control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
      SUBROUTINE SB03OD( DICO, FACT, TRANS, N, M, A, LDA, Q, LDQ, B,
     $                   LDB, SCALE, WR, WI, DWORK, LDWORK, INFO )
C
C     PURPOSE
C
C     To solve for X = op(U)'*op(U) either the stable non-negative
C     definite continuous-time Lyapunov equation
C                                   2
C        op(A)'*X + X*op(A) = -scale *op(B)'*op(B),                  (1)
C
C     or the convergent non-negative definite discrete-time Lyapunov
C     equation
C                                   2
C        op(A)'*X*op(A) - X = -scale *op(B)'*op(B),                  (2)
C
C     where op(K) = K or K' (i.e., the transpose of the matrix K), A is
C     an N-by-N matrix, op(B) is an M-by-N matrix, U is an upper
C     triangular matrix containing the Cholesky factor of the solution
C     matrix X, X = op(U)'*op(U), and scale is an output scale factor,
C     set less than or equal to 1 to avoid overflow in X. If matrix B
C     has full rank then the solution matrix X will be positive definite
C     and hence the Cholesky factor U will be nonsingular, but if B is
C     rank deficient, then X may be only positive semi-definite and U
C     will be singular.
C
C     In the case of equation (1) the matrix A must be stable (that is,
C     all the eigenvalues of A must have negative real parts), and for
C     equation (2) the matrix A must be convergent (that is, all the
C     eigenvalues of A must lie inside the unit circle).
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     DICO    CHARACTER*1
C             Specifies the type of Lyapunov equation to be solved, as
C             follows:
C             = 'C':  Equation (1), continuous-time case;
C             = 'D':  Equation (2), discrete-time case.
C
C     FACT    CHARACTER*1
C             Specifies whether or not the real Schur factorization
C             of the matrix A is supplied on entry, as follows:
C             = 'F':  On entry, A and Q contain the factors from the
C                     real Schur factorization of the matrix A;
C             = 'N':  The Schur factorization of A will be computed
C                     and the factors will be stored in A and Q.
C
C     TRANS   CHARACTER*1
C             Specifies the form of op(K) to be used, as follows:
C             = 'N':  op(K) = K    (No transpose);
C             = 'T':  op(K) = K**T (Transpose).
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrix A and the number of columns of
C             the matrix op(B).  N >= 0.
C
C     M       (input) INTEGER
C             The number of rows of the matrix op(B).  M >= 0.
C             If M = 0, A is unchanged on exit, and Q, WR and WI are not
C             set.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading N-by-N part of this array must
C             contain the matrix A. If FACT = 'F', then A contains
C             an upper quasi-triangular matrix S in Schur canonical
C             form; the elements below the upper Hessenberg part of the
C             array A are then not referenced.
C             On exit, the leading N-by-N upper Hessenberg part of this
C             array contains the upper quasi-triangular matrix S in
C             Schur canonical form from the Shur factorization of A.
C             The contents of the array A is not modified if FACT = 'F'.
C
C     LDA     INTEGER
C             The leading dimension of the array A.  LDA >= MAX(1,N).
C
C     Q       (input or output) DOUBLE PRECISION array, dimension
C             (LDQ,N)
C             On entry, if FACT = 'F', then the leading N-by-N part of
C             this array must contain the orthogonal matrix Q of the
C             Schur factorization of A.
C             Otherwise, Q need not be set on entry.
C             On exit, the leading N-by-N part of this array contains
C             the orthogonal matrix Q of the Schur factorization of A.
C             The contents of the array Q is not modified if FACT = 'F'.
C
C     LDQ     INTEGER
C             The leading dimension of the array Q.  LDQ >= MAX(1,N).
C
C     B       (input/output) DOUBLE PRECISION array, dimension (LDB,N)
C             if TRANS = 'N', and dimension (LDB,max(M,N)), if
C             TRANS = 'T'.
C             On entry, if TRANS = 'N', the leading M-by-N part of this
C             array must contain the coefficient matrix B of the
C             equation.
C             On entry, if TRANS = 'T', the leading N-by-M part of this
C             array must contain the coefficient matrix B of the
C             equation.
C             On exit, the leading N-by-N part of this array contains
C             the upper triangular Cholesky factor U of the solution
C             matrix X of the problem, X = op(U)'*op(U).
C             If M = 0 and N > 0, then U is set to zero.
