control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
      SUBROUTINE MB03WA( WANTQ, WANTZ, N1, N2, A, LDA, B, LDB, Q, LDQ,
     $                   Z, LDZ, INFO )
C
C     PURPOSE
C
C     To swap adjacent diagonal blocks A11*B11 and A22*B22 of size
C     1-by-1 or 2-by-2 in an upper (quasi) triangular matrix product
C     A*B by an orthogonal equivalence transformation.
C
C     (A, B) must be in periodic real Schur canonical form (as returned
C     by SLICOT Library routine MB03XP), i.e., A is block upper
C     triangular with 1-by-1 and 2-by-2 diagonal blocks, and B is upper
C     triangular.
C
C     Optionally, the matrices Q and Z of generalized Schur vectors are
C     updated.
C
C         Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)',
C         Z(in) * B(in) * Q(in)' = Z(out) * B(out) * Q(out)'.
C
C     This routine is largely based on the LAPACK routine DTGEX2
C     developed by Bo Kagstrom and Peter Poromaa.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     WANTQ   LOGICAL
C             Indicates whether or not the user wishes to accumulate
C             the matrix Q as follows:
C             = .TRUE. :  The matrix Q is updated;
C             = .FALSE.:  the matrix Q is not required.
C
C     WANTZ   LOGICAL
C             Indicates whether or not the user wishes to accumulate
C             the matrix Z as follows:
C             = .TRUE. :  The matrix Z is updated;
C             = .FALSE.:  the matrix Z is not required.
C
C     Input/Output Parameters
C
C     N1      (input) INTEGER
C             The order of the first block A11*B11. N1 = 0, 1 or 2.
C
C     N2      (input) INTEGER
C             The order of the second block A22*B22. N2 = 0, 1 or 2.
C
C     A       (input/output) DOUBLE PRECISION array, dimension
C             (LDA,N1+N2)
C             On entry, the leading (N1+N2)-by-(N1+N2) part of this
C             array must contain the matrix A.
C             On exit, the leading (N1+N2)-by-(N1+N2) part of this array
C             contains the matrix A of the reordered pair.
C
C     LDA     INTEGER
C             The leading dimension of the array A. LDA >= MAX(1,N1+N2).
C
C     B       (input/output) DOUBLE PRECISION array, dimension
C             (LDB,N1+N2)
C             On entry, the leading (N1+N2)-by-(N1+N2) part of this
C             array must contain the matrix B.
C             On exit, the leading (N1+N2)-by-(N1+N2) part of this array
C             contains the matrix B of the reordered pair.
C
C     LDB     INTEGER
C             The leading dimension of the array B. LDB >= MAX(1,N1+N2).
C
C     Q       (input/output) DOUBLE PRECISION array, dimension
C             (LDQ,N1+N2)
C             On entry, if WANTQ = .TRUE., the leading
C             (N1+N2)-by-(N1+N2) part of this array must contain the
C             orthogonal matrix Q.
C             On exit, the leading (N1+N2)-by-(N1+N2) part of this array
C             contains the updated matrix Q. Q will be a rotation
C             matrix for N1=N2=1.
C             This array is not referenced if WANTQ = .FALSE..
C
C     LDQ     INTEGER
C             The leading dimension of the array Q. LDQ >= 1.
C             If WANTQ = .TRUE., LDQ >= N1+N2.
C
C     Z       (input/output) DOUBLE PRECISION array, dimension
C             (LDZ,N1+N2)
C             On entry, if WANTZ = .TRUE., the leading
C             (N1+N2)-by-(N1+N2) part of this array must contain the
C             orthogonal matrix Z.
C             On exit, the leading (N1+N2)-by-(N1+N2) part of this array
C             contains the updated matrix Z. Z will be a rotation
C             matrix for N1=N2=1.
C             This array is not referenced if WANTZ = .FALSE..
C
C     LDZ     INTEGER
C             The leading dimension of the array Z. LDZ >= 1.
C             If WANTZ = .TRUE., LDZ >= N1+N2.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             = 1:  the transformed matrix (A, B) would be
C                   too far from periodic Schur form; the blocks are
C                   not swapped and (A,B) and (Q,Z) are unchanged.
