control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
      SUBROUTINE MB03BD( JOB, DEFL, COMPQ, QIND, K, N, H, ILO, IHI, S,
     $                   A, LDA1, LDA2, Q, LDQ1, LDQ2, ALPHAR, ALPHAI,
     $                   BETA, SCAL, IWORK, LIWORK, DWORK, LDWORK,
     $                   IWARN, INFO )
C
C     PURPOSE
C
C     To find the eigenvalues of the generalized matrix product
C
C                  S(1)           S(2)                 S(K)
C          A(:,:,1)     * A(:,:,2)     * ... * A(:,:,K)
C
C     where A(:,:,H) is upper Hessenberg and A(:,:,i), i <> H, is upper
C     triangular, using a double-shift version of the periodic
C     QZ method. In addition, A may be reduced to periodic Schur form:
C     A(:,:,H) is upper quasi-triangular and all the other factors
C     A(:,:,I) are upper triangular. Optionally, the 2-by-2 triangular
C     matrices corresponding to 2-by-2 diagonal blocks in A(:,:,H)
C     are so reduced that their product is a 2-by-2 diagonal matrix.
C
C     If COMPQ = 'U' or COMPQ = 'I', then the orthogonal factors are
C     computed and stored in the array Q so that for S(I) = 1,
C
C                         T
C             Q(:,:,I)(in)   A(:,:,I)(in)   Q(:,:,MOD(I,K)+1)(in)
C                                                                 T  (1)
C         =   Q(:,:,I)(out)  A(:,:,I)(out)  Q(:,:,MOD(I,K)+1)(out),
C
C     and for S(I) = -1,
C
C                                  T
C             Q(:,:,MOD(I,K)+1)(in)   A(:,:,I)(in)   Q(:,:,I)(in)
C                                                                 T  (2)
C         =   Q(:,:,MOD(I,K)+1)(out)  A(:,:,I)(out)  Q(:,:,I)(out).
C
C     A partial generation of the orthogonal factors can be realized
C     via the array QIND.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     JOB     CHARACTER*1
C             Specifies the computation to be performed, as follows:
C             = 'E': compute the eigenvalues only; A will not
C                    necessarily be put into periodic Schur form;
C             = 'S': put A into periodic Schur form, and return the
C                    eigenvalues in ALPHAR, ALPHAI, BETA, and SCAL;
C             = 'T': as JOB = 'S', but A is put into standardized
C                    periodic Schur form, that is, the general product
C                    of the 2-by-2 triangular matrices corresponding to
C                    a complex eigenvalue is diagonal.
C
C     DEFL    CHARACTER*1
C             Specifies the deflation strategy to be used, as follows:
C             = 'C': apply a careful deflation strategy, that is,
C                    the criteria are based on the magnitudes of
C                    neighboring elements and infinite eigenvalues are
C                    only deflated at the top; this is the recommended
C                    option;
C             = 'A': apply a more aggressive strategy, that is,
C                    elements on the subdiagonal or diagonal are set
C                    to zero as soon as they become smaller in magnitude
C                    than eps times the norm of the corresponding
C                    factor; this option is only recommended if
C                    balancing is applied beforehand and convergence
C                    problems are observed.
C
C     COMPQ   CHARACTER*1
C             Specifies whether or not the orthogonal transformations
C             should be accumulated in the array Q, as follows:
C             = 'N': do not modify Q;
C             = 'U': modify (update) the array Q by the orthogonal
C                    transformations that are applied to the matrices in
C                    the array A to reduce them to periodic Schur form;
C             = 'I': like COMPQ = 'U', except that each matrix in the
C                    array Q will be first initialized to the identity
C                    matrix;
C             = 'P': use the parameters as encoded in QIND.
C
C     QIND    INTEGER array, dimension (K)
C             If COMPQ = 'P', then this array describes the generation
C             of the orthogonal factors as follows:
C                If QIND(I) > 0, then the array Q(:,:,QIND(I)) is
C             modified by the transformations corresponding to the
C             i-th orthogonal factor in (1) and (2).
C                If QIND(I) < 0, then the array Q(:,:,-QIND(I)) is
C             initialized to the identity and modified by the
C             transformations corresponding to the i-th orthogonal
C             factor in (1) and (2).
C                If QIND(I) = 0, then the transformations corresponding
C             to the i-th orthogonal factor in (1), (2) are not applied.
C
C     Input/Output Parameters
C
C     K       (input)  INTEGER
C             The number of factors.  K >= 1.
C
C     N       (input)  INTEGER
C             The order of each factor in the array A.  N >= 0.
C
C     H       (input)  INTEGER
C             Hessenberg index. The factor A(:,:,H) is on entry in upper
C             Hessenberg form.  1 <= H <= K.
C
C     ILO     (input)  INTEGER
C     IHI     (input)  INTEGER
C             It is assumed that each factor in A is already upper
C             triangular in rows and columns 1:ILO-1 and IHI+1:N.
C             1 <= ILO <= IHI <= N, if N > 0;
C             ILO = 1 and IHI  = 0, if N = 0.
C
C     S       (input)  INTEGER array, dimension (K)
C             The leading K elements of this array must contain the
C             signatures of the factors. Each entry in S must be either
C             1 or -1.
C
C     A       (input/output)  DOUBLE PRECISION array, dimension
C                             (LDA1,LDA2,K)
C             On entry, the leading N-by-N-by-K part of this array
C             must contain the factors in upper Hessenberg-triangular
C             form, that is, A(:,:,H) is upper Hessenberg and the other
C             factors are upper triangular.
C             On exit, if JOB = 'S' and INFO = 0, the leading
C             N-by-N-by-K part of this array contains the factors of
C             A in periodic Schur form, that is, A(:,:,H) is upper quasi
C             triangular and the other factors are upper triangular.
C             On exit, if JOB = 'T' and INFO = 0, the leading
C             N-by-N-by-K part of this array contains the factors of
C             A as for the option JOB = 'S', but the product of the
C             triangular factors corresponding to a 2-by-2 block in
C             A(:,:,H) is diagonal.
C             On exit, if JOB = 'E', then the leading N-by-N-by-K part
C             of this array contains meaningless elements in the off-
C             diagonal blocks. Consequently, the formulas (1) and (2)
C             do not hold for the returned A and Q (if COMPQ <> 'N')
C             in this case.
C
C     LDA1    INTEGER
C             The first leading dimension of the array A.
C             LDA1 >= MAX(1,N).
C
C     LDA2    INTEGER
C             The second leading dimension of the array A.
C             LDA2 >= MAX(1,N).
C
C     Q       (input/output)  DOUBLE PRECISION array, dimension
C                             (LDQ1,LDQ2,K)
C             On entry, if COMPQ = 'U', the leading N-by-N-by-K part
C             of this array must contain the initial orthogonal factors
C             as described in (1) and (2).
C             On entry, if COMPQ = 'P', only parts of the leading
C             N-by-N-by-K part of this array must contain some
C             orthogonal factors as described by the parameters QIND.
C             If COMPQ = 'I', this array should not be set on entry.