C
C     LDB     INTEGER
C             The leading dimension of the array B.
C             LDB >= MAX(1,N,M), if TRANS = 'N';
C             LDB >= MAX(1,N),   if TRANS = 'T'.
C
C     SCALE   (output) DOUBLE PRECISION
C             The scale factor, scale, set less than or equal to 1 to
C             prevent the solution overflowing.
C
C     WR      (output) DOUBLE PRECISION array, dimension (N)
C     WI      (output) DOUBLE PRECISION array, dimension (N)
C             If INFO >= 0 and INFO <= 3, WR and WI contain the real and
C             imaginary parts, respectively, of the eigenvalues of A.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0 or INFO = 1, DWORK(1) returns the
C             optimal value of LDWORK.
C             On exit, if INFO = -16, DWORK(1) returns the minimum value
C             of LDWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             If M > 0, LDWORK >= MAX(1,4*N);
C             If M = 0, LDWORK >= 1.
C             For optimum performance LDWORK should sometimes be larger.
C
C             If LDWORK = -1, then a workspace query is assumed; the
C             routine only calculates the optimal size of the DWORK
C             array, returns this value as the first entry of the DWORK
C             array, and no error message related to LDWORK is issued by
C             XERBLA.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = 1:  if the Lyapunov equation is (nearly) singular
C                   (warning indicator);
C                   if DICO = 'C' this means that while the matrix A
C                   (or the factor S) has computed eigenvalues with
C                   negative real parts, it is only just stable in the
C                   sense that small perturbations in A can make one or
C                   more of the eigenvalues have a non-negative real
C                   part;
C                   if DICO = 'D' this means that while the matrix A
C                   (or the factor S) has computed eigenvalues inside
C                   the unit circle, it is nevertheless only just
C                   convergent, in the sense that small perturbations
C                   in A can make one or more of the eigenvalues lie
C                   outside the unit circle;
C                   perturbed values were used to solve the equation;
C             = 2:  if FACT = 'N' and DICO = 'C', but the matrix A is
C                   not stable (that is, one or more of the eigenvalues
C                   of A has a non-negative real part), or DICO = 'D',
C                   but the matrix A is not convergent (that is, one or
C                   more of the eigenvalues of A lies outside the unit
C                   circle); however, A will still have been factored
C                   and the eigenvalues of A returned in WR and WI.
C             = 3:  if FACT = 'F' and DICO = 'C', but the Schur factor S
C                   supplied in the array A is not stable (that is, one
C                   or more of the eigenvalues of S has a non-negative
C                   real part), or DICO = 'D', but the Schur factor S
C                   supplied in the array A is not convergent (that is,
C                   one or more of the eigenvalues of S lies outside the
C                   unit circle); the eigenvalues of A are still
C                   returned in WR and WI;
C             = 4:  if FACT = 'F' and the Schur factor S supplied in
C                   the array A has two or more consecutive non-zero
C                   elements on the first subdiagonal, so that there is
C                   a block larger than 2-by-2 on the diagonal;
C             = 5:  if FACT = 'F' and the Schur factor S supplied in
C                   the array A has a 2-by-2 diagonal block with real
C                   eigenvalues instead of a complex conjugate pair;
C             = 6:  if FACT = 'N' and the LAPACK Library routine DGEES
C                   has failed to converge. This failure is not likely
C                   to occur. The matrix B will be unaltered but A will
C                   be destroyed.
C
C     METHOD
C
C     The method used by the routine is based on the Bartels and Stewart
C     method [1], except that it finds the upper triangular matrix U
C     directly without first finding X and without the need to form the
C     normal matrix op(B)'*op(B).
C
C     The Schur factorization of a square matrix A is given by
C
C        A = QSQ',
C
C     where Q is orthogonal and S is an N-by-N block upper triangular
C     matrix with 1-by-1 and 2-by-2 blocks on its diagonal (which
C     correspond to the eigenvalues of A). If A has already been
C     factored prior to calling the routine however, then the factors
C     Q and S may be supplied and the initial factorization omitted.
C
C     If TRANS = 'N' and 6*M > 7*N, the matrix B is factored as
C     (QR factorization)
C            _   _
C        B = P ( R ),
C              ( 0 )
C           _                                    _
C     where P is an M-by-M orthogonal matrix and R is a square upper
C                                         _   _
C     triangular matrix. Then, the matrix B = RQ is factored as
C        _
C        B = PR.
