*K >= N*( L - K ).
C
C     N       (input) INTEGER
C             The number of blocks in the first block row of T.
C             N >= 1.
C
C     NU      (input) INTEGER
C             The upper block bandwidth, i.e., NU + 1 is the number of
C             nonzero blocks in the first block row of T.
C             If TRIU = 'N',   0 <= NU < N and
C                              (M + NU)*L >= MIN( M*K, N*L );
C             if TRIU = 'T',   MAX(1-ML,0) <= NU < N and
C                              (M + NU)*L >= MIN( M*K, N*L ).
C
C     P       (input)  INTEGER
C             The number of previously computed block columns of R.
C             P*L < MIN( M*K,N*L ) + L and P >= 0.
C
C     S       (input)  INTEGER
C             The number of block columns of R to compute.
C             (P+S)*L < MIN( M*K,N*L ) + L and S >= 0.
C
C     TC      (input)  DOUBLE PRECISION array, dimension (LDTC,L)
C             On entry, if P = 0, the leading (ML+1)*K-by-L part of this
C             array must contain the nonzero blocks in the first block
C             column of T.
C
C     LDTC    INTEGER
C             The leading dimension of the array TC.
C             LDTC >= MAX(1,(ML+1)*K),  if P = 0.
C
C     TR      (input)  DOUBLE PRECISION array, dimension (LDTR,NU*L)
C             On entry, if P = 0, the leading K-by-NU*L part of this
C             array must contain the 2nd to the (NU+1)-st blocks of
C             the first block row of T.
C
C     LDTR    INTEGER
C             The leading dimension of the array TR.
C             LDTR >= MAX(1,K),  if P = 0.
C
C     RB      (output)  DOUBLE PRECISION array, dimension
C             (LDRB,MIN( S*L,MIN( M*K,N*L )-P*L ))
C             On exit, if INFO = 0 and TRIU = 'N', the leading
C             MIN( ML+NU+1,N )*L-by-MIN( S*L,MIN( M*K,N*L )-P*L ) part
C             of this array contains the (P+1)-th to (P+S)-th block
C             column of the lower R factor (1) in band storage format.
C             On exit, if INFO = 0 and TRIU = 'T', the leading
C             MIN( (ML+NU)*L+1,N*L )-by-MIN( S*L,MIN( M*K,N*L )-P*L )
C             part of this array contains the (P+1)-th to (P+S)-th block
C             column of the lower R factor (1) in band storage format.
C             For further details regarding the band storage scheme see
C             the documentation of the LAPACK routine DPBTF2.
C
C     LDRB    INTEGER
C             The leading dimension of the array RB.
C             LDRB >= MAX( MIN( ML+NU+1,N )*L,1 ),      if TRIU = 'N';
C             LDRB >= MAX( MIN( (ML+NU)*L+1,N*L ),1 ),  if TRIU = 'T'.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0,  DWORK(1)  returns the optimal
C             value of LDWORK.
C             On exit, if  INFO = -17,  DWORK(1)  returns the minimum
C             value of LDWORK.
C             The first 1 + 2*MIN( ML+NU+1,N )*L*(K+L) elements of DWORK
C             should be preserved during successive calls of the routine.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             Let x = MIN( ML+NU+1,N ), then
C             LDWORK >= 1 + MAX( x*L*L + (2*NU+1)*L*K,
C                                2*x*L*(K+L) + (6+x)*L ),  if P = 0;
C             LDWORK >= 1 + 2*x*L*(K+L) + (6+x)*L,         if P > 0.
C             For optimum performance LDWORK should be larger.
C
C             If LDWORK = -1, then a workspace query is assumed;
C             the routine only calculates the optimal size of the
C             DWORK array, returns this value as the first entry of
C             the DWORK array, and no error message related to LDWORK
C             is issued by XERBLA.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = 1:  the full rank condition for the first MIN(M*K, N*L)
C                   columns of T is (numerically) violated.
C
C     METHOD
C
C     Householder transformations and modified hyperbolic rotations
C     are used in the Schur algorithm [1], [2].
C
C     REFERENCES
C
C     [1] Kailath, T. and Sayed, A.
