control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
      SUBROUTINE SG03BX( DICO, TRANS, A, LDA, E, LDE, B, LDB, U, LDU,
     $                   SCALE, M1, LDM1, M2, LDM2, INFO )
C
C     PURPOSE
C
C     To solve for X = op(U)**T * op(U) either the generalized c-stable
C     continuous-time Lyapunov equation
C
C             T                    T
C        op(A)  * X * op(E) + op(E)  * X * op(A)
C
C                 2        T
C        = - SCALE  * op(B)  * op(B),                                (1)
C
C     or the generalized d-stable discrete-time Lyapunov equation
C
C             T                    T
C        op(A)  * X * op(A) - op(E)  * X * op(E)
C
C                 2        T
C        = - SCALE  * op(B)  * op(B),                                (2)
C
C     where op(K) is either K or K**T for K = A, B, E, U. The Cholesky
C     factor U of the solution is computed without first finding X.
C
C     Furthermore, the auxiliary matrices
C
C                                   -1        -1
C        M1 := op(U) * op(A) * op(E)   * op(U)
C
C                           -1        -1
C        M2 := op(B) * op(E)   * op(U)
C
C     are computed in a numerically reliable way.
C
C     The matrices A, B, E, M1, M2, and U are real 2-by-2 matrices. The
C     pencil A - lambda * E must have a pair of complex conjugate
C     eigenvalues. The eigenvalues must be in the open right half plane
C     (in the continuous-time case) or inside the unit circle (in the
C     discrete-time case). The matrices E and B are upper triangular.
C
C     The resulting matrix U is upper triangular. The entries on its
C     main diagonal are non-negative. SCALE is an output scale factor
C     set to avoid overflow in U.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     DICO    CHARACTER*1
C             Specifies whether the continuous-time or the discrete-time
C             equation is to be solved:
C             = 'C':  Solve continuous-time equation (1);
C             = 'D':  Solve discrete-time equation (2).
C
C     TRANS   CHARACTER*1
C             Specifies whether the transposed equation is to be solved
C             or not:
C             = 'N':  op(K) = K,     K = A, B, E, U;
C             = 'T':  op(K) = K**T,  K = A, B, E, U.
C
C     Input/Output Parameters
C
C     A       (input) DOUBLE PRECISION array, dimension (LDA,2)
C             The leading 2-by-2 part of this array must contain the
C             matrix A.
C
C     LDA     INTEGER
C             The leading dimension of the array A.  LDA >= 2.
C
C     E       (input) DOUBLE PRECISION array, dimension (LDE,2)
C             The leading 2-by-2 upper triangular part of this array
C             must contain the matrix E.
C
C     LDE     INTEGER
C             The leading dimension of the array E.  LDE >= 2.
C
C     B       (input) DOUBLE PRECISION array, dimension (LDB,2)
C             The leading 2-by-2 upper triangular part of this array
C             must contain the matrix B.
C
C     LDB     INTEGER
C             The leading dimension of the array B.  LDB >= 2.
C
C     U       (output) DOUBLE PRECISION array, dimension (LDU,2)
C             The leading 2-by-2 part of this array contains the upper
C             triangular matrix U.
C
C     LDU     INTEGER
C             The leading dimension of the array U.  LDU >= 2.
C
C     SCALE   (output) DOUBLE PRECISION
C             The scale factor set to avoid overflow in U.
C             0 < SCALE <= 1.
C
C     M1      (output) DOUBLE PRECISION array, dimension (LDM1,2)
C             The leading 2-by-2 part of this array contains the
C             matrix M1.
C
C     LDM1    INTEGER
C             The leading dimension of the array M1.  LDM1 >= 2.
C
C     M2      (output) DOUBLE PRECISION array, dimension (LDM2,2)
C             The leading 2-by-2 part of this array contains the
C             matrix M2.
C
C     LDM2    INTEGER
C             The leading dimension of the array M2.  LDM2 >= 2.
C
C     Error indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             = 2:  the eigenvalues of the pencil A - lambda * E are not
C                   a pair of complex conjugate numbers;
C             = 3:  the eigenvalues of the pencil A - lambda * E are
C                   not in the open right half plane (in the continuous-
C                   time case) or inside the unit circle (in the
C                   discrete-time case);
C             = 4:  the LAPACK routine ZSTEIN utilized to factorize M3
C                   (see SLICOT Library routine SG03BS) failed to
C                   converge. This error is unlikely to occur.
