control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
      SUBROUTINE MB03XS( JOBU, N, A, LDA, QG, LDQG, U1, LDU1, U2, LDU2,
     $                   WR, WI, DWORK, LDWORK, INFO )
C
C     PURPOSE
C
C     To compute the eigenvalues and real skew-Hamiltonian Schur form of
C     a skew-Hamiltonian matrix,
C
C                   [  A   G  ]
C             W  =  [       T ],
C                   [  Q   A  ]
C
C     where A is an N-by-N matrix and G, Q are N-by-N skew-symmetric
C     matrices. Specifically, an orthogonal symplectic matrix U is
C     computed so that
C
C               T       [  Aout  Gout  ]
C              U W U =  [            T ] ,
C                       [    0   Aout  ]
C
C     where Aout is in Schur canonical form (as returned by the LAPACK
C     routine DHSEQR). That is, Aout is block upper triangular with
C     1-by-1 and 2-by-2 diagonal blocks; each 2-by-2 diagonal block has
C     its diagonal elements equal and its off-diagonal elements of
C     opposite sign.
C
C     Optionally, the matrix U is returned in terms of its first N/2
C     rows
C
C                      [  U1   U2 ]
C                  U = [          ].
C                      [ -U2   U1 ]
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     JOBU    CHARACTER*1
C             Specifies whether matrix U is computed or not, as follows:
C             = 'N': transformation matrix U is not computed;
C             = 'U': transformation matrix U is computed.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrix A.  N >= 0.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading N-by-N part of this array must
C             contain the matrix A.
C             On exit, the leading N-by-N part of this array contains
C             the matrix Aout in Schur canonical form.
C
C     LDA     INTEGER
C             The leading dimension of the array A.  LDA >= MAX(1,N).
C
C     QG      (input/output) DOUBLE PRECISION array, dimension
C                            (LDQG,N+1)
C             On entry, the leading N-by-N+1 part of this array must
C             contain in columns 1:N the strictly lower triangular part
C             of the matrix Q and in columns 2:N+1 the strictly upper
C             triangular part of the matrix G.
C             On exit, the leading N-by-N+1 part of this array contains
C             in columns 2:N+1 the strictly upper triangular part of the
C             skew-symmetric matrix Gout. The part which contained the
C             matrix Q is set to zero.
C             Note that the parts containing the diagonal and the first
C             superdiagonal of this array are not overwritten by zeros
C             only if JOBU = 'U' or LDWORK >= 2*N*N - N.
C
C     LDQG    INTEGER
C             The leading dimension of the array QG.  LDQG >= MAX(1,N).
C
C     U1      (output) DOUBLE PRECISION array, dimension (LDU1,N)
C             On exit, if JOBU = 'U', the leading N-by-N part of this
C             array contains the matrix U1.
C             If JOBU = 'N', this array is not referenced.
C
C     LDU1    INTEGER
C             The leading dimension of the array U1.
C             LDU1 >= MAX(1,N),  if JOBU = 'U';
C             LDU1 >= 1,         if JOBU = 'N'.
C
C     U2      (output) DOUBLE PRECISION array, dimension (LDU2,N)
C             On exit, if JOBU = 'U', the leading N-by-N part of this
C             array contains the matrix U2.
C             If JOBU = 'N', this array is not referenced.
C
C     LDU2    INTEGER
C             The leading dimension of the array U2.
C             LDU2 >= MAX(1,N),  if JOBU = 'U';
C             LDU2 >= 1,         if JOBU = 'N'.
C
C     WR      (output) DOUBLE PRECISION array, dimension (N)
C     WI      (output) DOUBLE PRECISION array, dimension (N)
C             The real and imaginary parts, respectively, of the
C             eigenvalues of Aout, which are half of the eigenvalues
C             of W. The eigenvalues are stored in the same order as on
C             the diagonal of Aout, with WR(i) = Aout(i,i) and, if
C             Aout(i:i+1,i:i+1) is a 2-by-2 diagonal block, WI(i) > 0
C             and WI(i+1) = -WI(i).