C
C     If TRANS = 'N' and 6*M <= 7*N, the matrix BQ is factored as
C
C        BQ = P ( R ),   M >= N,   BQ = P ( R  Z ),   M < N.
C               ( 0 )
C
C     If TRANS = 'T' and 6*M > 7*N, the matrix B is factored as
C     (RQ factorization)
C                 _   _
C        B = ( 0  R ) P,
C           _                                    _
C     where P is an M-by-M orthogonal matrix and R is a square upper
C                                         _      _
C     triangular matrix. Then, the matrix B = Q' R is factored as
C        _
C        B = RP.
C
C     If TRANS = 'T' and 6*M <= 7*N, the matrix Q' B is factored as
C
C                                              ( Z )
C        Q' B = ( 0  R ) P,   M >= N,   Q' B = (   ) P,   M < N.
C                                              ( R )
C
C     These factorizations are utilised to either transform the
C     continuous-time Lyapunov equation to the canonical form
C                                                        2
C       op(S)'*op(V)'*op(V) + op(V)'*op(V)*op(S) = -scale *op(F)'*op(F),
C
C     or the discrete-time Lyapunov equation to the canonical form
C                                                        2
C       op(S)'*op(V)'*op(V)*op(S) - op(V)'*op(V) = -scale *op(F)'*op(F),
C
C     where V and F are upper triangular, and
C
C        F = R,  M >= N,   F = ( R  Z ),  M < N,  if TRANS = 'N';
C                              ( 0  0 )
C
C        F = R,  M >= N,   F = ( 0  Z ),  M < N,  if TRANS = 'T'.
C                              ( 0  R )
C
C     The transformed equation is then solved for V, from which U is
C     obtained via the QR factorization of V*Q', if TRANS = 'N', or
C     via the RQ factorization of Q*V, if TRANS = 'T'.
C
C     REFERENCES
C
C     [1] Bartels, R.H. and Stewart, G.W.
C         Solution of the matrix equation  A'X + XB = C.
C         Comm. A.C.M., 15, pp. 820-826, 1972.
C
C     [2] Hammarling, S.J.
C         Numerical solution of the stable, non-negative definite
C         Lyapunov equation.
C         IMA J. Num. Anal., 2, pp. 303-325, 1982.
C
C     NUMERICAL ASPECTS
C                               3
C     The algorithm requires 0(N ) operations and is backward stable.
C
C     FURTHER COMMENTS
C
C     The Lyapunov equation may be very ill-conditioned. In particular,
C     if A is only just stable (or convergent) then the Lyapunov
C     equation will be ill-conditioned.  A symptom of ill-conditioning
C     is "large" elements in U relative to those of A and B, or a
C     "small" value for scale. A condition estimate can be computed
C     using SLICOT Library routine SB03MD.
C
C     SB03OD routine can be also used for solving "unstable" Lyapunov
C     equations, i.e., when matrix A has all eigenvalues with positive
C     real parts, if DICO = 'C', or with moduli greater than one,
C     if DICO = 'D'. Specifically, one may solve for X = op(U)'*op(U)
C     either the continuous-time Lyapunov equation
C                                  2
C        op(A)'*X + X*op(A) = scale *op(B)'*op(B),                   (3)
C
C     or the discrete-time Lyapunov equation
C                                  2
C        op(A)'*X*op(A) - X = scale *op(B)'*op(B),                   (4)
C
C     provided, for equation (3), the given matrix A is replaced by -A,
C     or, for equation (4), the given matrices A and B are replaced by
C     inv(A) and B*inv(A), if TRANS = 'N' (or inv(A)*B, if TRANS = 'T'),
C     respectively. Although the inversion generally can rise numerical
C     problems, in case of equation (4) it is expected that the matrix A
C     is enough well-conditioned, having only eigenvalues with moduli
C     greater than 1. However, if A is ill-conditioned, it could be
C     preferable to use the more general SLICOT Lyapunov solver SB03MD.
C
C     CONTRIBUTOR
C
C     Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Aug. 1997.
C     Supersedes Release 2.0 routine SB03CD by Sven Hammarling,
C     NAG Ltd, United Kingdom.
C
C     REVISIONS
C
C     Dec. 1997, April 1998, May 1998, May 1999, Oct. 2001 (V. Sima).
C     March 2002 (A. Varga).
C     V. Sima, July 2011, Jan. - Feb. 2022, May 2022, Apr. 2023.