C             On exit, if COMPQ = 'U' or COMPQ = 'I', the leading
C             N-by-N-by-K part of this array contains the modified
C             orthogonal factors as described in (1) and (2).
C             On exit, if COMPQ = 'P', only parts of the leading
C             N-by-N-by-K part contain some modified orthogonal factors
C             as described by the parameters QIND.
C             This array is not referenced if COMPQ = 'N'.
C
C     LDQ1    INTEGER
C             The first leading dimension of the array Q.  LDQ1 >= 1,
C             and, if COMPQ <> 'N', LDQ1 >= MAX(1,N).
C
C     LDQ2    INTEGER
C             The second leading dimension of the array Q.  LDQ2 >= 1,
C             and, if COMPQ <> 'N', LDQ2 >= MAX(1,N).
C
C     ALPHAR  (output) DOUBLE PRECISION array, dimension (N)
C             On exit, if INFO = 0, the leading N elements of this array
C             contain the scaled real parts of the eigenvalues of the
C             matrix product A. The i-th eigenvalue of A is given by
C
C             (ALPHAR(I) + ALPHAI(I)*SQRT(-1))/BETA(I) * BASE**SCAL(I),
C
C             where BASE is the machine base (often 2.0). Complex
C             conjugate eigenvalues appear in consecutive locations.
C
C     ALPHAI  (output) DOUBLE PRECISION array, dimension (N)
C             On exit, if INFO = 0, the leading N elements of this array
C             contain the scaled imaginary parts of the eigenvalues
C             of A.
C
C     BETA    (output) DOUBLE PRECISION array, dimension (N)
C             On exit, if INFO = 0, the leading N elements of this array
C             contain indicators for infinite eigenvalues. That is, if
C             BETA(I) = 0.0, then the i-th eigenvalue is infinite.
C             Otherwise BETA(I) is set to 1.0.
C
C     SCAL    (output) INTEGER array, dimension (N)
C             On exit, if INFO = 0, the leading N elements of this array
C             contain the scaling parameters for the eigenvalues of A.
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (LIWORK)
C             On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK,
C             and if IWARN > N, the nonzero absolute values in IWORK(2),
C             ..., IWORK(N+1) are indices of the possibly inaccurate
C             eigenvalues, as well as of the corresponding 1-by-1 or
C             2-by-2 diagonal blocks of the factors in the array A.
C             The 2-by-2 blocks correspond to negative values in IWORK.
C             One negative value is stored for each such eigenvalue
C             pair. Its modulus indicates the starting index of a
C             2-by-2 block. This is also done for any value of IWARN,
C             if a 2-by-2 block is found to have two real eigenvalues.
C             On exit, if INFO = -22, IWORK(1) returns the minimum value
C             of LIWORK.
C
C     LIWORK  INTEGER
C             The length of the array IWORK.  LIWORK  >= 2*K+N.
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) returns the optimal LDWORK,
C             and DWORK(2), ..., DWORK(1+K) contain the Frobenius norms
C             of the factors of the formal matrix product used by the
C             algorithm.
C             On exit, if INFO = -24, DWORK(1) returns the minimum value
C             of LDWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             LDWORK >= K + MAX( 2*N, 8*K ).
C
C     Warning Indicator
C
C     IWARN   INTEGER
C             = 0        :  no warnings;
C             = 1,..,N-1 :  A is in periodic Schur form, but the
C                           algorithm was not able to reveal information
C                           about the eigenvalues from the 2-by-2
C                           blocks.
C                           ALPHAR(i), ALPHAI(i), BETA(i) and SCAL(i),
C                           can be incorrect for i = 1, ..., IWARN+1;
C             = N        :  some eigenvalues might be inaccurate;
C             = N+1      :  some eigenvalues might be inaccurate, and
C                           details can be found in IWORK.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0      :  succesful exit;
C             < 0      :  if INFO = -i, the i-th argument had an illegal
C                         value;
C             = 1,..,N :  the periodic QZ iteration did not converge.
C                         A is not in periodic Schur form, but
C                         ALPHAR(i), ALPHAI(i), BETA(i) and SCAL(i), for
C                         i = INFO+1,...,N should be correct.
C
C     METHOD
C
C     A modified version of the periodic QZ algorithm is used [1], [2].
C
C     REFERENCES
C
C     [1] Bojanczyk, A., Golub, G. H. and Van Dooren, P.
C         The periodic Schur decomposition: algorithms and applications.
C         In F.T. Luk (editor), Advanced Signal Processing Algorithms,
C         Architectures, and Implementations III, Proc. SPIE Conference,
C         vol. 1770, pp. 31-42, 1992.
C
C     [2] Kressner, D.
C         An efficient and reliable implementation of the periodic QZ
C         algorithm. IFAC Workshop on Periodic Control Systems (PSYCO
C         2001), Como (Italy), August 27-28 2001. Periodic Control
C         Systems 2001 (IFAC Proceedings Volumes), Pergamon.
C
C     NUMERICAL ASPECTS
C
C     The implemented method is numerically backward stable.
C                                 3
C     The algorithm requires 0(K N ) floating point operations.
C
C     CONTRIBUTOR
C
C     D. Kressner, Technical Univ. Berlin, Germany, June 2001.
C
C     REVISIONS
C
C     V. Sima, Research Institute for Informatics, Bucharest, Romania,
C     July 2009, SLICOT Library version of the routine PHGEQZ.
C     V. Sima, June 2010, July 2010, Nov. 2010, Sep. 2011, Oct. 2011,
C     Jan. 2013, Feb. 2013, July 2013, Sep. 2016, Nov. 2016, Apr. 2018.
C     Dec. 2018, Jan. 2019, Feb. 2019, Mar. 2019, Aug.-Sep. 2019, Dec.
C     2019, Jan.-Apr. 2020.
C
C     KEYWORDS
C
C     Eigenvalues, QZ algorithm, periodic QZ algorithm, orthogonal
C     transformation.
C
C     ******************************************************************
C
C     .. Parameters ..
C     .. NITER is the number of consecutive iterations for a deflated ..
C     .. subproblem before switching from implicit to explicit shifts...
C     .. MCOUNT is, similarly, the maximum number of consecutive ..
C     .. iterations before switching from explicit to implicit shifts...
C
      INTEGER           MCOUNT, NITER
      PARAMETER         ( MCOUNT = 1, NITER = 10 )
      DOUBLE PRECISION  ZERO, ONE, TEN
      PARAMETER         ( ZERO = 0.0D+0, ONE = 1.0D+0, TEN = 1.0D+1 )
C     .. Scalar Arguments ..
      CHARACTER         COMPQ, DEFL, JOB
      INTEGER           H, IHI, ILO, INFO, IWARN, K, LDA1, LDA2, LDQ1,
     $                  LDQ2, LDWORK, LIWORK, N
C     .. Array Arguments ..
      INTEGER           IWORK(*), QIND(*), S(*), SCAL(*)
      DOUBLE PRECISION  A(LDA1,LDA2,*), ALPHAI(*), ALPHAR(*), BETA(*),
     $                  DWORK(*), Q(LDQ1,LDQ2,*)
C     .. Local Arrays ..