C         Fast Reliable Algorithms for Matrices with Structure.
C         SIAM Publications, Philadelphia, 1999.
C
C     [2] Kressner, D. and Van Dooren, P.
C         Factorizations and linear system solvers for matrices with
C         Toeplitz structure.
C         SLICOT Working Note 2000-2, 2000.
C
C     NUMERICAL ASPECTS
C
C     The implemented method yields a factor R which has comparable
C     accuracy with the Cholesky factor of T^T * T.
C     The algorithm requires
C               2                                  2
C           O( L *K*N*( ML + NU ) + N*( ML + NU )*L *( L + K ) )
C
C     floating point operations.
C
C     CONTRIBUTOR
C
C     D. Kressner, Technical Univ. Berlin, Germany, May 2001.
C
C     REVISIONS
C
C     V. Sima, Research Institute for Informatics, Bucharest, June 2001.
C     D. Kressner, Technical Univ. Berlin, Germany, July 2002.
C     V. Sima, Research Institute for Informatics, Bucharest, Mar. 2004,
C     Apr. 2011.
C
C     KEYWORDS
C
C     Elementary matrix operations, Householder transformation, matrix
C     operations, Toeplitz matrix.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         TRIU
      INTEGER           INFO, K, L, LDRB, LDTC, LDTR, LDWORK, M, ML, N,
     $                  NU, P, S
C     .. Array Arguments ..
      DOUBLE PRECISION  DWORK(LDWORK), RB(LDRB,*), TC(LDTC,*),
     $                  TR(LDTR,*)
C     .. Local Scalars ..
      CHARACTER         STRUCT
      INTEGER           COL2, HEAD, I, IERR, J, KK, LEN, LEN2, LENC,
     $                  LENL, LENR, NB, NBMIN, PDC, PDR, PDW, PFR, PNR,
     $                  POSR, PRE, PT, RNK, SIZR, STPS, WRKMIN, WRKOPT,
     $                  X
      LOGICAL           LQUERY, LTRI
C     .. Local Arrays ..
      INTEGER           IPVT(1)
C     .. External Functions ..
      LOGICAL           LSAME
      INTEGER           ILAENV
      EXTERNAL          ILAENV, LSAME
C     .. External Subroutines ..
      EXTERNAL          DCOPY, DGEMM, DGELQF, DGEQRF, DLACPY, DLASET,
     $                  DORGQR, MA02AD, MB02CU, MB02CV, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         DBLE, INT, MAX, MIN, MOD
C
C     .. Executable Statements ..
C
C     Decode the scalar input parameters.
C
      INFO = 0
      LTRI = LSAME( TRIU, 'T' )
      X    = MIN( ML + NU + 1, N )
      LENR = X*L
      IF ( LTRI ) THEN
         SIZR = MIN( ( ML + NU )*L + 1, N*L )
      ELSE
         SIZR = LENR
      END IF
      IF ( P.EQ.0 ) THEN
         WRKMIN = 1 + MAX( LENR*L + ( 2*NU + 1 )*L*K,
     $                     2*LENR*( K + L ) + ( 6 + X )*L )
      ELSE
         WRKMIN = 1 + 2*LENR*( K + L ) + ( 6 + X )*L
      END IF
      POSR = 1
C
C     Check the scalar input parameters.
C
      IF ( .NOT.( LTRI .OR. LSAME( TRIU, 'N' ) ) ) THEN
         INFO = -1
      ELSE IF ( K.LT.0 ) THEN
         INFO = -2
      ELSE IF ( L.LT.0 ) THEN
         INFO = -3
      ELSE IF ( M.LT.1 ) THEN
         INFO = -4
      ELSE IF ( ML.GE.M .OR. ( ML + 1 )*K.LT.L .OR. ( M*K.LE.N*L .AND.
     $          ( ( ML.LT.M - INT( ( M*K - 1 )/L ) - 1 ) .OR.
     $            ( ML.LT.M - INT( M*K/L ).AND.MOD( M*K, L ).LT.K ) ) )
     $          .OR. ( M*K.GE.N*L .AND. ML*K.LT.N*( L - K ) ) ) THEN
         INFO = -5
      ELSE IF ( N.LT.1 ) THEN
         INFO = -6
      ELSE IF ( NU.GE.N .OR. NU.LT.0 .OR. ( LTRI .AND. NU.LT.1-ML ) .OR.