C
C     KEYWORDS
C
C     Lyapunov equation, orthogonal transformation, real Schur form,
C     Sylvester equation.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE, P95
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0, P95 = 0.95D0 )
C     .. Scalar Arguments ..
      CHARACTER         DICO, FACT, TRANS
      INTEGER           INFO, LDA, LDB, LDQ, LDWORK, M, N
      DOUBLE PRECISION  SCALE
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), DWORK(*), Q(LDQ,*), WI(*),
     $                  WR(*)
C     .. Local Scalars ..
      DOUBLE PRECISION  BIGNMS, BIGNUM, EMAX, EPS, MA, MATO, MB, MBTO,
     $                  MN, MX, SAFMIN, SMLNUM, T, TMP
      INTEGER           BL, I, IFAIL, INFORM, ITAU, J, JWORK, K, L,
     $                  MAXMN, MINMN, MINWRK, NC, NM, NR, SDIM, WRKOPT
      LOGICAL           CONT, ISTRAN, LASCL, LBSCL, LQUERY, LSCL,
     $                  NOFACT, NUNITQ, SCALB, SMALLM
C     .. Local Arrays ..
      LOGICAL           BWORK(1)
C     .. External Functions ..
      LOGICAL           LSAME, MA02HD, SELECT
      DOUBLE PRECISION  DLAMCH, DLANGE, DLANHS, DLANTR, DLAPY2
      EXTERNAL          DLAMCH, DLANGE, DLANHS, DLANTR, DLAPY2, LSAME,
     $                  MA02HD, SELECT
C     .. External Subroutines ..
      EXTERNAL          DCOPY, DGEES, DGEMM, DGEMV, DGEQRF, DGERQF,
     $                  DLABAD, DLACPY, DLANV2, DLASCL, DLASET, DSCAL,
     $                  DSWAP, DTRMM, MB01UY, SB03OT, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         INT, MAX, MIN, SQRT
C     .. Executable Statements ..
C
C     Test the input scalar arguments.
C
      CONT   = LSAME( DICO,  'C' )
      NOFACT = LSAME( FACT,  'N' )
      ISTRAN = LSAME( TRANS, 'T' )
      LQUERY = LDWORK.EQ.-1
      MINMN  = MIN( M, N )
      MAXMN  = MAX( M, N )
C
      INFO = 0
      IF( .NOT.CONT .AND. .NOT.LSAME( DICO, 'D' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.NOFACT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN
         INFO = -2
      ELSE IF( .NOT.ISTRAN .AND. .NOT.LSAME( TRANS, 'N' ) ) THEN
         INFO = -3
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( M.LT.0 ) THEN
         INFO = -5
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -7
      ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
         INFO = -9
      ELSE IF ( ( ISTRAN .AND. ( LDB.LT.MAX( 1, N ) ) ) .OR.
     $     ( .NOT.ISTRAN .AND. ( LDB.LT.MAX( 1, MAXMN ) ) ) ) THEN
         INFO = -11
      ELSE
         IF ( MINMN.EQ.0 ) THEN
            MINWRK = 1
         ELSE
            MINWRK = 4*N
         END IF
         SMALLM = 6*M.LE.7*N
         IF( LQUERY ) THEN
            IF ( NOFACT ) THEN
               CALL DGEES( 'Vectors', 'Not ordered', SELECT, N, A, LDA,
     $                     SDIM, WR, WI, Q, LDQ, DWORK, -1, BWORK,
     $                     IFAIL )
               WRKOPT = MAX( MINWRK, INT( DWORK(1) ) )
            ELSE
               WRKOPT = MINWRK
            END IF
            IF ( ISTRAN ) THEN
               CALL DGERQF( N, MAXMN, B, LDB, DWORK, DWORK, -1, IFAIL )
            ELSE
               CALL DGEQRF( MAXMN, N, B, LDB, DWORK, DWORK, -1, IFAIL )
            END IF
            WRKOPT = MAX( WRKOPT, INT( DWORK(1) ) + N )
         ELSE IF( LDWORK.LT.MINWRK ) THEN
            DWORK(1) = MINWRK
            INFO = -16
         END IF
      END IF
C
      IF ( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'SB03OD', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         DWORK(1) = WRKOPT
         RETURN
      END IF
C
      SCALE = ONE
C
C     Quick return if possible.