C
C     METHOD
C
C     The method used by the routine is based on a generalization of the
C     method due to Hammarling ([1], section 6) for Lyapunov equations
C     of order 2. A more detailed description is given in [2].
C
C     REFERENCES
C
C     [1] Hammarling, S.J.
C         Numerical solution of the stable, non-negative definite
C         Lyapunov equation.
C         IMA J. Num. Anal., 2, pp. 303-323, 1982.
C
C     [2] Penzl, T.
C         Numerical solution of generalized Lyapunov equations.
C         Advances in Comp. Math., vol. 8, pp. 33-48, 1998.
C
C     FURTHER COMMENTS
C
C     If the solution matrix U is singular, the matrices M1 and M2 are
C     properly set (see [1], equation (6.21)).
C
C     CONTRIBUTOR
C
C     T. Penzl, Technical University Chemnitz, Germany, Aug. 1998.
C     V. Sima, substantial changes, Dec. 2021, Jan. 2022.
C
C     REVISIONS
C
C     Sep. 1998, Dec. 1998.
C     July 2003 (V. Sima; suggested by Klaus Schnepper).
C     Oct. 2003 (A. Varga).
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ONE, TWO, ZERO, SAFETY
      PARAMETER         ( ONE = 1.0D+0, TWO = 2.0D+0, ZERO = 0.0D+0,
     $                    SAFETY = 1.0D+2 )
C     .. Scalar Arguments ..
      CHARACTER         DICO, TRANS
      DOUBLE PRECISION  SCALE
      INTEGER           INFO, LDA, LDB, LDE, LDM1, LDM2, LDU
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), E(LDE,*), M1(LDM1,*),
     $                  M2(LDM2,*), U(LDU,*)
C     .. Local Scalars ..
      COMPLEX*16        X, ZS
      DOUBLE PRECISION  A11, A12, A21, A22, AI11, AI12, AI21, AI22,
     $                  ALPHA, AR11, AR12, AR21, AR22, B11, B12I, B12R,
     $                  BETAI, BETAR, BI11, BI12, BI21, BI22, BIGNUM,
     $                  BR11, BR12, BR21, BR22, C, CL, CQ, CQB, CQBI,
     $                  CQU, CQUI, CZ, E11, E12, E22, EI12, EI21, ER11,
     $                  ER12, ER22, EPS, LAMI, LAMR, LI, LR, M1I12,
     $                  M1R12, M2I12, M2R12, M2R22, M2S, MI, MR, MX, P,
     $                  S, SCALE1, SCALE2, SI, SIQ, SIQB, SIQU, SIZ, SL,
     $                  SMLNUM, SQTWO, SR, SRQ, SRQB, SRQU, SRZ, T, TMP,
     $                  UI12, UI22, UR11, UR12, UR22, V, VI12, VR12,
     $                  VR22, W, XR, XI, YR, YI
      INTEGER           CT
      LOGICAL           ISCONT, ISTRNS
C     .. Local Arrays ..
      COMPLEX*16        M3(1), M3C(2,1)
      DOUBLE PRECISION  AS(2,2), D(2), DWORK(10), ES(2,2), ET(2), EV(2)
      INTEGER           IWORK(7)
C     .. External Functions ..
      DOUBLE PRECISION  DLAMCH, DLAPY2, DLAPY3
      LOGICAL           LSAME
      EXTERNAL          DLAMCH, DLAPY2, DLAPY3, LSAME
C     .. External Subroutines ..
      EXTERNAL          DLABAD, DLADIV, DLAG2, DLASV2, SG03BR, ZLARFG,
     $                  ZSTEIN
C     .. Intrinsic Functions ..
      INTRINSIC         ABS, DBLE, DCMPLX, DIMAG, MAX, MIN, SQRT
C
C     Decode input parameters.
C
      ISTRNS = LSAME( TRANS, 'T' )
      ISCONT = LSAME( DICO,  'C' )
C
C     Do not check input parameters for errors.
C
C     Set constants to control overflow.