C
C     METHOD
C
C     In the current code both weak and strong stability tests are
C     performed. The user can omit the strong stability test by changing
C     the internal logical parameter WANDS to .FALSE.. See ref. [2] for
C     details.
C
C     REFERENCES
C
C     [1] Kagstrom, B.
C         A direct method for reordering eigenvalues in the generalized
C         real Schur form of a regular matrix pair (A,B), in M.S. Moonen
C         et al (eds.), Linear Algebra for Large Scale and Real-Time
C         Applications, Kluwer Academic Publ., 1993, pp. 195-218.
C
C     [2] Kagstrom, B., and Poromaa, P.
C         Computing eigenspaces with specified eigenvalues of a regular
C         matrix pair (A, B) and condition estimation: Theory,
C         algorithms and software, Numer. Algorithms, 1996, vol. 12,
C         pp. 369-407.
C
C     CONTRIBUTORS
C
C     D. Kressner, Technical Univ. Berlin, Germany, and
C     P. Benner, Technical Univ. Chemnitz, Germany, December 2003.
C
C     REVISIONS
C
C     V. Sima, May 2008 (SLICOT version of the HAPACK routine DTGPX2).
C
C     KEYWORDS
C
C     Eigenvalue, periodic Schur form, reordering
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
      DOUBLE PRECISION   TEN
      PARAMETER          ( TEN = 1.0D+01 )
      INTEGER            LDST
      PARAMETER          ( LDST = 4 )
      LOGICAL            WANDS
      PARAMETER          ( WANDS = .TRUE. )
C     .. Scalar Arguments ..
      LOGICAL            WANTQ, WANTZ
      INTEGER            INFO, LDA, LDB, LDQ, LDZ, N1, N2
C     .. Array Arguments ..
      DOUBLE PRECISION   A(LDA,*), B(LDB,*), Q(LDQ,*), Z(LDZ,*)
C     .. Local Scalars ..
      LOGICAL            DTRONG, WEAK
      INTEGER            I, LINFO, M
      DOUBLE PRECISION   BQRA21, BRQA21, DDUM, DNORM, DSCALE, DSUM, EPS,
     $                   F, G, SA, SB, SCALE, SMLNUM, SS, THRESH, WS
C     .. Local Arrays ..
      INTEGER            IWORK( LDST )
      DOUBLE PRECISION   AI(2), AR(2), BE(2), DWORK(32), IR(LDST,LDST),
     $                   IRCOP(LDST,LDST), LI(LDST,LDST),
     $                   LICOP(LDST,LDST), S(LDST,LDST),
     $                   SCPY(LDST,LDST), T(LDST,LDST), TAUL(LDST),
     $                   TAUR(LDST), TCPY(LDST,LDST)
C     .. External Functions ..
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           DLAMCH
C     .. External Subroutines ..
      EXTERNAL           DGEMM, DGEQR2, DGERQ2, DLACPY, DLARTG, DLASET,
     $                   DLASSQ, DORG2R, DORGR2, DORM2R, DORMR2, DROT,
     $                   DSCAL, MB03YT, SB04OW
C     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, SQRT
C
C     .. Executable Statements ..
C
      INFO = 0
C
C     Quick return if possible.
C     For efficiency, the arguments are not checked.
C
      IF ( N1.LE.0 .OR. N2.LE.0 )
     $   RETURN
      M = N1 + N2
C
      WEAK = .FALSE.
      DTRONG = .FALSE.
C
C     Make a local copy of selected block.
C
      CALL DLASET( 'All', LDST, LDST, ZERO, ZERO, LI, LDST )
      CALL DLASET( 'All', LDST, LDST, ZERO, ZERO, IR, LDST )
      CALL DLACPY( 'Full', M, M, A, LDA, S, LDST )
      CALL DLACPY( 'Full', M, M, B, LDB, T, LDST )
C
C     Compute threshold for testing acceptance of swapping.