C
      IF ( ISTRAN ) THEN
         K = N
         L = M
      ELSE
         K = M
         L = N
      END IF
      MB = DLANGE( 'Max', K, L, B, LDB, DWORK )
      IF ( MB.EQ.ZERO ) THEN
         IF ( N.GT.0 )
     $      CALL DLASET( 'Full', N, N, ZERO, ZERO, B, LDB )
         DWORK(1) = ONE
         RETURN
      END IF
C
C     Set constants to control overflow.
C
      EPS    = DLAMCH( 'Precision' )
      SAFMIN = DLAMCH( 'Safe minimum' )
      SMLNUM = SAFMIN
      BIGNMS = ONE/SMLNUM
      CALL DLABAD( SMLNUM, BIGNMS )
      SMLNUM = SQRT( SMLNUM )/EPS
      BIGNUM = ONE/SMLNUM
C
C     Start the solution.
C
C     (Note: Comments in the code beginning "Workspace:" describe the
C     minimal amount of real workspace needed at that point in the
C     code, as well as the preferred amount for good performance.
C     NB refers to the optimal block size for the immediately
C     following subroutine, as returned by ILAENV.)
C
      IF ( NOFACT ) THEN
C
C        Find the Schur factorization of A,   A = Q*S*Q'.
C        Workspace:  need   3*N;
C                    prefer larger.
C
         CALL DGEES( 'Vectors', 'Not ordered', SELECT, N, A, LDA, SDIM,
     $               WR, WI, Q, LDQ, DWORK, LDWORK, BWORK, INFORM )
         IF ( INFORM.NE.0 ) THEN
            INFO = 6
            RETURN
         END IF
         WRKOPT = DWORK(1)
      ELSE
C
C        Set the eigenvalues of the matrix A.
C
         I = 1
C
C        WHILE( I.LT.N )LOOP
   10    CONTINUE
         IF ( I.LT.N ) THEN
            IF ( A(I+1,I).NE.ZERO ) THEN
               CALL DLANV2( A(I,I), A(I,I+1), A(I+1,I), A(I+1,I+1),
     $                      WR(I), WI(I), WR(I+1), WI(I+1), T, TMP )
               I = I + 2
            ELSE
               WR(I) = A(I,I)
               WI(I) = ZERO
               I = I + 1
            END IF
            GO TO 10
         END IF
C        END WHILE 10
         IF ( I.EQ.N ) THEN
            WR(I) = A(I,I)
            WI(I) = ZERO
         END IF
         WRKOPT = 0
      END IF
C
C     Check for identity matrix Q.
C
      NUNITQ = .NOT.MA02HD( 'All', N, N, ONE, Q, LDQ )
C
C     Check the eigenvalues for stability.
C
      IF ( CONT ) THEN
         EMAX = WR(1)
C
         DO 20 J = 2, N
            IF ( WR(J).GT.EMAX )
     $         EMAX = WR(J)
   20    CONTINUE
C
      ELSE
         EMAX = DLAPY2( WR(1), WI(1) )
C
         DO 30 J = 2, N
            TMP = DLAPY2( WR(J), WI(J) )
            IF ( TMP.GT.EMAX )
     $         EMAX = TMP
   30    CONTINUE
C
      END IF
C
      IF (    ( CONT ) .AND. ( EMAX.GE.ZERO ) .OR.
     $   ( .NOT.CONT ) .AND. ( EMAX.GE.ONE  ) ) THEN
         IF ( NOFACT ) THEN
            INFO = 2
         ELSE
            INFO = 3
         END IF
         RETURN
      END IF
C
C     Scale A if the maximum absolute value of its elements is outside
C     the range [SMLNUM,BIGNUM]. Scale similarly B. Scaling of B is done
C     before further processing if the maximum absolute value of its
C     elements is greater than BIGNMS; otherwise, it is postponed.
C     For continuous-time equations, scaling is also performed if the
C     maximum absolute values of A and B differ too much, or their
C     minimum (maximum) is too large (small).
C
      MA = MIN( DLANHS( 'Max', N, A, LDA, DWORK ), BIGNMS )
      MN = MIN( MA, MB )
      MX = MAX( MA, MB )
C
      IF ( CONT ) THEN
         LSCL = MN.LT.MX*SMLNUM .OR. MX.LT.SMLNUM .OR. MN.GT.BIGNUM
      ELSE
         LSCL = .FALSE.
      END IF
C
      IF ( LSCL ) THEN
         MATO  = ONE
         MBTO  = ONE
         LASCL = .TRUE.