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0,  DWORK(1)  returns the optimal value
C             of LDWORK.
C             On exit, if  INFO = -14,  DWORK(1)  returns the minimum
C             value of LDWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             LDWORK >= MAX(1,(N+5)*N),      if JOBU = 'U';
C             LDWORK >= MAX(1,5*N,(N+1)*N),  if JOBU = 'N'.
C
C             If LDWORK = -1, then a workspace query is assumed;
C             the routine only calculates the optimal size of the
C             DWORK array, returns this value as the first entry of
C             the DWORK array, and no error message related to LDWORK
C             is issued by XERBLA.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             > 0:  if INFO = i, DHSEQR failed to compute all of the
C                   eigenvalues.  Elements 1:ILO-1 and i+1:N of WR
C                   and WI contain those eigenvalues which have been
C                   successfully computed. The matrix A (and QG) has
C                   been partially reduced; namely, A is upper
C                   Hessenberg in the rows and columns ILO through i.
C                   (See DHSEQR for details.)
C
C     METHOD
C
C     First, using the SLICOT Library routine MB04RB, an orthogonal
C     symplectic matrix UP is computed so that
C
C                T      [  AP  GP  ]
C            UP W UP =  [        T ]
C                       [  0   AP  ]
C
C     is in Paige/Van Loan form. Next, the LAPACK routine DHSEQR is
C     applied to the matrix AP to compute an orthogonal matrix V so
C     that Aout = V'*AP*V is in Schur canonical form.
C     Finally, the transformations
C
C                       [ V  0 ]
C             U =  UP * [      ],     Gout = V'*G*V,
C                       [ 0  V ]
C
C     using the SLICOT Library routine MB01LD for the latter, are
C     performed.
C
C     REFERENCES
C
C     [1] Van Loan, C.F.
C         A symplectic method for approximating all the eigenvalues of
C         a Hamiltonian matrix.
C         Linear Algebra and its Applications, 61, pp. 233-251, 1984.
C
C     [2] Kressner, D.
C         Block algorithms for orthogonal symplectic factorizations.
C         BIT, 43 (4), pp. 775-790, 2003.
C
C     CONTRIBUTORS
C
C     D. Kressner (Technical Univ. Berlin, Germany) and
C     P. Benner (Technical Univ. Chemnitz, Germany), December 2003.
C
C     REVISIONS
C
C     V. Sima, Nov. 2011 (SLICOT version of the HAPACK routine DSHES).
C     V. Sima, Oct. 2012.
C
C     KEYWORDS
C
C     Schur form, eigenvalues, skew-Hamiltonian matrix.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         JOBU
      INTEGER           INFO, LDA, LDQG, LDU1, LDU2, LDWORK, N
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), DWORK(*), QG(LDQG,*), U1(LDU1,*),
     $                  U2(LDU2,*), WI(*), WR(*)
C     .. Local Scalars ..
      LOGICAL           COMPU, LQUERY, SCALEW
      INTEGER           I, I1, I2, IERR, ILO, INXT, NN, PBAL, PCS, PDV,
     $                  PDW, PHO, PTAU, WRKMIN, WRKOPT
      DOUBLE PRECISION  BIGNUM, CSCALE, EPS, SMLNUM, WNRM
C     .. External Function ..
      LOGICAL           LSAME
      DOUBLE PRECISION  DLAMCH, MA02ID
      EXTERNAL          DLAMCH, LSAME, MA02ID
C     .. External Subroutines ..
      EXTERNAL          DCOPY, DHSEQR, DLABAD, DLACPY, DLASCL, DLASET,
     $                  DSCAL, DSWAP, MB01LD, MB04DI, MB04DS, MB04QS,
     $                  MB04RB, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         DBLE, INT, MAX, MIN, SQRT
C
C     .. Executable Statements ..