C
      SQTWO  = SQRT( TWO )
      EPS    = DLAMCH( 'P' )
      SMLNUM = DLAMCH( 'S' )/EPS
      BIGNUM = ONE/SMLNUM
      CALL DLABAD( SMLNUM, BIGNUM )
C
C     Set constant input for ZSTEIN.
C
      IWORK(2) = 1
      IWORK(3) = 0
      IWORK(4) = 2
      IWORK(5) = 0
      EV(1)    = ONE
      EV(2)    = ZERO
C
      INFO  = 0
      SCALE = ONE
C
C     Make copies of A, E, and B.
C
      AS(1,1) = A(1,1)
      AS(2,1) = A(2,1)
      AS(1,2) = A(1,2)
      AS(2,2) = A(2,2)
      ES(1,1) = E(1,1)
      ES(2,1) = ZERO
      ES(1,2) = E(1,2)
      ES(2,2) = E(2,2)
      BR11    = B(1,1)
      BR12    = B(1,2)
      BR22    = B(2,2)
C
C     If the transposed equation (op(K)=K**T, K=A,B,E,U) is to be
C     solved, transpose the matrices A, E, B with respect to the
C     anti-diagonal. This results in a non-transposed equation.
C
      IF ( ISTRNS ) THEN
         V       = AS(1,1)
         AS(1,1) = AS(2,2)
         AS(2,2) = V
         V       = ES(1,1)
         ES(1,1) = ES(2,2)
         ES(2,2) = V
         V       = BR11
         BR11    = BR22
         BR22    = V
      END IF
C
C     Perform QZ-step to transform the pencil A - lambda * E to complex
C     generalized Schur form. The main diagonal of the Schur factor of E
C     is real and positive.
C
C     Compute eigenvalues (LAMR + LAMI * I, LAMR - LAMI * I).
C
      CT = 0
   10 CONTINUE
      CT = CT + 1
      P  = MAX( EPS*MAX( ABS( ES(1,1) ), ABS( ES(1,2) ),
     $                   ABS( ES(2,2) ) ), SMLNUM )
      IF ( MIN( ABS( ES(1,1) ), ABS( ES(2,2) ) ).LT.P ) THEN
         INFO = 2
         RETURN
      END IF
      CALL DLAG2( AS, 2, ES, 2, SMLNUM*EPS*SAFETY, SCALE1, SCALE2, LAMR,
     $            W, LAMI )
      IF ( LAMI.LE.ZERO ) THEN
         INFO = 2
         RETURN
      END IF
C
      IF ( ES(1,2).NE.ZERO ) THEN
C
C        Standardize, that is, rotate so that ES is diagonal with
C        ES(1,1) non-negative.
C
         CALL DLASV2( ES(1,1), ES(1,2), ES(2,2), E22, E11, SR, C, SL,
     $                CL )
C
         IF ( E11.LT.ZERO ) THEN
            C   = -C
            SR  = -SR
            E11 = -E11
            E22 = -E22
         END IF
C
C        Update A using the left and right rotations.
C
         S = CL*AS(1,1) + SL*AS(2,1)
         T = CL*AS(1,2) + SL*AS(2,2)
         V = CL*AS(2,1) - SL*AS(1,1)
         W = CL*AS(2,2) - SL*AS(1,2)
C
         AS(1,1) = S*C + T*SR
         AS(2,1) = V*C + W*SR
         AS(1,2) = T*C - S*SR
         AS(2,1) = W*C - V*SR
C
         ES(1,1) = E11
         ES(2,1) = ZERO
         ES(1,2) = ZERO
C
C        If E22 is negative, negate the second columns.
C
         IF ( E22.LT.ZERO ) THEN
            ES(2,2) = -E22
            AS(1,2) = -AS(1,2)
            AS(2,2) = -AS(2,2)
         ELSE
            ES(2,2) =  E22
         END IF
C
C        Recompute the shift.
C
         CALL DLAG2( AS, 2, ES, 2, SMLNUM*EPS*SAFETY, SCALE1, SCALE2,
     $               LAMR, W, LAMI )
C
C        If standardization has perturbed the shift onto real line,
C        do another (real single-shift) QR step.