     $          (M + NU)*L.LT.MIN( M*K, N*L ) ) THEN
         INFO = -7
      ELSE IF ( P.LT.0 .OR. ( P*L - L ).GE.MIN( M*K, N*L ) ) THEN
         INFO = -8
      ELSE IF ( S.LT.0 .OR. ( P + S - 1 )*L.GE.MIN( M*K, N*L ) ) THEN
         INFO = -9
      ELSE IF ( P.EQ.0 .AND. LDTC.LT.MAX( 1, ( ML + 1 )*K ) ) THEN
         INFO = -11
      ELSE IF ( P.EQ.0 .AND. LDTR.LT.MAX( 1, K ) ) THEN
         INFO = -13
      ELSE IF ( LDRB.LT.MAX( SIZR, 1 ) ) THEN
         INFO = 15
      ELSE
         LQUERY = LDWORK.EQ.-1
         IF( P.EQ.0 ) THEN
            LENC = ( ML + 1 )*K
            LENL = MAX( ML + 1 + MIN( NU, N - M ), 0 )
            PDW  = ( LENR + LENC )*L + 1
            IF ( LQUERY ) THEN
               CALL DGEQRF( LENC, L, DWORK, LENC, DWORK, DWORK, -1,
     $                      IERR )
               WRKOPT = MAX( 1, INT( DWORK(1) ) + PDW + L )
               CALL DORGQR( LENC, L, L, DWORK, LENC, DWORK, DWORK, -1,
     $                      IERR )
               WRKOPT = MAX( WRKOPT, INT( DWORK(1) ) + PDW + L )
            END IF
         END IF
         CALL DGELQF( LENR, L, DWORK, MAX( 1, LENR ), DWORK, DWORK, -1,
     $                IERR )
         KK = 2*LENR*( K + L ) + 1 + 6*L
         WRKOPT = MAX( WRKOPT, KK + INT( DWORK(1) ) )
         IF ( LDWORK.LT.WRKMIN .AND. .NOT.LQUERY ) THEN
            DWORK(1) = DBLE( WRKMIN )
            INFO = -17
         END IF
      END IF
C
C     Return if there were illegal values.
C
      IF ( INFO.NE.0 ) THEN
         CALL XERBLA( 'MB02HD', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         DWORK(1) = WRKOPT
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF ( L*K*S.EQ.0 ) THEN
         DWORK(1) = ONE
         RETURN
      END IF
C
      WRKOPT = 1
C
C     Compute the generator if P = 0.
C
      IF ( P.EQ.0 ) THEN
C
C        1st column of the generator.
C
         PDC = LENR*L + 1
C
C        QR decomposition of the nonzero blocks in TC.
C
         CALL DLACPY( 'All', LENC, L, TC, LDTC, DWORK(PDC+1), LENC )
         CALL DGEQRF( LENC, L, DWORK(PDC+1), LENC, DWORK(PDW+1),
     $                DWORK(PDW+L+1), LDWORK-PDW-L, IERR )
         WRKOPT = MAX( WRKOPT, INT( DWORK(PDW+L+1) ) + PDW + L )
C
C        The R factor is the transposed of the first block in the
C        generator.
C
         CALL MA02AD( 'Upper part', L, L, DWORK(PDC+1), LENC, DWORK(2),
     $                LENR )
C
C        Get the first block column of the Q factor.
C
         CALL DORGQR( LENC, L, L, DWORK(PDC+1), LENC, DWORK(PDW+1),
     $                DWORK(PDW+L+1), LDWORK-PDW-L, IERR )
         WRKOPT = MAX( WRKOPT, INT( DWORK(PDW+L+1) ) + PDW + L )
C
C        Construct a flipped copy of TC for faster multiplication.
C
         PT = LENC - 2*K + 1
C
         DO 10  I = PDW + 1, PDW + ML*K*L, K*L
            CALL DLACPY( 'All', K, L, TC(PT,1), LDTC, DWORK(I), K )
            PT = PT - K
   10    CONTINUE
C
C        Multiply T^T with the first block column of Q.