C
C     Check the scalar input parameters.
C
      INFO  = 0
      COMPU = LSAME( JOBU, 'U' )
C
      NN = N*N
      IF ( COMPU ) THEN
         WRKMIN = MAX( 1, NN + 5*N )
      ELSE
         WRKMIN = MAX( 1, 5*N, NN + N )
      END IF
      WRKOPT = WRKMIN
C
      IF ( .NOT.COMPU .AND. .NOT.LSAME( JOBU, 'N' ) ) THEN
         INFO = -1
      ELSE IF ( N.LT.0 ) THEN
         INFO = -2
      ELSE IF (  LDA.LT.MAX( 1,N ) ) THEN
         INFO = -4
      ELSE IF ( LDQG.LT.MAX( 1,N ) ) THEN
         INFO = -6
      ELSE IF ( LDU1.LT.1 .OR. ( COMPU .AND. LDU1.LT.N ) ) THEN
         INFO = -8
      ELSE IF ( LDU2.LT.1 .OR. ( COMPU .AND. LDU2.LT.N ) ) THEN
         INFO = -10
      ELSE
         LQUERY = LDWORK.EQ.-1
         IF ( LDWORK.LT.WRKMIN .AND. .NOT.LQUERY ) THEN
            DWORK(1) = DBLE( WRKMIN )
            INFO = -14
         ELSE IF( LQUERY ) THEN
            IF ( N.EQ.0 ) THEN
               DWORK(1) = ONE
            ELSE
               I = 4*N
               CALL MB04RB( N, 1, A, LDA, QG, LDQG, DWORK, DWORK, DWORK,
     $                      -1, IERR )
               WRKOPT = MAX( WRKOPT, INT( DWORK(1) ) + I )
               CALL DHSEQR( 'Schur', 'Initialize', N, 1, N, A, LDA, WR,
     $                      WI, DWORK, N, DWORK, -1, IERR )
               IF ( COMPU ) THEN
                  I = I + NN
                  WRKOPT = MAX( WRKOPT, INT( DWORK(1) ) + I )
                  CALL MB04QS( 'N', 'N', 'N', N, N, 1, DWORK, N, QG,
     $                         LDQG, U1, LDU1, U2, LDU2, DWORK, DWORK,
     $                         DWORK, -1, IERR )
               ELSE
                  I = NN
                  WRKOPT = MAX( WRKOPT, 2*NN - N )
               END IF
               DWORK(1) = MAX( WRKMIN, WRKOPT, INT( DWORK(1) ) + I )
            END IF
            RETURN
         END IF
      END IF
C
C     Return if there were illegal values.
C
      IF ( INFO.NE.0 ) THEN
         CALL XERBLA( 'MB03XS', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF ( N.EQ.0 ) THEN
         DWORK(1) = ONE
         RETURN
      END IF
C
C     Get machine constants.
C
      EPS    = DLAMCH( 'P' )
      SMLNUM = DLAMCH( 'S' )
      BIGNUM = ONE / SMLNUM
      CALL DLABAD( SMLNUM, BIGNUM )
      SMLNUM = SQRT( SMLNUM ) / EPS
      BIGNUM = ONE / SMLNUM
C
C     Scale W if max element outside range [SMLNUM,BIGNUM].
C
      WNRM = MA02ID( 'Skew-Hamiltonian', 'Max-Norm', N, A, LDA, QG,
     $               LDQG, DWORK )
      SCALEW = .FALSE.
      IF ( WNRM.GT.ZERO .AND. WNRM.LT.SMLNUM ) THEN
         SCALEW = .TRUE.
         CSCALE = SMLNUM
      ELSE IF ( WNRM.GT.BIGNUM ) THEN
         SCALEW = .TRUE.