      DOUBLE PRECISION  MACPAR(5)
C     .. Local Scalars ..
      LOGICAL           ADEFL, ISINF, LCMPQ, LINIQ, LPARQ, LSCHR, LSVD
      CHARACTER         SHFT
      INTEGER           AIND, COUNT, COUNTE, I, IERR, IFIRST, IFRSTM,
     $                  IITER, ILAST, ILASTM, IN, IO, J, J1, JDEF,
     $                  JITER, JLO, L, LDEF, LM, MAXIT, NTRA, OPTDW,
     $                  OPTIW, QI, SINV, TITER, ZITER
      DOUBLE PRECISION  A1, A2, A3, A4, BASE, CS, CS1, CS2, LGBAS, NRM,
     $                  SAFMAX, SAFMIN, SDET, SMLNUM, SN, SN1, SN2,
     $                  SVMN, TEMP, TEMP2, TOL, TOLL, ULP, W1, W2
C     .. Workspace Pointers ..
      INTEGER           MAPA, MAPH, MAPQ, PDW, PFREE, PNORM
C     .. External Functions ..
      LOGICAL           LSAME
      DOUBLE PRECISION  DLAMCH, DLANHS, DLAPY2, DLAPY3
      EXTERNAL          DLAMCH, DLANHS, DLAPY2, DLAPY3, LSAME
C     .. External Subroutines ..
      EXTERNAL          DLABAD, DLADIV, DLARTG, DLAS2, DLASET, DROT,
     $                  MA01BD, MB03AB, MB03AF, MB03BA, MB03BB, MB03BC,
     $                  MB03BF, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         ABS, DBLE, INT, LOG, MAX, MIN, MOD, SIGN, SQRT
C
C     .. Executable Statements ..
C
C     Decode the scalar input parameters.
C
      LSVD  = LSAME( JOB,   'T' )
      LSCHR = LSAME( JOB,   'S' ) .OR. LSVD
      LINIQ = LSAME( COMPQ, 'I' )
      LCMPQ = LSAME( COMPQ, 'U' ) .OR. LINIQ
      LPARQ = LSAME( COMPQ, 'P' )
      ADEFL = LSAME( DEFL,  'A' )
      IWARN = 0
      OPTDW = K + MAX( 2*N, 8*K )
      OPTIW = 2*K + N
C
C     Check the scalar input parameters.
C
      INFO = 0
      IF ( .NOT. ( LSCHR .OR. LSAME( JOB, 'E' ) ) ) THEN
         INFO = -1
      ELSE IF ( .NOT.( ADEFL .OR. LSAME( DEFL, 'C' ) ) ) THEN
         INFO = -2
      ELSE IF ( .NOT.( LCMPQ .OR. LPARQ .OR. LSAME( COMPQ, 'N' ) ) )
     $      THEN
         INFO = -3
      ELSE IF ( K.LT.1 ) THEN
         INFO = -5
      ELSE IF ( N.LT.0 ) THEN
         INFO = -6
      ELSE IF ( H.LT.1 .OR. H.GT.K ) THEN
         INFO = -7
      ELSE IF ( ILO.LT.1 ) THEN
         INFO = -8
      ELSE IF ( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN
         INFO = -9
      ELSE IF ( LDA1.LT.MAX( 1, N ) ) THEN
         INFO = -12
      ELSE IF ( LDA2.LT.MAX( 1, N ) ) THEN
         INFO = -13
      ELSE IF ( LDQ1.LT.1 .OR. ( ( LCMPQ .OR. LPARQ )
     $                             .AND. LDQ1.LT.N ) ) THEN
         INFO = -15
      ELSE IF ( LDQ2.LT.1 .OR. ( ( LCMPQ .OR. LPARQ )
     $                             .AND. LDQ2.LT.N ) ) THEN
         INFO = -16
      ELSE IF ( LIWORK.LT.OPTIW ) THEN
         IWORK(1) = OPTIW
         INFO = -22
      ELSE IF ( LDWORK.LT.OPTDW ) THEN
         DWORK(1) = DBLE( OPTDW )
         INFO = -24
      END IF
C
C     Return if there were illegal values.
C
      IF ( INFO.NE.0 ) THEN
         CALL XERBLA( 'MB03BD', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF ( N.EQ.0 ) THEN
         DWORK(1) = ONE
         IWORK(1) = 1
         RETURN
      END IF
C
C     Compute Maps for accessing A and Q.
C
      MAPA = 0
      MAPH = 2
      MAPQ = K
      QI   = 0
      CALL MB03BA( K, H, S, SINV, IWORK(MAPA+1), IWORK(MAPQ+1) )
C
C     Machine Constants.
C
      IN = IHI + 1 - ILO
      SAFMIN = DLAMCH( 'SafeMinimum' )
      SAFMAX = ONE / SAFMIN
      ULP    = DLAMCH( 'Precision' )
      TOLL   = TEN*ULP
      CALL DLABAD( SAFMIN, SAFMAX )
      SMLNUM = SAFMIN*( IN / ULP )
      BASE   = DLAMCH( 'Base' )
      LGBAS  = LOG( BASE )
C
      MACPAR(2) = DLAMCH( 'Underflow' )
      IF ( LSVD ) THEN
         MACPAR(1) = DLAMCH( 'ORmax' )
         MACPAR(3) = SAFMIN
         MACPAR(4) = DLAMCH( 'Epsilon' )
         MACPAR(5) = BASE
      END IF
      IF ( K.GE.INT( LOG( MACPAR(2) ) / LOG( ULP ) ) ) THEN
C
C        Start Iteration with a controlled zero shift.
C
         ZITER = -1
      ELSE
         ZITER = 0
      END IF
C
C     Initialize IWORK (needed in case of loosing accuracy).
C
      DO 10  I = 2*K + 1, 2*K + N
         IWORK(I) = 0
   10 CONTINUE
C
C     Compute norms and initialize Q.
C
      PNORM = 0
      PFREE = K
      DO 20  I = 1, K
         AIND = IWORK(MAPA+I)
         DWORK(I) = DLANHS( 'Frobenius', IN, A(ILO,ILO,AIND), LDA1,
     $                      DWORK )
         J = 0
         IF ( LINIQ ) THEN
            J = I
         ELSE IF ( LPARQ ) THEN
            J = -QIND(I)
         END IF
         IF ( J.NE.0 )
     $      CALL DLASET( 'Full', N, N, ZERO, ONE, Q(1,1,J), LDQ1 )
   20 CONTINUE
C
C     Set Eigenvalues IHI+1:N.
C
      DO 30  J = IHI + 1, N
         CALL MA01BD( BASE, LGBAS, K, S, A(J,J,1), LDA1*LDA2, ALPHAR(J),
     $                BETA(J), SCAL(J) )
         ALPHAI(J) = ZERO
   30 CONTINUE
C
C     If IHI < ILO, skip QZ steps.
C
      IF ( IHI.LT.ILO )
     $   GO TO 550
C
C     MAIN PERIODIC QZ ITERATION LOOP.