C
         PDW = I
         PDR = L + 2
         LEN = NU*L
         CALL DLASET( 'All', LENR-L, L, ZERO, ZERO, DWORK(PDR), LENR )
C
         DO 20  I = 1, ML + 1
            CALL DGEMM( 'Transpose', 'NonTranspose', MIN( I-1, N-1 )*L,
     $                  L, K, ONE, DWORK(PDW), K, DWORK(PDC+1), LENC,
     $                  ONE, DWORK(PDR), LENR )
            IF ( LEN.GT.0 ) THEN
               CALL DGEMM( 'Transpose', 'NonTranspose', LEN, L, K, ONE,
     $                     TR, LDTR, DWORK(PDC+1), LENC, ONE,
     $                     DWORK(PDR+(I-1)*L), LENR )
            END IF
            PDW = PDW - K*L
            PDC = PDC + K
            IF ( I.GE.N-NU )  LEN = LEN - L
   20    CONTINUE
C
C        Copy the first block column to R.
C
         IF ( LTRI ) THEN
C
            DO 30  I = 1, L
               CALL DCOPY( MIN( SIZR, N*L - I + 1 ),
     $                     DWORK(( I - 1 )*LENR + I + 1), 1, RB(1,POSR),
     $                     1 )
               POSR = POSR + 1
   30       CONTINUE
C
         ELSE
C
            DO 40  I = 1, L
               CALL DCOPY(  LENR-I+1, DWORK(( I - 1 )*LENR + I + 1), 1,
     $                      RB(1,POSR), 1 )
               IF ( LENR.LT.N*L .AND. I.GT.1 ) THEN
                  CALL DLASET( 'All', I-1, 1, ZERO, ZERO,
     $                         RB(LENR-I+2,POSR), LDRB )
               END IF
               POSR = POSR + 1
   40       CONTINUE
C
         END IF
C
C        Quick return if N = 1.
C
         IF ( N.EQ.1 ) THEN
            DWORK(1) = DBLE( WRKOPT )
            RETURN
         END IF
C
C        2nd column of the generator.
C
         PDR = LENR*L + 1
         CALL MA02AD( 'All', K, NU*L, TR, LDTR, DWORK(PDR+1), LENR )
         CALL DLASET( 'All', LENR-NU*L, K, ZERO, ZERO,
     $                DWORK(PDR+NU*L+1), LENR )
C
C        3rd column of the generator.
C
         PNR = PDR + LENR*K
         CALL DLACPY( 'All', LENR-L, L, DWORK(L+2), LENR, DWORK(PNR+1),
     $                LENR )
         CALL DLASET( 'All', L, L, ZERO, ZERO, DWORK(PNR+LENR-L+1),
     $                LENR )
C
C        4th column of the generator.
C
         PFR = PNR + LENR*L
C
         PDW = PFR + MOD( ( M - ML - 1 )*L, LENR )
         PT  = ML*K + 1
         DO 50  I = 1, MIN( ML + 1, LENL )
            CALL MA02AD( 'All', K, L, TC(PT,1), LDTC, DWORK(PDW+1),
     $                   LENR )
            PT  = PT - K
            PDW = PFR + MOD( PDW + L - PFR, LENR )
   50    CONTINUE
         PT = 1
         DO 60  I = ML + 2, LENL
            CALL MA02AD( 'All', K, L, TR(1,PT), LDTR, DWORK(PDW+1),
     $                   LENR )
            PT  = PT + L
            PDW = PFR + MOD( PDW + L - PFR, LENR )
   60    CONTINUE
         PRE  = 1
         STPS = S - 1
      ELSE
         PDR  = LENR*L + 1
         PNR  = PDR + LENR*K
         PFR  = PNR + LENR*L
         PRE  = P
         STPS = S
      END IF
C
      PDW  = PFR + LENR*K
      HEAD = MOD( ( PRE - 1 )*L, LENR )
C
C     Determine block size for the involved block Householder
C     transformations.