         LBSCL = .TRUE.
      ELSE
         IF ( MA.GT.ZERO .AND. MA.LT.SMLNUM ) THEN
            MATO  = SMLNUM
            LASCL = .TRUE.
         ELSE IF ( MA.GT.BIGNUM ) THEN
            MATO  = BIGNUM
            LASCL = .TRUE.
         ELSE
            LASCL = .FALSE.
         END IF
C
         IF ( MB.GT.ZERO .AND. MB.LT.SMLNUM ) THEN
            MBTO  = SMLNUM
            LBSCL = .TRUE.
         ELSE IF ( MB.GT.BIGNUM ) THEN
            MBTO  = BIGNUM
            LBSCL = .TRUE.
         ELSE
            MBTO  = ONE
            LBSCL = .FALSE.
         END IF
      END IF
C
      IF ( .NOT.CONT .AND. MATO.EQ.ONE )
     $   MATO = P95
      IF ( LASCL )
     $   CALL DLASCL( 'Hess',  0, 0, MA, MATO, N, N, A, LDA, INFO )
C
      SCALB = MB.GT.BIGNMS
      MB    = MIN( MB, BIGNMS )
      IF ( LBSCL .AND. SCALB )
     $   CALL DLASCL( 'Gen', 0, 0, MB, MBTO, K, L, B, LDB, INFO )
C
C     Transformation of the right hand side, involving one or two RQ or
C     QR factorizations. Also, do scaling, if it was postponed.
C
C     Workspace:  need   MIN(M,N) + N;
C                 prefer MIN(M,N) + N*NB.
C
      ITAU  = 1
      JWORK = ITAU + MINMN
C
      IF ( ISTRAN ) THEN
         NM = M
         IF ( NUNITQ ) THEN
            IF ( SMALLM ) THEN
C                      _
C              Compute B := Q' * B.
C
               NC = INT( LDWORK / N )
C
               DO 40 J = 1, M, NC
                  BL = MIN( M-J+1, NC )
                  CALL DGEMM(  'Trans', 'NoTran', N, BL, N, ONE, Q,
     $                         LDQ, B(1,J), LDB, ZERO, DWORK, N )
                  CALL DLACPY( 'All', N, BL, DWORK, N, B(1,J), LDB )
   40          CONTINUE
C
            ELSE
C
C              If M > 7*N/6, perform the RQ factorization of B,
C                          _   _
C                 B = ( 0  R ) P.
C
               NM = N
               CALL DGERQF( N, M, B, LDB, DWORK(ITAU), DWORK(JWORK),
     $                      LDWORK-JWORK+1, IFAIL )
               WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) ) + JWORK - 1,
     $                       MINMN*N )
C
C              Form in B
C                 _         _        _
C                 B := Q' * R,  with B an N-by-MIN(M,N) matrix.
C              Use a BLAS 3 operation if enough workspace, and BLAS 2,
C                         _
C              otherwise: B is formed column by column.
C
               IF ( LDWORK.GE.MINMN*N ) THEN
                  J = 1
C
                  DO 50 I = 1, MINMN
                     CALL DCOPY( N, Q(N-MINMN+I,1), LDQ, DWORK(J), 1 )
                     J = J + N
   50             CONTINUE
C
                  CALL DTRMM(  'Right', 'Upper', 'NoTran', 'NoUnit', N,
     $                         MINMN, ONE, B(N-MINMN+1,M-MINMN+1), LDB,
     $                         DWORK, N )
                  CALL DLACPY( 'Full', N, MINMN, DWORK, N, B, LDB )
               ELSE
C
                  DO 60 J = 1, MINMN
                     CALL DCOPY( J, B(1,M-MINMN+J), 1, DWORK, 1 )
                     CALL DGEMV( 'Trans', J, N, ONE, Q, LDQ, DWORK, 1,
     $                           ZERO, B(1,J), 1 )
   60             CONTINUE
C
               END IF
            END IF
         END IF
C                                        _
C        Perform the RQ factorization of B to get the factor F.
C        Note that if M <= 7*N/6, the factorization is
C           _                          _
C           B := ( 0  F ) P,  M >= N,  B := ( Z'  F' )' P,  M < N.
C        Then, do scaling, if it was postponed.
C        Make the entries on the main diagonal are non-negative.