C
C     Initialize dynamic indices.
C
C     Eigenvalues ILAST+1:N have been found.
C        Column operations modify rows IFRSTM:whatever.
C        Row operations modify columns whatever:ILASTM.
C
C     If only eigenvalues are being computed, then
C        IFRSTM is the row of the last splitting row above row ILAST;
C        this is always at least ILO.
C     IITER counts iterations since the last eigenvalue was found,
C        to tell when to use an observed zero or exceptional shift.
C     MAXIT is the maximum number of QZ sweeps allowed.
C
      ILAST = IHI
      IF ( LSCHR ) THEN
         IFRSTM = 1
         ILASTM = N
      ELSE
         IFRSTM = ILO
         ILASTM = IHI
      END IF
      IITER  = 0
      TITER  = 0
      COUNT  = 0
      COUNTE = 0
      MAXIT  = 120 * IN
C
      DO  540 JITER = 1, MAXIT
C
C        Special Case: ILAST = ILO.
C
         IF ( ILAST.EQ.ILO )
     $      GO TO 390
C
C        **************************************************************
C        *                     CHECK FOR DEFLATION                    *
C        **************************************************************
C
C        Test 1:  Deflation in the Hessenberg matrix.
C
         IF ( ADEFL )
     $      TOL = MAX( SAFMIN, DWORK(PNORM+1)*ULP )
         AIND = IWORK(MAPA+1)
         JLO = ILO
         DO 40  J = ILAST, ILO + 1, -1
            IF ( .NOT.ADEFL ) THEN
               TOL = ABS( A(J-1,J-1,AIND) ) + ABS( A(J,J,AIND) )
               IF ( TOL.EQ.ZERO )
     $             TOL = DLANHS( '1', J-ILO+1, A(ILO,ILO,AIND), LDA1,
     $                           DWORK )
               TOL = MAX( ULP*TOL, SMLNUM )
            END IF
            IF ( ABS( A(J,J-1,AIND) ).LE.TOL ) THEN
               A(J,J-1,AIND) = ZERO
               JLO = J
               IF ( J.EQ.ILAST )
     $            GO TO 390
               GO TO 50
            END IF
   40    CONTINUE
C
   50    CONTINUE
C
C        Test 2:  Deflation in the triangular matrices with index 1.
C
         DO 70  LDEF = 2, K
            AIND = IWORK(MAPA+LDEF)
            IF ( S(AIND).EQ.SINV ) THEN
               IF ( ADEFL )
     $            TOL = MAX( SAFMIN, DWORK(PNORM+LDEF)*ULP )
               DO 60  J = ILAST, JLO, -1
                  IF ( .NOT.ADEFL ) THEN
                     IF ( J.EQ.ILAST ) THEN
                        TOL = ABS( A(J-1,J,AIND) )
                     ELSE IF ( J.EQ.JLO ) THEN
                        TOL = ABS( A(J,J+1,AIND) )
                     ELSE
                        TOL = ABS( A(J-1,J,AIND) )
     $                      + ABS( A(J,J+1,AIND) )
                     END IF
                     IF ( TOL.EQ.ZERO )
     $                  TOL = DLANHS( '1', J-JLO+1, A(JLO,JLO,AIND),
     $                                LDA1, DWORK )
                     TOL = MAX( ULP*TOL, SMLNUM )
                  END IF
                  IF ( ABS( A(J,J,AIND) ).LE.TOL ) THEN
                     A(J,J,AIND) = ZERO
                     GO TO 170
                  END IF
   60          CONTINUE
            END IF
   70    CONTINUE
C
C        Test 3:  Deflation in the triangular matrices with index -1.
C
         DO 90  LDEF = 2, K
            AIND = IWORK(MAPA+LDEF)
            IF ( S(AIND).NE.SINV ) THEN
               IF ( ADEFL )
     $            TOL = MAX( SAFMIN, DWORK(PNORM+LDEF)*ULP )
               DO 80  J = ILAST, JLO, -1
                  IF ( .NOT.ADEFL ) THEN
                     IF ( J.EQ.ILAST ) THEN
                        TOL = ABS( A(J-1,J,AIND) )
                     ELSE IF ( J.EQ.JLO ) THEN
                        TOL = ABS( A(J,J+1,AIND) )
                     ELSE
                        TOL = ABS( A(J-1,J,AIND) )
     $                      + ABS( A(J,J+1,AIND) )
                     END IF
                     IF ( TOL.EQ.ZERO )
     $                  TOL = DLANHS( '1', J-JLO+1, A(JLO,JLO,AIND),
     $                                LDA1, DWORK )
                     TOL = MAX( ULP*TOL, SMLNUM )
                  END IF
                  IF ( ABS( A(J,J,AIND) ).LE.TOL ) THEN
                     A(J,J,AIND) = ZERO
                     GO TO 320
                  END IF
   80          CONTINUE
            END IF
   90    CONTINUE
C
C        Test 4:  Controlled zero shift.
C
         IF ( ZITER.GE.7 .OR. ZITER.LT.0 ) THEN
C
C           Make Hessenberg matrix upper triangular.
C
            AIND = IWORK(MAPA+1)
            PDW  = PFREE + 1
            DO 100 J = JLO, ILAST - 1
               TEMP = A(J,J,AIND)
               CALL DLARTG( TEMP, A(J+1,J,AIND), CS, SN, A(J,J,AIND) )
               A(J+1,J,AIND) = ZERO
               CALL DROT( ILASTM-J, A(J,J+1,AIND), LDA1,
     $                    A(J+1,J+1,AIND), LDA1, CS, SN )
               DWORK(PDW)   = CS
               DWORK(PDW+1) = SN
               PDW = PDW + 2
  100       CONTINUE
            IF ( LCMPQ ) THEN
               QI = IWORK(MAPQ+1)
            ELSE IF ( LPARQ ) THEN
               QI = ABS( QIND(IWORK(MAPQ+1)) )
            END IF
            IF ( QI.NE.0 ) THEN
               PDW = PFREE + 1
               DO 110  J = JLO, ILAST - 1
                  CS = DWORK(PDW)
                  SN = DWORK(PDW+1)
                  PDW = PDW + 2
                  CALL DROT( N, Q(1,J,QI), 1, Q(1,J+1,QI), 1, CS, SN )
  110          CONTINUE
            END IF
C
C           Propagate transformations back to A_1.
C
            DO 150  L = K, 2, -1
               AIND = IWORK(MAPA+L)
               PDW  = PFREE + 1
               IF ( ADEFL )
     $            TOL = MAX( SAFMIN, DWORK(PNORM+L)*ULP )
               IF ( S(AIND).EQ.SINV ) THEN
                  DO 120  J = JLO, ILAST - 1
                     CS = DWORK(PDW)
                     SN = DWORK(PDW+1)
                     IF ( SN.NE.ZERO ) THEN
                        CALL DROT( J+2-IFRSTM, A(IFRSTM,J,AIND), 1,
     $                             A(IFRSTM,J+1,AIND), 1, CS, SN )
C
C                       Check for deflation.