C
         IF ( LAMI.EQ.ZERO ) THEN
            IF ( CT.EQ.1 ) THEN
               GO TO 10
            ELSE
               INFO = 2
               RETURN
            END IF
         END IF
      END IF
C
C     Compute left unitary transformation matrix Q.
C
      A11 = AS(1,1)
      A21 = AS(2,1)
      A12 = AS(1,2)
      A22 = AS(2,2)
      E11 = ES(1,1)
      E22 = ES(2,2)
      CALL SG03BR( SCALE1*A11 - E11*LAMR, -E11*LAMI, SCALE1*A21, ZERO,
     $             CQ, SRQ, SIQ, LR, LI )
C
C     A := Q * A.
C
      AR11 =  CQ*A11 + SRQ*A21
      AR21 =  CQ*A21 - SRQ*A11
      AR12 =  CQ*A12 + SRQ*A22
      AR22 =  CQ*A22 - SRQ*A12
      AI11 = SIQ*A21
      AI21 = SIQ*A11
      AI12 = SIQ*A22
      AI22 = SIQ*A12
C
C     E := Q * E.
C
      EI21 = SIQ*E11
      EI12 = SIQ*E22
      TMP  = SRQ*E11
      E11  =  CQ*E11
      E12  = SRQ*E22
C
C     Compute right unitary transformation matrix Z.
C
      CALL SG03BR( CQ*E22, ZERO, TMP, -EI21, CZ, SRZ, SIZ, LR, LI )
C
C     E := E * Z**H.
C
      ER11 =  E11*CZ + E12*SRZ + EI12*SIZ
      ER12 =  E12*CZ - E11*SRZ
      EI12 = EI12*CZ - E11*SIZ
      ER22 = LR
C
C     The structure of the matrices A, E, Q, and Z ensures that the
C     diagonal elements are real and E(2,2) > 0. Make E(1,1) > 0.
C
      IF ( ER11.LT.ZERO )
     $   ER11 = -ER11
C
C     A := A * Z**H.
C
      A11  = AR11
      A12  = AR12
      TMP  = AI11
      AR11 =  A12*SRZ +  A11*CZ  + AI12*SIZ
      AI11 = AI12*SRZ +  TMP*CZ  -  A12*SIZ
      AR12 =  A12*CZ  +  TMP*SIZ -  A11*SRZ
      AI12 = AI12*CZ  -  A11*SIZ -  TMP*SRZ
      AR22 = AR22*CZ  + AI21*SIZ - AR21*SRZ
      AI22 = AI22*CZ  - AR21*SIZ - AI21*SRZ
C
C     End of QZ-step.
C
C     B := B * Z**H.
C
      B11  =  BR11
      BI11 = -BR12*SIZ
      BI21 = -BR22*SIZ
      BI12 =  -B11*SIZ
      BR11 =  BR12*SRZ + B11*CZ
      BR21 =  BR22*SRZ
      BR12 =  BR12*CZ  - B11*SRZ
      BR22 =  BR22*CZ
C
C     Overwrite B with the upper triangular matrix of its
C     QR-factorization. The elements on the main diagonal are real
C     and non-negative.
C
      CALL SG03BR( BR11, BI11, BR21, BI21, CQB, SRQB, SIQB, LR, LI )
      V    = BR12
      T    = BI12
      BR12 = SRQB*BR22 +  CQB*V
      BI12 = SIQB*BR22 +  CQB*T
      BR22 =  CQB*BR22 - SRQB*V - SIQB*T
      BI22 =             SIQB*V - SRQB*T
      BR11 = LR
      BI11 = LI
C
      IF ( LI.NE.ZERO ) THEN
         V = DLAPY2( BR11, BI11 )
         CALL DLADIV( V, ZERO, BR11, BI11, XR, XI )
         BR11 = V
         T    = XR*BR12 - XI*BI12
         BI12 = XR*BI12 + XI*BR12
         BR12 = T
C
         CQBI = XI*CQB
         CQB  = XR*CQB
         T    = XR*SRQB - XI*SIQB
         SIQB = XR*SIQB + XI*SRQB
         SRQB = T
      END IF
C
      IF ( BI22.NE.ZERO ) THEN
         V = DLAPY2( BR22, BI22 )
         IF ( V.GE.MAX( EPS*MAX( BR11, DLAPY2( BR12, BI12 ) ), SMLNUM )
     $         ) THEN
            CALL DLADIV( V, ZERO, BR22, BI22, XR, XI )
            BR22 = V
         ELSE
            BR22 = ZERO
         END IF
      ELSE IF ( BR22.LT.ZERO ) THEN
         BR22 = -BR22
      END IF
C
C     Compute the Cholesky factor of the solution of the reduced
C     equation. The solution may be scaled to avoid overflow.