C
      EPS = DLAMCH( 'P' )
      SMLNUM = DLAMCH( 'S' ) / EPS
      DSCALE = ZERO
      DSUM = ONE
      CALL DLACPY( 'Full', M, M, S, LDST, DWORK, M )
      CALL DLASSQ( M*M, DWORK, 1, DSCALE, DSUM )
      CALL DLACPY( 'Full', M, M, T, LDST, DWORK, M )
      CALL DLASSQ( M*M, DWORK, 1, DSCALE, DSUM )
      DNORM = DSCALE*SQRT( DSUM )
      THRESH = MAX( TEN*EPS*DNORM, SMLNUM )
C
      IF ( M.EQ.2 ) THEN
C
C        CASE 1: Swap 1-by-1 and 1-by-1 blocks.
C
C        Compute orthogonal QL and RQ that swap 1-by-1 and 1-by-1 blocks
C        using Givens rotations and perform the swap tentatively.
C
         F =  S(2,2)*T(2,2) - T(1,1)*S(1,1)
         G = -S(2,2)*T(1,2) - T(1,1)*S(1,2)
         SB = ABS( T(1,1) )
         SA = ABS( S(2,2) )
         CALL DLARTG( F, G, IR(1,2), IR(1,1), DDUM )
         IR(2,1) = -IR(1,2)
         IR(2,2) =  IR(1,1)
         CALL DROT( 2, S(1,1), 1, S(1,2), 1, IR(1,1), IR(2,1) )
         CALL DROT( 2, T(1,1), LDST, T(2,1), LDST, IR(1,1), IR(2,1) )
         IF( SA.GE.SB ) THEN
            CALL DLARTG( S(1,1), S(2,1), LI(1,1), LI(2,1), DDUM )
         ELSE
            CALL DLARTG( T(2,2), T(2,1), LI(1,1), LI(2,1), DDUM )
            LI(2,1) = -LI(2,1)
         END IF
         CALL DROT( 2, S(1,1), LDST, S(2,1), LDST, LI(1,1), LI(2,1) )
         CALL DROT( 2, T(1,1), 1, T(1,2), 1, LI(1,1), LI(2,1) )
         LI(2,2) =  LI(1,1)
         LI(1,2) = -LI(2,1)
C
C        Weak stability test:
C           |S21| + |T21| <= O(EPS * F-norm((S, T))).
C
         WS = ABS( S(2,1) ) + ABS( T(2,1) )
         WEAK = WS.LE.THRESH
         IF ( .NOT.WEAK )
     $      GO TO 50
C
         IF ( WANDS ) THEN
C
C           Strong stability test:
C             F-norm((A-QL'*S*QR, B-QR'*T*QL)) <= O(EPS*F-norm((A,B))).
C
            CALL DLACPY( 'Full', M, M, A, LDA, DWORK(M*M+1), M )
            CALL DGEMM( 'No Transpose', 'No Transpose', M, M, M, ONE,
     $                  LI, LDST, S, LDST, ZERO, DWORK, M )
            CALL DGEMM( 'No Transpose', 'Transpose', M, M, M, -ONE,
     $                  DWORK, M, IR, LDST, ONE, DWORK(M*M+1), M )
            DSCALE = ZERO
            DSUM = ONE
            CALL DLASSQ( M*M, DWORK(M*M+1), 1, DSCALE, DSUM )
C
            CALL DLACPY( 'Full', M, M, B, LDB, DWORK(M*M+1), M )
            CALL DGEMM( 'No Transpose', 'No Transpose', M, M, M, ONE,
     $                  IR, LDST, T, LDST, ZERO, DWORK, M )
            CALL DGEMM( 'No Transpose', 'Transpose', M, M, M, -ONE,
     $                  DWORK, M, LI, LDST, ONE, DWORK(M*M+1), M )
            CALL DLASSQ( M*M, DWORK(M*M+1), 1, DSCALE, DSUM )
            SS = DSCALE*SQRT( DSUM )
            DTRONG = SS.LE.THRESH
            IF( .NOT.DTRONG )
     $         GO TO 50
         END IF
C
C        Update A and B.
C
         CALL DLACPY( 'All', M, M, S, LDST, A, LDA )
         CALL DLACPY( 'All', M, M, T, LDST, B, LDB )
C
C        Set  N1-by-N2 (2,1) - blocks to ZERO.
C
         A(2,1) = ZERO
         B(2,1) = ZERO
C
C        Accumulate transformations into Q and Z if requested.