C
                        IF ( .NOT.ADEFL ) THEN
                           TOL = ABS( A(J,J,AIND) ) +
     $                           ABS( A(J+1,J+1,AIND) )
                           IF ( TOL.EQ.ZERO )
     $                        TOL = DLANHS( '1', J-JLO+2,
     $                                      A(JLO,JLO,AIND), LDA1,
     $                                      DWORK )
                           TOL = MAX( ULP*TOL, SMLNUM )
                        END IF
                        IF ( ABS( A(J+1,J,AIND) ).LE.TOL ) THEN
                           CS = ONE
                           SN = ZERO
                           A(J+1,J,AIND) = ZERO
                        END IF
                     END IF
                     IF ( SN.NE.ZERO ) THEN
                        TEMP = A(J,J,AIND)
                        CALL DLARTG( TEMP, A(J+1,J,AIND), CS, SN,
     $                               A(J,J,AIND) )
                        A(J+1,J,AIND) = ZERO
                        CALL DROT( ILASTM-J, A(J,J+1,AIND), LDA1,
     $                             A(J+1,J+1,AIND), LDA1, CS, SN )
                     END IF
                     DWORK(PDW)   = CS
                     DWORK(PDW+1) = SN
                     PDW = PDW + 2
  120             CONTINUE
               ELSE
                  DO 130  J = JLO, ILAST - 1
                     CS = DWORK(PDW)
                     SN = DWORK(PDW+1)
                     IF ( SN.NE.ZERO ) THEN
                        CALL DROT( ILASTM-J+1, A(J,J,AIND), LDA1,
     $                             A(J+1,J,AIND), LDA1, CS, SN )
C
C                       Check for deflation.
C
                        IF ( .NOT.ADEFL ) THEN
                           TOL = ABS( A(J,J,AIND) ) +
     $                           ABS( A(J+1,J+1,AIND) )
                           IF ( TOL.EQ.ZERO )
     $                        TOL = DLANHS( '1', J-JLO+2,
     $                                      A(JLO,JLO,AIND), LDA1,
     $                                      DWORK )
                           TOL = MAX( ULP*TOL, SMLNUM )
                        END IF
                        IF ( ABS( A(J+1,J,AIND) ).LE.TOL ) THEN
                           CS = ONE
                           SN = ZERO
                           A(J+1,J,AIND) = ZERO
                        END IF
                     END IF
                     IF ( SN.NE.ZERO ) THEN
                        TEMP = A(J+1,J+1,AIND)
                        CALL DLARTG( TEMP, -A(J+1,J,AIND), CS, SN,
     $                               A(J+1,J+1,AIND) )
                        A(J+1,J,AIND) = ZERO
                        CALL DROT( J+1-IFRSTM, A(IFRSTM,J,AIND), 1,
     $                             A(IFRSTM,J+1,AIND), 1, CS, SN )
                     END IF
                     DWORK(PDW)   = CS
                     DWORK(PDW+1) = SN
                     PDW = PDW + 2
  130             CONTINUE
               END IF
               IF ( LCMPQ ) THEN
                  QI = IWORK(MAPQ+L)
               ELSE IF ( LPARQ ) THEN
                  QI = ABS( QIND(IWORK(MAPQ+L)) )
               END IF
               IF ( QI.NE.0 ) THEN
                  PDW = PFREE + 1
                  DO 140  J = JLO, ILAST - 1
                     CS  = DWORK(PDW)
                     SN  = DWORK(PDW+1)
                     PDW = PDW + 2
                     IF ( SN.NE.ZERO )
     $                  CALL DROT( N, Q(1,J,QI), 1, Q(1,J+1,QI), 1, CS,
     $                             SN )
  140             CONTINUE
               END IF
  150       CONTINUE
C
C           Apply the transformations to the right hand side of the
C           Hessenberg factor.
C
            AIND = IWORK(MAPA+1)
            PDW  = PFREE + 1
            ZITER = 0
            DO 160  J = JLO, ILAST - 1
               CS = DWORK(PDW)
               SN = DWORK(PDW+1)
               PDW = PDW + 2
               IF ( SN.NE.ZERO ) THEN
                  CALL DROT( J+2-IFRSTM, A(IFRSTM,J,AIND), 1,
     $                       A(IFRSTM,J+1,AIND), 1, CS, SN )
               ELSE
                  ZITER = -1
               END IF
  160       CONTINUE
C
C           No QZ iteration.
C
            GO TO 530
         END IF
C
C        **************************************************************
C        *                     HANDLE DEFLATIONS                      *
C        **************************************************************
C
C        Case I: Deflation occurs in the Hessenberg matrix. The QZ
C                iteration is only applied to the JLO:ILAST part.
C
         IFIRST = JLO
C
C        Go to the periodic QZ steps.
C
         GO TO 420
C
C        Case II: Deflation occurs in a triangular matrix with index 1.
C
C        Do an unshifted periodic QZ step.
C
  170    CONTINUE
         JDEF = J
         AIND = IWORK(MAPA+1)
         PDW  = PFREE + 1
         DO 180  J = JLO, JDEF - 1
            TEMP = A(J,J,AIND)
            CALL DLARTG( TEMP, A(J+1,J,AIND), CS, SN, A(J,J,AIND) )
            A(J+1,J,AIND) = ZERO
            CALL DROT( ILASTM-J, A(J,J+1,AIND), LDA1, A(J+1,J+1,AIND),
     $                 LDA1, CS, SN )
            DWORK(PDW)   = CS
            DWORK(PDW+1) = SN
            PDW = PDW + 2
  180    CONTINUE
         IF ( LCMPQ ) THEN
            QI = IWORK(MAPQ+1)
         ELSE IF ( LPARQ ) THEN
            QI = ABS( QIND(IWORK(MAPQ+1)) )
         END IF
         IF ( QI.NE.0 ) THEN
            PDW = PFREE + 1
            DO 190  J = JLO, JDEF - 1
               CS  = DWORK(PDW)
               SN  = DWORK(PDW+1)
               PDW = PDW + 2
               CALL DROT( N, Q(1,J,QI), 1, Q(1,J+1,QI), 1, CS, SN )
  190       CONTINUE
         END IF
C
C        Propagate the transformations through the triangular matrices.
C        Due to the zero element on the diagonal of the LDEF-th factor,
C        the number of transformations drops by one.