         CSCALE = BIGNUM
      END IF
      IF( SCALEW ) THEN
         CALL DLASCL( 'General', 0, 0, WNRM, CSCALE, N, N, A, LDA,
     $                IERR )
         IF ( N.GT.1 ) THEN
            CALL DLASCL( 'Lower', 0, 0, WNRM, CSCALE, N-1, N-1, QG(2,1),
     $                   LDQG, IERR )
            CALL DLASCL( 'Upper', 0, 0, WNRM, CSCALE, N-1, N-1, QG(1,3),
     $                   LDQG, IERR )
         END IF
      END IF
C
C     Permute to make W closer to skew-Hamiltonian Schur form.
C     Workspace:  need   N.
C
      PBAL = 1
      CALL MB04DS( 'Permute', N, A, LDA, QG, LDQG, ILO, DWORK(PBAL),
     $             IERR )
C
C     Reduce to Paige/Van Loan form.
C     Workspace:  need   5*N-1.
C
      PCS  =   N + PBAL
      PTAU = 2*N + PCS
      PDW  =   N + PTAU
      CALL MB04RB( N, ILO, A, LDA, QG, LDQG, DWORK(PCS), DWORK(PTAU),
     $             DWORK(PDW), LDWORK-PDW+1, IERR )
      WRKOPT = MAX( WRKOPT, INT( DWORK(PDW) ) + PDW - 1 )
      IF ( COMPU ) THEN
C
C        Copy information about Householder vectors to workspace.
C
         PHO = PDW
         PDW = PDW + NN
         CALL DLACPY( 'L', N, N, A, LDA, DWORK(PHO), N )
C
C        Perform QR iteration, accumulating Schur vectors in U1.
C        Workspace:  need   N*N + 5*N;
C                    prefer larger.
C
         CALL DHSEQR( 'Schur', 'Initialize', N, MIN( ILO, N ), N, A,
     $                LDA, WR, WI, U1, LDU1, DWORK(PDW), LDWORK-PDW+1,
     $                INFO )
         WRKOPT = MAX( WRKOPT, INT( DWORK(PDW) ) + PDW - 1 )
C
C        Update G = V'*G*V.
C
         CALL MB01LD( 'Upper', 'Transpose', N, N, ZERO, ONE, QG(1,2),
     $                 LDQG, U1, LDU1, QG(1,2), LDQG, U2, NN, IERR )
C
C        Apply orthogonal symplectic matrix from PVL reduction to [V;0].
C        Workspace:  need   N*N + 5*N;
C                    prefer larger.
C
         CALL DSCAL(  N-1, -ONE, DWORK(PCS+1), 2 )
         CALL DLASET( 'All', N, N, ZERO, ZERO, U2, LDU2 )
         CALL MB04QS( 'No Transpose', 'No Transpose', 'No Transpose', N,
     $                N, ILO, DWORK(PHO), N, QG, LDQG, U1, LDU1, U2,
     $                LDU2, DWORK(PCS), DWORK(PTAU), DWORK(PDW),
     $                LDWORK-PDW+1, IERR )
         WRKOPT = MAX( WRKOPT, INT( DWORK(PDW) ) + PDW - 1 )
C
C        Annihilate Q.
C
         IF ( N.GT.1 )
     $      CALL DLASET( 'Lower', N-1, N-1, ZERO, ZERO, QG(2,1), LDQG )
C
C        Undo balancing.
C
         CALL MB04DI( 'Permute', 'Positive', N, ILO, DWORK(PBAL), N, U1,
     $                LDU1, U2, LDU2, IERR )
      ELSE
C
C        Perform QR iteration, accumulating Schur vectors in DWORK.
C        Workspace:  need   N*N + N;
C                    prefer larger.
C
         PDV = 1
         PDW = NN + PDV
         CALL DHSEQR( 'Schur', 'Initialize', N, MIN( ILO, N ), N, A,
     $                LDA, WR, WI, DWORK(PDV), N, DWORK(PDW),
     $                LDWORK-PDW+1, INFO )
         WRKOPT = MAX( WRKOPT, INT( DWORK(PDW) ) + PDW - 1 )
C
C        Update G = V'*G*V.