C
         IF ( WANTQ )
     $      CALL DROT( 2, Q(1,1), 1, Q(1,2), 1, LI(1,1), LI(2,1) )
         IF ( WANTZ )
     $      CALL DROT( 2, Z(1,1), 1, Z(1,2), 1, IR(1,1), IR(2,1) )
C
C        Exit with INFO = 0 if swap was successfully performed.
C
         RETURN
C
      ELSE
C
C        CASE 2: Swap 1-by-1 and 2-by-2 blocks, or 2-by-2
C                and 2-by-2 blocks.
C
C        Solve the periodic Sylvester equation
C                 S11 * R - L * S22 = SCALE * S12
C                 T11 * L - R * T22 = SCALE * T12
C        for R and L. Solutions in IR and LI.
C
         CALL DLACPY( 'Full', N1, N2, T(1,N1+1), LDST, LI, LDST )
         CALL DLACPY( 'Full', N1, N2, S(1,N1+1), LDST, IR(N2+1,N1+1),
     $                LDST )
         CALL SB04OW( N1, N2, S, LDST, S(N1+1,N1+1), LDST,
     $                IR(N2+1,N1+1), LDST, T, LDST, T(N1+1,N1+1), LDST,
     $                LI, LDST, SCALE, IWORK, LINFO )
         IF ( LINFO.NE.0 )
     $      GO TO 50
C
C        Compute orthogonal matrix QL:
C
C                    QL' * LI = [ TL ]
C                               [ 0  ]
C        where
C                    LI =  [      -L              ].
C                          [ SCALE * identity(N2) ]
C
         DO 10 I = 1, N2
            CALL DSCAL( N1, -ONE, LI(1,I), 1 )
            LI(N1+I,I) = SCALE
   10    CONTINUE
         CALL DGEQR2( M, N2, LI, LDST, TAUL, DWORK, LINFO )
         CALL DORG2R( M, M, N2, LI, LDST, TAUL, DWORK, LINFO )
C
C        Compute orthogonal matrix RQ:
C
C                    IR * RQ' =   [ 0  TR],
C
C         where IR = [ SCALE * identity(N1), R ].
C
         DO 20 I = 1, N1
            IR(N2+I,I) = SCALE
   20    CONTINUE
         CALL DGERQ2( N1, M, IR(N2+1,1), LDST, TAUR, DWORK, LINFO )
         CALL DORGR2( M, M, N1, IR, LDST, TAUR, DWORK, LINFO )
C
C        Perform the swapping tentatively:
C
         CALL DGEMM( 'Transpose', 'No Transpose', M, M, M, ONE, LI,
     $               LDST, S, LDST, ZERO, DWORK, M )
         CALL DGEMM( 'No Transpose', 'Transpose', M, M, M, ONE, DWORK,
     $               M, IR, LDST, ZERO, S, LDST )
         CALL DGEMM( 'No Transpose', 'No Transpose', M, M, M, ONE, IR,
     $               LDST, T, LDST, ZERO, DWORK, M )
         CALL DGEMM( 'No Transpose', 'No Transpose', M, M, M, ONE,
     $               DWORK, M, LI, LDST, ZERO, T, LDST )
         CALL DLACPY( 'All', M, M, S, LDST, SCPY, LDST )
         CALL DLACPY( 'All', M, M, T, LDST, TCPY, LDST )
         CALL DLACPY( 'All', M, M, IR, LDST, IRCOP, LDST )
         CALL DLACPY( 'All', M, M, LI, LDST, LICOP, LDST )
C
C        Triangularize the B-part by a QR factorization.
C        Apply transformation (from left) to A-part, giving S.
C
         CALL DGEQR2( M, M, T, LDST, TAUR, DWORK, LINFO )
         CALL DORM2R( 'Right', 'No Transpose', M, M, M, T, LDST, TAUR,
     $                S, LDST, DWORK, LINFO )
         CALL DORM2R( 'Left', 'Transpose', M, M, M, T, LDST, TAUR,
     $                IR, LDST, DWORK, LINFO )
C
C        Compute F-norm(S21) in BRQA21. (T21 is 0.)