C
         DO 230  L = K, 2, -1
            AIND = IWORK(MAPA+L)
            IF ( L.LT.LDEF ) THEN
               NTRA = JDEF - 2
            ELSE
               NTRA = JDEF - 1
            END IF
            PDW = PFREE + 1
            IF ( S(AIND).EQ.SINV ) THEN
               DO 200  J = JLO, NTRA
                  CS = DWORK(PDW)
                  SN = DWORK(PDW+1)
                  CALL DROT( J+2-IFRSTM, A(IFRSTM,J,AIND), 1,
     $                       A(IFRSTM,J+1,AIND), 1, CS, SN )
                  TEMP = A(J,J,AIND)
                  CALL DLARTG( TEMP, A(J+1,J,AIND), CS, SN,
     $                         A(J,J,AIND) )
                  A(J+1,J,AIND) = ZERO
                  CALL DROT( ILASTM-J, A(J,J+1,AIND), LDA1,
     $                       A(J+1,J+1,AIND), LDA1, CS, SN )
                  DWORK(PDW)   = CS
                  DWORK(PDW+1) = SN
                  PDW = PDW + 2
  200          CONTINUE
            ELSE
               DO 210  J = JLO, NTRA
                  CS = DWORK(PDW)
                  SN = DWORK(PDW+1)
                  CALL DROT( ILASTM-J+1, A(J,J,AIND), LDA1,
     $                       A(J+1,J,AIND), LDA1, CS, SN )
                  TEMP = A(J+1,J+1,AIND)
                  CALL DLARTG( TEMP, -A(J+1,J,AIND), CS, SN,
     $                         A(J+1,J+1,AIND) )
                  A(J+1,J,AIND) = ZERO
                  CALL DROT( J+1-IFRSTM, A(IFRSTM,J,AIND), 1,
     $                       A(IFRSTM,J+1,AIND), 1, CS, SN )
                  DWORK(PDW)   = CS
                  DWORK(PDW+1) = SN
                  PDW = PDW + 2
  210          CONTINUE
            END IF
            IF ( LCMPQ ) THEN
               QI = IWORK(MAPQ+L)
            ELSE IF ( LPARQ ) THEN
               QI = ABS( QIND(IWORK(MAPQ+L)) )
            END IF
            IF ( QI.NE.0 ) THEN
               PDW = PFREE + 1
               DO 220  J = JLO, NTRA
                  CS  = DWORK(PDW)
                  SN  = DWORK(PDW+1)
                  PDW = PDW + 2
                  CALL DROT( N, Q(1,J,QI), 1, Q(1,J+1,QI), 1, CS, SN )
  220          CONTINUE
            END IF
  230    CONTINUE
C
C        Apply the transformations to the right hand side of the
C        Hessenberg factor.
C
         AIND = IWORK(MAPA+1)
         PDW = PFREE + 1
         DO 240  J = JLO, JDEF - 2
            CS = DWORK(PDW)
            SN = DWORK(PDW+1)
            PDW = PDW + 2
            CALL DROT( J+2-IFRSTM, A(IFRSTM,J,AIND), 1,
     $                 A(IFRSTM,J+1,AIND), 1, CS, SN )
  240    CONTINUE
C
C        Do an unshifted periodic QZ step.
C
         PDW = PFREE + 1
         DO 250  J = ILAST, JDEF + 1, -1
            TEMP = A(J,J,AIND)
            CALL DLARTG( TEMP, -A(J,J-1,AIND), CS, SN, A(J,J,AIND) )
            A(J,J-1,AIND) = ZERO
            CALL DROT( J-IFRSTM, A(IFRSTM,J-1,AIND), 1,
     $                 A(IFRSTM,J,AIND), 1, CS, SN )
            DWORK(PDW)   = CS
            DWORK(PDW+1) = SN
            PDW = PDW + 2
  250    CONTINUE
         IF ( LCMPQ ) THEN
            QI = IWORK(MAPQ+2)
         ELSE IF ( LPARQ ) THEN
            QI = ABS( QIND(IWORK(MAPQ+2)) )
         END IF
         IF ( QI.NE.0 ) THEN
            PDW = PFREE + 1
            DO 260  J = ILAST, JDEF + 1, -1
               CS  = DWORK(PDW)
               SN  = DWORK(PDW+1)
               PDW = PDW + 2
               CALL DROT( N, Q(1,J-1,QI), 1, Q(1,J,QI), 1, CS, SN )
  260       CONTINUE
         END IF
C
C        Propagate the transformations through the triangular matrices.
C
         DO 300  L = 2, K
            AIND = IWORK(MAPA+L)
            IF ( L.GT.LDEF ) THEN
               NTRA = JDEF + 2
            ELSE
               NTRA = JDEF + 1
            END IF
            PDW = PFREE + 1
            IF ( S(AIND).NE.SINV ) THEN
               DO 270  J = ILAST, NTRA, -1
                  CS = DWORK(PDW)
                  SN = DWORK(PDW+1)
                  CALL DROT( J+1-IFRSTM, A(IFRSTM,J-1,AIND), 1,
     $                       A(IFRSTM,J,AIND), 1, CS, SN )
                  TEMP = A(J-1,J-1,AIND)
                  CALL DLARTG( TEMP, A(J,J-1,AIND), CS, SN,
     $                         A(J-1,J-1,AIND) )
                  A(J,J-1,AIND) = ZERO
                  CALL DROT( ILASTM-J+1, A(J-1,J,AIND), LDA1,
     $                       A(J,J,AIND), LDA1, CS, SN )
                  DWORK(PDW)   = CS
                  DWORK(PDW+1) = SN
                  PDW = PDW + 2
  270          CONTINUE
            ELSE
               DO 280  J = ILAST, NTRA, -1
                  CS = DWORK(PDW)
                  SN = DWORK(PDW+1)
                  CALL DROT( ILASTM-J+2, A(J-1,J-1,AIND), LDA1,
     $                       A(J,J-1,AIND), LDA1, CS, SN )
                  TEMP = A(J,J,AIND)
                  CALL DLARTG( TEMP, -A(J,J-1,AIND), CS, SN,
     $                         A(J,J,AIND) )
                  A(J,J-1,AIND) = ZERO
                  CALL DROT( J-IFRSTM, A(IFRSTM,J-1,AIND), 1,
     $                       A(IFRSTM,J,AIND), 1, CS, SN )
                  DWORK(PDW)   = CS
                  DWORK(PDW+1) = SN
                  PDW = PDW + 2
  280          CONTINUE
            END IF
            LM = MOD( L, K ) + 1
            IF ( LCMPQ ) THEN
               QI = IWORK(MAPQ+LM)
            ELSE IF ( LPARQ ) THEN
               QI = ABS( QIND(IWORK(MAPQ+LM)) )
            END IF
            IF ( QI.NE.0 ) THEN
               PDW = PFREE + 1
               DO 290  J = ILAST, NTRA, -1
                  CS  = DWORK(PDW)
                  SN  = DWORK(PDW+1)
                  PDW = PDW + 2
                  CALL DROT( N, Q(1,J-1,QI), 1, Q(1,J,QI), 1, CS, SN )
  290          CONTINUE
            END IF
  300    CONTINUE
C
C        Apply the transformations to the left hand side of the
C        Hessenberg factor.
C
         AIND = IWORK(MAPA+1)
         PDW  = PFREE + 1
         DO 310  J = ILAST, JDEF + 2, -1
            CS  = DWORK(PDW)
            SN  = DWORK(PDW+1)
            PDW = PDW + 2
            CALL DROT( ILASTM-J+2, A(J-1,J-1,AIND), LDA1, A(J,J-1,AIND),
     $                 LDA1, CS, SN )
  310    CONTINUE
C
C        No QZ iteration.