C
      IF ( ISCONT ) THEN
C
C        Continuous-time equation.
C
C        Step I:  Compute U(1,1). U(2,1) is 0.
C
         V = -AR11
         IF ( V.LE.ZERO ) THEN
            INFO = 3
            RETURN
         END IF
         V = SQRT( V )*SQRT( ER11 )
         T = ( BR11*SMLNUM )/SQTWO
         IF ( T.GT.V ) THEN
            SCALE1 = V/T
            SCALE  = SCALE1*SCALE
            BR11   = SCALE1*BR11
            BR12   = SCALE1*BR12
            BI12   = SCALE1*BI12
            BR22   = SCALE1*BR22
         END IF
         V    = V*SQTWO
         UR11 = BR11/V
C
C        Step II:  Compute U(1,2).
C
         MX = MAX( ABS( AR11 ), ABS( AI11 ), V )
         IF ( ER11.GT.MX*SMLNUM ) THEN
            MR  =  AR11/ER11
            MI  = -AI11/ER11
            M2S =     V/ER11
            XR  =  M2S*BR12
            XI  =  M2S*BI12
            IF ( UR11.NE.ZERO ) THEN
               XR = XR + UR11*( AR12 + MR*ER12 - MI*EI12 )
               XI = XI + UR11*( AI12 + MR*EI12 + MI*ER12 )
            END IF
            YR = AR22 + MR*ER22
            YI = AI22 + MI*ER22
         ELSE
            XR = BR12*V
            XI = BI12*V
            IF ( UR11.NE.ZERO ) THEN
               XR = XR + UR11*( ER11*AR12 + AR11*ER12 + AI11*EI12 )
               XI = XI + UR11*( ER11*AI12 + AR11*EI12 - AI11*ER12 )
            END IF
            YR = ER11*AR22 + AR11*ER22
            YI = ER11*AI22 - AI11*ER22
         END IF
         T = DLAPY2( XR, XI )*SMLNUM
         W = DLAPY2( YR, YI )
         IF ( T.GT.W ) THEN
            SCALE1 = W/T
            SCALE  = SCALE1*SCALE
            BR11   = SCALE1*BR11
            BR12   = SCALE1*BR12
            BR22   = SCALE1*BR22
            BI12   = SCALE1*BI12
            UR11   = SCALE1*UR11
            XR     = SCALE1*XR
            XI     = SCALE1*XI
         END IF
         CALL DLADIV( XR, XI, -YR, -YI, UR12, UI12 )
C
C        Step III:  Compute U(2,2).
C
         VR12 = UR11*ER12 + UR12*ER22
         VI12 = UR11*EI12 + UI12*ER22
         IF ( ER11.GT.MX*SMLNUM ) THEN
            YR = BR12 - M2S*VR12
            YI = BI12 - M2S*VI12
         ELSE
            XR =  VR12*V
            XI = -VI12*V
            T  = DLAPY2( XR, XI )*SMLNUM
            IF ( T.GT.ER11 ) THEN
               SCALE1 = ER11/T
               SCALE  = SCALE1*SCALE
               BR11   = SCALE1*BR11
               BR12   = SCALE1*BR12
               BI12   = SCALE1*BI12
               BR22   = SCALE1*BR22
               UR11   = SCALE1*UR11
               UR12   = SCALE1*UR12
               UI12   = SCALE1*UI12
               XR     = SCALE1*XR
               XI     = SCALE1*XI
            END IF
            YR =  BR12 - XR/ER11
            YI = -BI12 - XI/ER11
         END IF
         CALL SG03BR( BR22, ZERO, YR, YI, C, SR, SI, LR, LI )
         V = -AR22
         IF ( V.LE.ZERO ) THEN
            INFO = 3
            RETURN
         END IF
         V = SQRT( V )*SQRT( ER22 )
         T = ( LR*SMLNUM )/SQTWO
         IF ( T.GT.V ) THEN
            SCALE1 = V/T
            SCALE  = SCALE1*SCALE
            BR11   = SCALE1*BR11
            BR12   = SCALE1*BR12
            BR22   = SCALE1*BR22
            BI12   = SCALE1*BI12
            UR11   = SCALE1*UR11
            UR12   = SCALE1*UR12
            UI12   = SCALE1*UI12
            LR     = SCALE1*LR
         END IF
         V    = V*SQTWO
         UR22 = LR/V
C
C        Compute the needed elements of the matrices M1 and M2 for the
C        reduced equation.