C
         DSCALE = ZERO
         DSUM = ONE
         DO 30 I = 1, N2
            CALL DLASSQ( N1, S(N2+1,I), 1, DSCALE, DSUM )
   30    CONTINUE
         BRQA21 = DSCALE*SQRT( DSUM )
C
C        Triangularize the B-part by an RQ factorization.
C        Apply transformation (from right) to A-part, giving S.
C
         CALL DGERQ2( M, M, TCPY, LDST, TAUL, DWORK, LINFO )
         CALL DORMR2( 'Left', 'No Transpose', M, M, M, TCPY, LDST,
     $                TAUL, SCPY, LDST, DWORK, LINFO )
         CALL DORMR2( 'Right', 'Transpose', M, M, M, TCPY, LDST,
     $                TAUL, LICOP, LDST, DWORK, LINFO )
C
C        Compute F-norm(S21) in BQRA21. (T21 is 0.)
C
         DSCALE = ZERO
         DSUM = ONE
         DO 40 I = 1, N2
            CALL DLASSQ( N1, SCPY(N2+1,I), 1, DSCALE, DSUM )
   40    CONTINUE
         BQRA21 = DSCALE*SQRT( DSUM )
C
C        Decide which method to use.
C          Weak stability test:
C             F-norm(S21) <= O(EPS * F-norm((S, T)))
C
         IF ( BQRA21.LE.BRQA21 .AND. BQRA21.LE.THRESH ) THEN
            CALL DLACPY( 'All', M, M, SCPY, LDST, S, LDST )
            CALL DLACPY( 'All', M, M, TCPY, LDST, T, LDST )
            CALL DLACPY( 'All', M, M, IRCOP, LDST, IR, LDST )
            CALL DLACPY( 'All', M, M, LICOP, LDST, LI, LDST )
         ELSE IF ( BRQA21.GE.THRESH ) THEN
            GO TO 50
         END IF
C
C        Set lower triangle of B-part to zero
C
         CALL DLASET( 'Lower', M-1, M-1, ZERO, ZERO, T(2,1), LDST )
C
         IF ( WANDS ) THEN
C
C           Strong stability test:
C              F-norm((A-QL*S*QR', B-QR*T*QL')) <= O(EPS*F-norm((A,B)))
C
            CALL DLACPY( 'All', M, M, A, LDA, DWORK(M*M+1), M )
            CALL DGEMM( 'No Transpose', 'No Transpose', M, M, M, ONE,
     $                  LI, LDST, S, LDST, ZERO, DWORK, M )
            CALL DGEMM( 'No Transpose', 'No Transpose', M, M, M, -ONE,
     $                  DWORK, M, IR, LDST, ONE, DWORK(M*M+1), M )
            DSCALE = ZERO
            DSUM = ONE
            CALL DLASSQ( M*M, DWORK(M*M+1), 1, DSCALE, DSUM )
C
            CALL DLACPY( 'All', M, M, B, LDB, DWORK(M*M+1), M )
            CALL DGEMM( 'Transpose', 'No Transpose', M, M, M, ONE,
     $                  IR, LDST, T, LDST, ZERO, DWORK, M )
            CALL DGEMM( 'No Transpose', 'Transpose', M, M, M, -ONE,
     $                  DWORK, M, LI, LDST, ONE, DWORK(M*M+1), M )
            CALL DLASSQ( M*M, DWORK(M*M+1), 1, DSCALE, DSUM )
            SS = DSCALE*SQRT( DSUM )
            DTRONG = ( SS.LE.THRESH )
            IF( .NOT.DTRONG )
     $         GO TO 50
C
         END IF
C
C        If the swap is accepted ("weakly" and "strongly"), apply the
C        transformations and set N1-by-N2 (2,1)-block to zero.
C
         CALL DLASET( 'All', N1, N2, ZERO, ZERO, S(N2+1,1), LDST )
C
C        Copy (S,T) to (A,B).
C
         CALL DLACPY( 'All', M, M, S, LDST, A, LDA )
         CALL DLACPY( 'All', M, M, T, LDST, B, LDB )
         CALL DLASET( 'All', LDST, LDST, ZERO, ZERO, T, LDST )
C
C        Standardize existing 2-by-2 blocks.