C
         GO TO 530
C
C        Case III: Deflation occurs in a triangular matrix with
C                  index -1.
C
  320    CONTINUE
         JDEF = J
         IF ( JDEF.GT.( ( ILAST - JLO + 1 )/2 ) ) THEN
C
C           Chase the zero downwards to the last position.
C
            DO 340  J1 = JDEF, ILAST - 1
               J = J1
               AIND = IWORK(MAPA+LDEF)
               TEMP = A(J,J+1,AIND)
               CALL DLARTG( TEMP, A(J+1,J+1,AIND), CS, SN,
     $                      A(J,J+1,AIND) )
               A(J+1,J+1,AIND) = ZERO
               CALL DROT( ILASTM-J-1, A(J,J+2,AIND), LDA1,
     $                    A(J+1,J+2,AIND), LDA1, CS, SN )
               LM = MOD( LDEF, K ) + 1
               IF ( LCMPQ ) THEN
                  QI = IWORK(MAPQ+LM)
               ELSE IF ( LPARQ ) THEN
                  QI = ABS( QIND(IWORK(MAPQ+LM)) )
               END IF
               IF ( QI.NE.0 )
     $            CALL DROT( N, Q(1,J,QI), 1, Q(1,J+1,QI), 1, CS, SN )
               DO 330  L = 1, K - 1
                  AIND = IWORK(MAPA+LM)
                  IF ( LM.EQ.1 ) THEN
                     CALL DROT( ILASTM-J+2, A(J,J-1,AIND), LDA1,
     $                          A(J+1,J-1,AIND), LDA1, CS, SN )
                     TEMP = A(J+1,J,AIND)
                     CALL DLARTG( TEMP, -A(J+1,J-1,AIND), CS, SN,
     $                            A(J+1,J,AIND) )
                     A(J+1,J-1,AIND) = ZERO
                     CALL DROT( J-IFRSTM+1, A(IFRSTM,J-1,AIND), 1,
     $                          A(IFRSTM,J,AIND), 1, CS, SN )
                     J = J - 1
                  ELSE IF ( S(AIND).EQ.SINV ) THEN
                     CALL DROT( ILASTM-J+1, A(J,J,AIND), LDA1,
     $                          A(J+1,J,AIND), LDA1, CS, SN )
                     TEMP = A(J+1,J+1,AIND)
                     CALL DLARTG( TEMP, -A(J+1,J,AIND), CS, SN,
     $                            A(J+1,J+1,AIND) )
                     A(J+1,J,AIND) = ZERO
                     CALL DROT( J-IFRSTM+1, A(IFRSTM,J,AIND), 1,
     $                          A(IFRSTM,J+1,AIND), 1, CS, SN )
                  ELSE
                     CALL DROT( J-IFRSTM+2, A(IFRSTM,J,AIND), 1,
     $                          A(IFRSTM,J+1,AIND), 1, CS, SN )
                     TEMP = A(J,J,AIND)
                     CALL DLARTG( TEMP, A(J+1,J,AIND), CS, SN,
     $                            A(J,J,AIND) )
                     A(J+1,J,AIND) = ZERO
                     CALL DROT( ILASTM-J, A(J,J+1,AIND), LDA1,
     $                          A(J+1,J+1,AIND), LDA1, CS, SN )
                  END IF
                  LM = MOD( LM, K ) + 1
                  IF ( LCMPQ ) THEN
                     QI = IWORK(MAPQ+LM)
                  ELSE IF ( LPARQ ) THEN
                     QI = ABS( QIND(IWORK(MAPQ+LM)) )
                  END IF
                  IF ( QI.NE.0 )
     $               CALL DROT( N, Q(1,J,QI), 1, Q(1,J+1,QI), 1, CS,
     $                          SN )
  330          CONTINUE
               AIND = IWORK(MAPA+LDEF)
               CALL DROT( J-IFRSTM+1, A(IFRSTM,J,AIND), 1,
     $                    A(IFRSTM,J+1,AIND), 1, CS, SN )
  340       CONTINUE
C
C           Deflate the last element in the Hessenberg matrix.
C
            AIND = IWORK(MAPA+1)
            J = ILAST
            TEMP = A(J,J,AIND)
            CALL DLARTG( TEMP, -A(J,J-1,AIND), CS, SN, A(J,J,AIND) )
            A(J,J-1,AIND) = ZERO
            CALL DROT( J-IFRSTM, A(IFRSTM,J-1,AIND), 1,
     $                 A(IFRSTM,J,AIND), 1, CS, SN )
            IF ( LCMPQ ) THEN
               QI = IWORK(MAPQ+2)
            ELSE IF ( LPARQ ) THEN
               QI = ABS( QIND(IWORK(MAPQ+2)) )
            END IF
            IF ( QI.NE.0 )
     $         CALL DROT( N, Q(1,J-1,QI), 1, Q(1,J,QI), 1, CS, SN )
            DO 350  L = 2, LDEF - 1
               AIND = IWORK(MAPA+L)
               IF ( S(AIND).NE.SINV ) THEN
                  CALL DROT( J+1-IFRSTM, A(IFRSTM,J-1,AIND), 1,
     $                       A(IFRSTM,J,AIND), 1, CS, SN )
                  TEMP = A(J-1,J-1,AIND)
                  CALL DLARTG( TEMP, A(J,J-1,AIND), CS, SN,
     $                         A(J-1,J-1,AIND) )
                  A(J,J-1,AIND) = ZERO
                  CALL DROT( ILASTM-J+1, A(J-1,J,AIND), LDA1,
     $                       A(J,J,AIND), LDA1, CS, SN )
               ELSE
                  CALL DROT( ILASTM-J+2, A(J-1,J-1,AIND), LDA1,
     $                       A(J,J-1,AIND), LDA1, CS, SN )
                  TEMP = A(J,J,AIND)
                  CALL DLARTG( TEMP, -A(J,J-1,AIND), CS, SN,
     $                         A(J,J,AIND) )
                  A(J,J-1,AIND) = ZERO
                  CALL DROT( J-IFRSTM, A(IFRSTM,J-1,AIND), 1,
     $                       A(IFRSTM,J,AIND), 1, CS, SN )
               END IF
               LM = L + 1
               IF ( LCMPQ ) THEN
                  QI = IWORK(MAPQ+LM)
               ELSE IF ( LPARQ ) THEN
                  QI = ABS( QIND(IWORK(MAPQ+LM)) )
               END IF
               IF ( QI.NE.0 )
     $            CALL DROT( N, Q(1,J-1,QI), 1, Q(1,J,QI), 1, CS, SN )
  350       CONTINUE
            AIND = IWORK(MAPA+LDEF)
            CALL DROT( J+1-IFRSTM, A(IFRSTM,J-1,AIND), 1,
     $                 A(IFRSTM,J,AIND), 1, CS, SN )
         ELSE
C
C           Chase the zero upwards to the first position.