C
         BETAR = AR11/ER11
         BETAI = AI11/ER11
         ALPHA = SQRT( -BETAR )*SQTWO
C
         VR22 = UR22*ER22
         IF ( VR22.NE.ZERO ) THEN
            M2R22 =  BR22/VR22
            M2R12 =  ( BR12 - ALPHA*VR12 )/VR22
            M2I12 =  ( BI12 - ALPHA*VI12 )/VR22
            M1R12 = -ALPHA*M2R12
            M1I12 = -ALPHA*M2I12
         ELSE
            M1R12 = ZERO
            M1I12 = ZERO
            M2R12 = ZERO
            M2R22 = ALPHA
            M2I12 = ZERO
         END IF
C
      ELSE
C
C        Discrete-time equation.
C
C        Step I:  Compute U(1,1). U(2,1) is 0.
C
         V = ER11
         T = DLAPY2( AR11, AI11 )
         IF ( V.LE.T ) THEN
            INFO = 3
            RETURN
         END IF
         T = T/V
         V = SQRT( ONE - T )*SQRT( ONE + T )*V
         T = BR11*SMLNUM
         IF ( T.GT.V ) THEN
            SCALE1 = V/T
            SCALE  = SCALE1*SCALE
            BR11   = SCALE1*BR11
            BR12   = SCALE1*BR12
            BR22   = SCALE1*BR22
            BI12   = SCALE1*BI12
         END IF
         UR11 = BR11/V
C
C        Step II:  Compute U(1,2).
C
         MX = MAX( ABS( AR11 ), ABS( AI11 ), V )
         IF ( ER11.GT.MX*SMLNUM ) THEN
            MR  =  AR11/ER11
            MI  = -AI11/ER11
            M2S =     V/ER11
            XR  =  M2S*BR12
            XI  =  M2S*BI12
            IF ( UR11.NE.ZERO ) THEN
               XR = XR + UR11*( MR*AR12 - MI*AI12 - ER12 )
               XI = XI + UR11*( MR*AI12 + MI*AR12 - EI12 )
            END IF
            YR =  MI*AI22 - MR*AR22 + ER22
            YI = -MR*AI22 - MI*AR22
         ELSE
            XR = -BR12*V
            XI = -BI12*V
            IF ( UR11.NE.ZERO ) THEN
               XR = XR + UR11*( ER11*ER12 - AR11*AR12 - AI11*AI12 )
               XI = XI + UR11*( ER11*EI12 - AR11*AI12 + AI11*AR12 )
            END IF
            YR = AR11*AR22 + AI11*AI22 - ER11*ER22
            YI = AR11*AI22 - AI11*AR22
         END IF
         T = DLAPY2( XR, XI )*SMLNUM
         W = DLAPY2( YR, YI )
         IF ( T.GT.W ) THEN
            SCALE1 = W/T
            SCALE  = SCALE1*SCALE
            BR11   = SCALE1*BR11
            BR12   = SCALE1*BR12
            BR22   = SCALE1*BR22
            BI12   = SCALE1*BI12
            UR11   = SCALE1*UR11
            XR     = SCALE1*XR
            XI     = SCALE1*XI
         END IF
         CALL DLADIV( XR, XI, YR, YI, UR12, UI12 )
C
C        Step III:  Compute U(2,2).