C
         CALL DLASET( 'All', M, M, ZERO, ZERO, DWORK, M )
         DWORK(1) = ONE
         T(1,1) = ONE
         IF ( N2.GT.1 ) THEN
            CALL MB03YT( A, LDA, B, LDB, AR, AI, BE, DWORK(1), DWORK(2),
     $                   T(1,1), T(2,1) )
            DWORK(M+1) = -DWORK(2)
            DWORK(M+2) = DWORK(1)
            T(N2,N2) = T(1,1)
            T(1,2) = -T(2,1)
         END IF
         DWORK(M*M) = ONE
         T(M,M) = ONE
C
         IF ( N1.GT.1 ) THEN
            CALL MB03YT( A(N2+1,N2+1), LDA, B(N2+1,N2+1), LDB, TAUR,
     $                   TAUL, DWORK(M*M+1), DWORK(N2*M+N2+1),
     $                   DWORK(N2*M+N2+2), T(N2+1,N2+1), T(M,M-1) )
            DWORK(M*M) = DWORK(N2*M+N2+1)
            DWORK(M*M-1 ) = -DWORK(N2*M+N2+2)
            T(M,M) = T(N2+1,N2+1)
            T(M-1,M) = -T(M,M-1)
         END IF
C
         CALL DGEMM( 'Transpose', 'No Transpose', N2, N1, N2, ONE,
     $               DWORK, M, A(1,N2+1), LDA, ZERO, DWORK(M*M+1), N2 )
         CALL DLACPY( 'All', N2, N1, DWORK(M*M+1), N2, A(1,N2+1), LDA )
         CALL DGEMM( 'Transpose', 'No Transpose', N2, N1, N2, ONE,
     $               T(1,1), LDST, B(1,N2+1), LDB, ZERO,
     $               DWORK(M*M+1), N2 )
         CALL DLACPY( 'All', N2, N1, DWORK(M*M+1), N2, B(1,N2+1), LDB )
         CALL DGEMM( 'No Transpose', 'No Transpose', M, M, M, ONE, LI,
     $               LDST, DWORK, M, ZERO, DWORK(M*M+1), M )
         CALL DLACPY( 'All', M, M, DWORK(M*M+1), M, LI, LDST )
         CALL DGEMM( 'No Transpose', 'No Transpose', N2, N1, N1, ONE,
     $               A(1,N2+1), LDA, T(N2+1,N2+1), LDST, ZERO,
     $               DWORK(M*M+1), M )
         CALL DLACPY( 'All', N2, N1, DWORK(M*M+1), M, A(1,N2+1), LDA )
         CALL DGEMM( 'No Transpose', 'No Transpose', N2, N1, N1, ONE,
     $               B(1,N2+1), LDB, DWORK(N2*M+N2+1), M, ZERO,
     $               DWORK(M*M+1), M )
         CALL DLACPY( 'All', N2, N1, DWORK(M*M+1), M, B(1,N2+1), LDB )
         CALL DGEMM( 'Transpose', 'No Transpose', M, M, M, ONE, T,
     $               LDST, IR, LDST, ZERO, DWORK, M )
         CALL DLACPY( 'All', M, M, DWORK, M, IR, LDST )
C
C        Accumulate transformations into Q and Z if requested.
C
         IF( WANTQ ) THEN
            CALL DGEMM( 'No Transpose', 'No Transpose', M, M, M, ONE, Q,
     $                  LDQ, LI, LDST, ZERO, DWORK, M )
            CALL DLACPY( 'All', M, M, DWORK, M, Q, LDQ )
         END IF
C
         IF( WANTZ ) THEN
            CALL DGEMM( 'No Transpose', 'Transpose', M, M, M, ONE, Z,
     $                  LDZ, IR, LDST, ZERO, DWORK, M )
            CALL DLACPY( 'Full', M, M, DWORK, M, Z, LDZ )
C
         END IF
C
C        Exit with INFO = 0 if swap was successfully performed.
C
         RETURN
C
      END IF
C
C     Exit with INFO = 1 if swap was rejected.
C
   50 CONTINUE
C
      INFO = 1
      RETURN
C *** Last line of MB03WA ***
      END