C
      NB    = MIN( INT( ( LDWORK - ( PDW + 6*L ) )/LENR ), L )
      NBMIN = MAX( 2, ILAENV( 2, 'DGELQF', ' ', LENR, L, -1, -1 ) )
      IF ( NB.LT.NBMIN )  NB = 0
C
C     Generator reduction process.
C
      DO 90  I = PRE, PRE + STPS - 1
C
C        The 4th generator column is not used in the first (M-ML) steps.
C
         IF ( I.LT.M-ML ) THEN
            COL2 = L
         ELSE
            COL2 = K + L
         END IF
C
         KK = MIN( L, M*K - I*L )
         CALL MB02CU( 'Column', KK, KK+K, COL2, NB, DWORK(2), LENR,
     $                DWORK(PDR+HEAD+1), LENR, DWORK(PNR+HEAD+1), LENR,
     $                RNK, IPVT, DWORK(PDW+1), ZERO, DWORK(PDW+6*L+1),
     $                LDWORK-PDW-6*L, IERR )
         IF ( IERR.NE.0 )  THEN
C
C           Error return:  The rank condition is (numerically) not
C                          satisfied.
C
            INFO = 1
            RETURN
         END IF
C
         LEN  = MAX( MIN( ( N - I )*L - KK, LENR - HEAD - KK ), 0 )
         LEN2 = MAX( MIN( ( N - I )*L - LEN - KK, HEAD ), 0 )
         IF ( LEN.EQ.( LENR - KK ) ) THEN
            STRUCT = TRIU
         ELSE
            STRUCT = 'N'
         END IF
         CALL MB02CV( 'Column', STRUCT, KK, LEN, KK+K, COL2, NB, -1,
     $                DWORK(2), LENR, DWORK(PDR+HEAD+1), LENR,
     $                DWORK(PNR+HEAD+1), LENR, DWORK(KK+2), LENR,
     $                DWORK(PDR+HEAD+KK+1), LENR, DWORK(PNR+HEAD+KK+1),
     $                LENR, DWORK(PDW+1), DWORK(PDW+6*L+1),
     $                LDWORK-PDW-6*L, IERR )
C
         IF ( ( N - I )*L.GE.LENR ) THEN
            STRUCT = TRIU
         ELSE
            STRUCT = 'N'
         END IF
C
         CALL MB02CV( 'Column', STRUCT, KK, LEN2, KK+K, COL2, NB, -1,
     $                DWORK(2), LENR, DWORK(PDR+HEAD+1), LENR,
     $                DWORK(PNR+HEAD+1), LENR, DWORK(KK+LEN+2), LENR,
     $                DWORK(PDR+1), LENR, DWORK(PNR+1), LENR,
     $                DWORK(PDW+1), DWORK(PDW+6*L+1),
     $                LDWORK-PDW-6*L, IERR )
C
         CALL DLASET( 'All', L, K+COL2, ZERO, ZERO, DWORK(PDR+HEAD+1),
     $                LENR )
C
C        Copy current block column to R.
C
         IF ( LTRI ) THEN
C
            DO 70  J = 1, KK
               CALL DCOPY( MIN( SIZR, (N-I)*L-J+1 ),
     $                      DWORK(( J - 1 )*LENR + J + 1), 1,
     $                      RB(1,POSR), 1 )
               POSR = POSR + 1
   70       CONTINUE
C
         ELSE
C
            DO 80  J = 1, KK
               CALL DCOPY(  MIN( SIZR-J+1, (N-I)*L-J+1 ),
     $                      DWORK(( J - 1 )*LENR + J + 1), 1,
     $                      RB(1,POSR), 1 )
               IF ( LENR.LT.( N - I )*L .AND. J.GT.1 ) THEN
                  CALL DLASET( 'All', J-1, 1, ZERO, ZERO,
     $                         RB(MIN( SIZR-J+1, (N-I)*L-J+1 )+1,POSR),
     $                         LDRB )
               END IF
               POSR = POSR + 1
   80       CONTINUE
C
         END IF
C
         HEAD = MOD( HEAD + L, LENR )
   90 CONTINUE
C
      DWORK(1) = DBLE( WRKOPT )
      RETURN
C
C *** Last line of MB02HD ***
      END