C
         XR = UR11*AR12 + UR12*AR22 - UI12*AI22
         XI = UR11*AI12 + UR12*AI22 + UI12*AR22
C
         IF ( ER11.GT.MX*SMLNUM ) THEN
C
C           Compute auxiliary matrices M3 and Y. The factorization
C           M3 = M3C * M3C**H is found by solving the special symmetric
C           eigenvalue problem. (D below is the diagonal of M3.)
C           It is convenient to use complex arithmetic for M3 and M3C.
C           Only the (1,2) element of M3 is needed.
C
            X     = -M2S*DCMPLX( MR, MI )
            M3(1) =  X
            CALL ZLARFG( 1, X, M3, 1, ZS )
            D(1)  = DLAPY2( MR, MI )**2
            D(2)  = M2S**2
            ET(1) = DBLE( X )
C
            CALL ZSTEIN( 2, D, ET, 1, EV, IWORK(2), IWORK(4), M3C, 2,
     $                   DWORK, IWORK(6), IWORK, INFO )
            IF ( INFO.NE.0 ) THEN
               INFO = 4
               RETURN
            END IF
C
            V  =  DBLE( M3C(1,1) )*( ONE - DBLE( ZS ) )
            W  = -DBLE( M3C(1,1) )*DIMAG( ZS )
            T  =  DBLE( M3C(2,1) )
            YR =  V*BR12 + W*BI12 + T*XR
            YI =  V*BI12 - W*BR12 + T*XI
C
C           Overwrite B(2,2) with the scalar factor R of the
C           QR-factorization of the 2-by-1 vector [ B(2,2); y ].
C
            CALL SG03BR( BR22, ZERO, YR, YI, C, SR, SI, LR, LI )
         ELSE
            T = DLAPY2( AR22, AI22 )
            IF ( ER22.LE.T ) THEN
               INFO = 3
               RETURN
            END IF
            YR = UR11*ER12 + UR12*ER22
            YI = UR11*EI12 + UI12*ER22
            V  = DLAPY2( BR12, BI12 )
            W  = DLAPY2( XR, XI )
            T  = DLAPY2( YR, YI )
            V  = DLAPY3( V, BR22, W )
            IF ( V.LE.T ) THEN
               INFO = 3
               RETURN
            END IF
            T  = T/V
            LR = SQRT( ONE - T )*SQRT( ONE + T )*V
         END IF
C
         V = ER22
         T = DLAPY2( AR22, AI22 )
         IF ( V.LE.T ) THEN
            INFO = 3
            RETURN
         END IF
         T = T/V
         V = SQRT( ONE - T )*SQRT( ONE + T )*V
         T = LR*SMLNUM
         IF ( V.LE.T ) THEN
            SCALE1 = V/T
            SCALE  = SCALE1*SCALE
            BR11   = SCALE1*BR11
            BR12   = SCALE1*BR12
            BR22   = SCALE1*BR22
            BI12   = SCALE1*BI12
            UR11   = SCALE1*UR11
            UR12   = SCALE1*UR12
            UI12   = SCALE1*UI12
            LR     = SCALE1*LR
         END IF
         UR22 = LR/V
C
C        Compute the needed elements of the matrices M1 and M2 for the
C        reduced equation.
C
         B11  = BR11/ER11
         T    = ER11*ER22
         B12R = ( ER11*BR12 - BR11*ER12 )/T
         B12I = ( ER11*BI12 - BR11*EI12 )/T
C
         BETAR = AR11/ER11
         BETAI = AI11/ER11
         V     = DLAPY2( BETAR, BETAI )
         ALPHA = SQRT( ONE - V )*SQRT( ONE + V )
C
         XR = ( AI11*EI12 - AR11*ER12 )/T + AR12/ER22
         XI = ( AR11*EI12 + AI11*ER12 )/T - AI12/ER22
         XR = -TWO*BETAI*B12I - B11*XR
         XI = -TWO*BETAI*B12R - B11*XI
         V  =  ONE + ( BETAI - BETAR )*( BETAI + BETAR )
         W  = -TWO*BETAI*BETAR
         CALL DLADIV( XR, XI, V, W, YR, YI )
         IF ( YR.NE.ZERO .OR. YI.NE.ZERO ) THEN
            M1R12 = -ALPHA*YR/UR22
            M1I12 =  ALPHA*YI/UR22
            M2R12 =  ( YR*BETAR - YI*BETAI )/UR22
            M2I12 = -( YI*BETAR + YR*BETAI )/UR22
            M2R22 =  BR22/ER22/UR22
         ELSE
            M1R12 = ZERO
            M1I12 = ZERO
            M2R12 = ZERO
            M2I12 = ZERO
            M2R22 = ALPHA
         END IF
      END IF
C
C     Transform U back:  U := U * Q.