C        Workspace:  need   N*N + N;
C                    prefer N*N + N*(N-1).
C
         CALL MB01LD( 'Upper', 'Transpose', N, N, ZERO, ONE, QG(1,2),
     $                LDQG, DWORK(PDV), N, QG(1,2), LDQG, DWORK(PDW),
     $                LDWORK-PDW+1, IERR )
         WRKOPT = MAX( WRKOPT, 2*NN - N )
C
C        Annihilate Q.
C
         IF ( N.GT.1 )
     $      CALL DLASET( 'Lower', N-1, N-1, ZERO, ZERO, QG(2,1), LDQG )
      END IF
C
      IF ( SCALEW ) THEN
C
C        Undo scaling for the skew-Hamiltonian Schur form.
C
         CALL DLASCL( 'Hessenberg', 0, 0, CSCALE, WNRM, N, N, A, LDA,
     $                IERR )
         IF ( N.GT.1 ) THEN
            CALL DLASCL( 'Upper', 0, 0, CSCALE, WNRM, N-1, N-1, QG(1,3),
     $                   LDQG, IERR )
         END IF
         CALL DCOPY( N, A, LDA+1, WR, 1 )
C
         IF ( CSCALE.EQ.SMLNUM ) THEN
C
C           If scaling back towards underflow, adjust WI if an
C           offdiagonal element of a 2-by-2 block in the Schur form
C           underflows.
C
            IF( INFO.GT.0 ) THEN
               I1 = INFO + 1
               CALL DLASCL( 'General', 0, 0, CSCALE, WNRM, ILO-1, 1, WI,
     $                      MAX( ILO-1, 1 ), IERR )
            ELSE
               I1 = ILO
            END IF
            I2   = N - 1
            INXT = I1 - 1
            DO 10 I = I1, I2
               IF ( I.LT.INXT )
     $            GO TO 10
               IF ( WI(I).EQ.ZERO ) THEN
                  INXT = I + 1
               ELSE
                  IF ( A(I+1,I).EQ.ZERO ) THEN
                     WI(I)   = ZERO
                     WI(I+1) = ZERO
                  ELSE IF ( A(I,I+1).EQ.ZERO )
     $                  THEN
                     WI(I)   = ZERO
                     WI(I+1) = ZERO
                     IF ( I.GT.1 )
     $                  CALL DSWAP( I-1, A(1,I), 1, A(1,I+1), 1 )
                     IF( N.GT.I+1 )
     $                  CALL DSWAP( N-I-1, A(I,I+2), LDA,
     $                              A(I+1,I+2), LDA )
                     A(I,I+1)  = A(I+1,I)
                     A(I+1,I ) = ZERO
C
                     CALL DSWAP( I-1, QG(1,I+2), 1, QG(1,I+1), 1 )
                     IF ( N.GT.I+1 )
     $                  CALL DSWAP( N-I-1, QG(I+1,I+3), LDQG, QG(I,I+3),
     $                              LDQG )
                     QG(I,I+2) = -QG(I,I+2)
                     IF ( COMPU ) THEN
                        CALL DSWAP( N, U1(1,I), 1, U1(1,I+1), 1 )
                        CALL DSWAP( N, U2(1,I), 1, U2(1,I+1), 1 )
                     END IF
                  END IF
                  INXT = I + 2
               END IF
   10       CONTINUE
         END IF
C
C        Undo scaling for imaginary parts of the eigenvalues.
C
         CALL DLASCL( 'General', 0, 0, CSCALE, WNRM, N-INFO, 1,
     $                WI(INFO+1), MAX( N-INFO, 1 ), IERR )
      END IF
C
      DWORK(1) = DBLE( WRKOPT )
C
      RETURN
C *** Last line of MB03XS ***
      END