C
         CALL DGERQF( N, NM, B, LDB, DWORK(ITAU), DWORK(JWORK),
     $                LDWORK-JWORK+1, IFAIL )
         IF ( N.GT.NM ) THEN
            IF ( LBSCL .AND. .NOT.SCALB ) THEN
               CALL DLASCL( 'Gen',   0, 0, MB, MBTO, N-M, M, B, LDB,
     $                      INFO )
               CALL DLASCL( 'Upper', 0, 0, MB, MBTO, M, M, B(N-M+1,1),
     $                      LDB, INFO )
            END IF
C
            DO 70 I = M, 1, -1
               CALL DCOPY( N-M+I, B(1,I), 1, B(1,N-M+I), 1 )
   70       CONTINUE
C
            CALL DLASET( 'Full', N, N-M, ZERO, ZERO, B, LDB )
            IF ( M.GT.1 )
     $         CALL DLASET( 'Lower', M-1, M-1, ZERO, ZERO,
     $                      B(N-M+2,N-M+1), LDB )
         ELSE
            IF ( M.GT.N .AND. M.EQ.NM )
     $         CALL DLACPY( 'Upper', N, N, B(1,M-N+1), LDB, B, LDB )
            IF ( LBSCL .AND. .NOT.SCALB )
     $         CALL DLASCL( 'Upper', 0, 0, MB, MBTO, N, N, B, LDB,
     $                      INFO )
         END IF
C
         DO 80 I = N - MINMN + 1, N
            IF ( B(I,I).LT.ZERO )
     $         CALL DSCAL( I, -ONE, B(1,I), 1 )
   80    CONTINUE
C
      ELSE
C
         NM = M
         IF ( NUNITQ ) THEN
            IF ( SMALLM ) THEN
C                      _
C              Compute B := B * Q.
C
               NR = INT( LDWORK / N )
C
               DO 90 I = 1, M, NR
                  BL = MIN( M-I+1, NR )
                  CALL DGEMM(  TRANS, 'NoTran', BL, N, N, ONE, B(I,1),
     $                         LDB, Q, LDQ, ZERO, DWORK, BL )
                  CALL DLACPY( 'All', BL, N, DWORK, BL, B(I,1), LDB )
   90          CONTINUE
C
            ELSE
C
C              If M > 7*N/6, perform the QR factorization of B,
C                     _   _
C                 B = P ( R ).
C                       ( 0 )
C
               CALL DGEQRF( M, N, B, LDB, DWORK(ITAU), DWORK(JWORK),
     $                      LDWORK-JWORK+1, IFAIL )
               WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) ) + JWORK - 1,
     $                       N*N )
C
C              Form in B
C                 _    _             _
C                 B := R * Q,   with B an n-by-n matrix.
C              Use a BLAS 3 operation if enough workspace, and BLAS 2,
C                         _
C              otherwise: B is formed row by row.
C
               IF ( LDWORK.GE.N*N ) THEN
                  CALL DLACPY( 'Full', N, N, Q, LDQ, DWORK, N )
                  CALL DTRMM(  'Left', 'Upper', 'NoTran', 'NoUnit', N,
     $                         N, ONE, B, LDB, DWORK, N )
                  CALL DLACPY( 'Full', N, N, DWORK, MINMN, B, LDB )
               ELSE
                  CALL MB01UY( 'Left', 'Upper', 'NoTran', N, N, ONE, B,
     $                         LDB, Q, LDQ, DWORK, LDWORK, INFO )
               END IF
               NM = N
            END IF
         END IF
C                                        _
C        Perform the QR factorization of B to get the factor F.
C           _                        _
C           B = P ( F ),   M >= N,   B = P ( F  Z ),   M < N.
C                 ( 0 )
C
         CALL DGEQRF( NM, N, B, LDB, DWORK(ITAU), DWORK(JWORK),
     $                LDWORK-JWORK+1, IFAIL )
         IF ( LBSCL .AND. .NOT.SCALB )
     $      CALL DLASCL( 'Upper', 0, 0, MB, MBTO, NM, N, B, LDB, INFO )
C
         IF ( M.LT.N )
     $      CALL DLASET( 'Upper', N-M, N-M, ZERO, ZERO, B(M+1,M+1),
     $                   LDB )
C
C        Make the entries on the main diagonal of F non-negative.