C
      VR12 = UR12*CQ + UR11*SRQ
      VI12 = UI12*CQ + UR11*SIQ
      VR22 = UR22*CQ
C
C     Overwrite U with the upper triangular matrix of its
C     QR-factorization. The elements on the main diagonal are real
C     and non-negative.
C
      CALL SG03BR( UR11*CQ - UR12*SRQ - UI12*SIQ, UR12*SIQ - UI12*SRQ,
     $             -UR22*SRQ, UR22*SIQ, CQU, SRQU, SIQU, LR, LI )
      U(1,1) = LR
      U(2,1) = ZERO
      U(1,2) = CQU*VR12 + SRQU*VR22
      UI12   = CQU*VI12 + SIQU*VR22
      U(2,2) = CQU*VR22 - SRQU*VR12 - SIQU*VI12
      UI22   =            SIQU*VR12 - SRQU*VI12
      IF ( LI.NE.ZERO ) THEN
         V = DLAPY2( LR, LI )
         CALL DLADIV( V, ZERO, LR, LI, XR, XI )
         CQUI = XI*CQU
         CQU  = XR*CQU
         T    = XR*SRQU - XI*SIQU
         SIQU = XR*SIQU + XI*SRQU
         SRQU = T
C
         U(1,2) = XR*U(1,2) - XI*UI12
         U(1,1) = V
      END IF
C
      U(2,2) = DLAPY2( U(2,2), UI22 )
C
C     Transform the matrices M1 and M2 back.
C
C        M1 := QU * M1 * QU**H,
C        M2 := QB**H * M2 * QU**H.
C
      V = BETAR
      T = ( CQU*SRQU + CQUI*SIQU )*M1R12 +
     $    ( CQU*SIQU - CQUI*SRQU )*M1I12
C
      M1(1,1) = V + T
      M1(2,2) = V - T
      M1(1,2) = M1R12*( CQU -  CQUI )*( CQU +  CQUI ) +
     $           TWO*( BETAI*( SIQU*CQU + SRQU*CQUI ) - M1I12*CQUI*CQU )
      M1(2,1) = SIQU*( M1R12*SIQU - TWO*BETAI*CQU     - M1I12*SRQU ) -
     $          SRQU*( M1R12*SRQU + TWO*BETAI*CQUI    + M1I12*SIQU )
C
      V       = M2R12* CQU - M2I12*CQUI - ALPHA*SRQU
      W       = M2R12*CQUI + M2I12*CQU  - ALPHA*SIQU
      M2(1,1) =  CQB*( ALPHA* CQU + M2R12*SRQU + M2I12*SIQU ) +
     $          CQBI*( M2I12*SRQU - M2R12*SIQU - ALPHA*CQUI ) -
     $                 M2R22*( SRQB*SRQU + SIQB*SIQU )
      M2(2,1) = ZERO
      M2(1,2) =  CQB*V + CQBI*W - M2R22*( SRQB*CQU - SIQB*CQUI )
      M2(2,2) = SRQB*V + SIQB*W + M2R22*(  CQB*CQU - CQBI*CQUI )
C
C     If the transposed equation (op(K)=K**T, K=A,B,E,U) is to be
C     solved, transpose the matrix U with respect to the
C     anti-diagonal and the matrices M1, M2 with respect to the diagonal
C     and the anti-diagonal.
C
      IF ( ISTRNS ) THEN
         V       = U(1,1)
         U(1,1)  = U(2,2)
         U(2,2)  = V
         V       = M1(1,1)
         M1(1,1) = M1(2,2)
         M1(2,2) = V
         V       = M2(1,1)
         M2(1,1) = M2(2,2)
         M2(2,2) = V
      END IF
      U(2,1) = ZERO
C
      RETURN
C *** Last line of SG03BX ***
      END