C
         DO 100 I = 1, MINMN
            IF ( B(I,I).LT.ZERO )
     $         CALL DSCAL( N+1-I, -ONE, B(I,I), LDB )
  100    CONTINUE
C
      END IF
      IF ( MINMN.GT.1 )
     $   CALL DLASET( 'Lower', MINMN-1, MINMN-1, ZERO, ZERO, B(2,1),
     $                LDB )
C
C     Solve for V the transformed Lyapunov equation
C                                                      2
C     op(S)'*op(V)'*op(V) + op(V)'*op(V)*op(S) = -scale *op(F)'*op(F),
C
C     or
C                                                      2
C     op(S)'*op(V)'*op(V)*op(S) - op(V)'*op(V) = -scale *op(F)'*op(F).
C
C     Workspace:  need   4*N.
C
      CALL SB03OT( .NOT.CONT, ISTRAN, N, A, LDA, B, LDB, SCALE, DWORK,
     $             INFO )
C
C     Form U := Q*V or U :=  V*Q' in the array B, if Q is not identity.
C
      IF ( ISTRAN ) THEN
C
         IF ( NUNITQ ) THEN
C
C           Workspace:  need   N;
C                       prefer larger.
C
            CALL MB01UY( 'Right', 'Upper', 'NoTran', N, N, ONE, B, LDB,
     $                   Q, LDQ, DWORK, LDWORK, INFO )
C
C           Overwrite U with the triangular matrix of its
C           RQ-factorization and make the entries on the main diagonal
C           non-negative.
C
C           Workspace:  need   2*N;
C                       prefer N + N*NB.
C
            CALL DGERQF( N, N, B, LDB, DWORK, DWORK(N+1), LDWORK-N,
     $                   IFAIL )
            IF ( N.GT.1 )
     $         CALL DLASET( 'Lower', N-1, N-1, ZERO, ZERO, B(2,1),
     $                      LDB )
C
            DO 110 I = 1, N
               IF ( B(I,I).LT.ZERO )
     $            CALL DSCAL( I, -ONE, B(1,I), 1 )
  110       CONTINUE
C
         END IF
C
      ELSE
C
         IF ( NUNITQ ) THEN
C
C           Workspace:  need   N;
C                       prefer larger.
C
            CALL MB01UY( 'Right', 'Upper', 'Trans', N, N, ONE, B, LDB,
     $                   Q, LDQ, DWORK, LDWORK, INFO )
C
            DO 120 I = 1, N
               CALL DSWAP( I, B(I,1), LDB, B(1,I), 1 )
  120       CONTINUE
C
C           Overwrite U with the triangular matrix of its
C           QR-factorization and make the entries on the main diagonal
C           non-negative.
C
C           Workspace:  2*N;
C                       prefer N + N*NB.
C
            CALL DGEQRF( N, N, B, LDB, DWORK, DWORK(N+1), LDWORK-N,
     $                   IFAIL )
            IF ( N.GT.1 )
     $         CALL DLASET( 'Lower', N-1, N-1, ZERO, ZERO, B(2,1), LDB )
C
            DO 130 I = 1, N
               IF ( B(I,I).LT.ZERO )
     $            CALL DSCAL( N+1-I, -ONE, B(I,I), LDB )
  130       CONTINUE
C
         END IF
C
      END IF
C
C     Undo the scaling of A and B and update SCALE.
C
      TMP = ONE
      IF ( LASCL ) THEN
         CALL DLASCL( 'Hess', 0, 0, MATO, MA, N, N, A, LDA, INFO )
         TMP = SQRT( MATO/MA )
      END IF
      IF ( LBSCL ) THEN
         MX = DLANTR( 'Max', 'Upper', 'NoDiag', N, N, B, LDB, DWORK )
         MN = MIN( TMP, MB )
         T  = MAX( TMP, MB )
         IF ( T.GT.ONE ) THEN
            IF ( MN.GT.BIGNMS/T ) THEN
               SCALE = SCALE/T
               TMP   =   TMP/T
            END IF
         END IF
         TMP = TMP*MB
         IF ( TMP.GT.ONE ) THEN
            IF ( MX.GT.BIGNMS/TMP ) THEN
               SCALE = SCALE/MX
               TMP   =   TMP/MX
            END IF
         END IF
      END IF
      IF ( LASCL .OR. LBSCL )
     $   CALL DLASCL( 'Upper', 0, 0, MBTO, TMP, N, N, B, LDB, INFO )
C
C     Set the optimal workspace.
C
      DWORK(1) = WRKOPT
C
      RETURN
C *** Last line of SB03OD ***
      END