C
            DO 370  J1 = JDEF, JLO + 1, -1
               J = J1
               AIND = IWORK(MAPA+LDEF)
               TEMP = A(J-1,J,AIND)
               CALL DLARTG( TEMP, -A(J-1,J-1,AIND), CS, SN,
     $                      A(J-1,J,AIND) )
               A(J-1,J-1,AIND) = ZERO
               CALL DROT( J-IFRSTM-1, A(IFRSTM,J-1,AIND), 1,
     $                    A(IFRSTM,J,AIND), 1, CS, SN )
               IF ( LCMPQ ) THEN
                  QI = IWORK(MAPQ+LDEF)
               ELSE IF ( LPARQ ) THEN
                  QI = ABS( QIND(IWORK(MAPQ+LDEF)) )
               END IF
               IF ( QI.NE.0 )
     $            CALL DROT( N, Q(1,J-1,QI), 1, Q(1,J,QI), 1, CS, SN )
               LM = LDEF - 1
               DO 360  L = 1, K - 1
                  AIND = IWORK(MAPA+LM)
                  IF ( LM.EQ.1 ) THEN
                     CALL DROT( J-IFRSTM+2, A(IFRSTM,J-1,AIND), 1,
     $                          A(IFRSTM,J,AIND), 1, CS, SN )
                     TEMP = A(J,J-1,AIND)
                     CALL DLARTG( TEMP, A(J+1,J-1,AIND), CS, SN,
     $                            A(J,J-1,AIND) )
                     A(J+1,J-1,AIND) = ZERO
                     CALL DROT( ILASTM-J+1, A(J,J,AIND), LDA1,
     $                          A(J+1,J,AIND), LDA1, CS, SN )
                     J = J + 1
                  ELSE IF ( S(AIND).NE.SINV ) THEN
                     CALL DROT( ILASTM-J+2, A(J-1,J-1,AIND), LDA1,
     $                          A(J,J-1,AIND), LDA1, CS, SN )
                     TEMP = A(J,J,AIND)
                     CALL DLARTG( TEMP, -A(J,J-1,AIND), CS, SN,
     $                            A(J,J,AIND) )
                     A(J,J-1,AIND) = ZERO
                     CALL DROT( J-IFRSTM, A(IFRSTM,J-1,AIND), 1,
     $                          A(IFRSTM,J,AIND), 1, CS, SN )
                  ELSE
                     CALL DROT( J-IFRSTM+1, A(IFRSTM,J-1,AIND), 1,
     $                          A(IFRSTM,J,AIND), 1, CS, SN )
                     TEMP = A(J-1,J-1,AIND)
                     CALL DLARTG( TEMP, A(J,J-1,AIND), CS, SN,
     $                            A(J-1,J-1,AIND) )
                     A(J,J-1,AIND) = ZERO
                     CALL DROT( ILASTM-J+1, A(J-1,J,AIND), LDA1,
     $                          A(J,J,AIND), LDA1, CS, SN )
                  END IF
                  IF ( LCMPQ ) THEN
                     QI = IWORK(MAPQ+LM)
                  ELSE IF ( LPARQ ) THEN
                     QI = ABS( QIND(IWORK(MAPQ+LM)) )
                  END IF
                  IF ( QI.NE.0 )
     $               CALL DROT( N, Q(1,J-1,QI), 1, Q(1,J,QI), 1, CS,
     $                          SN )
                  LM = LM - 1
                  IF ( LM.LE.0 )
     $               LM = K
  360          CONTINUE
               AIND = IWORK(MAPA+LDEF)
               CALL DROT( ILASTM-J+1, A(J-1,J,AIND), LDA1, A(J,J,AIND),
     $                    LDA1, CS, SN )
  370       CONTINUE
C
C           Deflate the first element in the Hessenberg matrix.
C
            AIND = IWORK(MAPA+1)
            J = JLO
            TEMP = A(J,J,AIND)
            CALL DLARTG( TEMP, A(J+1,J,AIND), CS, SN, A(J,J,AIND) )
            A(J+1,J,AIND) = ZERO
            CALL DROT( ILASTM-J, A(J,J+1,AIND), LDA1, A(J+1,J+1,AIND),
     $                 LDA1, CS, SN )
            IF ( LCMPQ ) THEN
               QI = IWORK(MAPQ+1)
            ELSE IF ( LPARQ ) THEN
               QI = ABS( QIND(IWORK(MAPQ+1)) )
            END IF
            IF ( QI.NE.0 )
     $         CALL DROT( N, Q(1,J,QI), 1, Q(1,J+1,QI), 1, CS, SN )
            DO 380  L = K, LDEF + 1, -1
               AIND = IWORK(MAPA+L)
               IF ( S(AIND).EQ.SINV ) THEN
                  CALL DROT( J+2-IFRSTM, A(IFRSTM,J,AIND), 1,
     $                       A(IFRSTM,J+1,AIND), 1, CS, SN )
                  TEMP = A(J,J,AIND)
                  CALL DLARTG( TEMP, A(J+1,J,AIND), CS, SN,
     $                         A(J,J,AIND) )
                  A(J+1,J,AIND) = ZERO
                  CALL DROT( ILASTM-J, A(J,J+1,AIND), LDA1,
     $                       A(J+1,J+1,AIND), LDA1, CS, SN )
               ELSE
                  CALL DROT( ILASTM-J+1, A(J,J,AIND), LDA1,
     $                       A(J+1,J,AIND), LDA1, CS, SN )
                  TEMP = A(J+1,J+1,AIND)
                  CALL DLARTG( TEMP, -A(J+1,J,AIND), CS, SN,
     $                         A(J+1,J+1,AIND) )
                  A(J+1,J,AIND) = ZERO
                  CALL DROT( J+1-IFRSTM, A(IFRSTM,J,AIND), 1,
     $                       A(IFRSTM,J+1,AIND), 1, CS, SN )
               END IF
               IF ( LCMPQ ) THEN
                  QI = IWORK(MAPQ+L)
               ELSE IF ( LPARQ ) THEN
                  QI = ABS( QIND(IWORK(MAPQ+L)) )
               END IF
               IF ( QI.NE.0 )
     $            CALL DROT( N, Q(1,J,QI), 1, Q(1,J+1,QI), 1, CS, SN )
  380       CONTINUE
            AIND = IWORK(MAPA+LDEF)
            CALL DROT( ILASTM-J, A(J,J+1,AIND), LDA1, A(J+1,J+1,AIND),
     $                 LDA1, CS, SN )
         END IF
C
C        No QZ iteration.
C
         GO TO 530
C
C        Special case: A 1x1 block splits off at the bottom.
C
  390    CONTINUE
         CALL MA01BD( BASE, LGBAS, K, S, A(ILAST,ILAST,1), LDA1*LDA2,
     $                ALPHAR(ILAST), BETA(ILAST), SCAL(ILAST) )
         ALPHAI(ILAST) = ZERO
C
C        Check for possible loss of accuracy.
C
         IF ( BETA(ILAST).NE.ZERO ) THEN
            DO 400  L = 1, K
               AIND = IWORK(MAPA+L)
               TEMP = A(ILAST,ILAST,AIND)
               IF ( TEMP.NE.ZERO ) THEN
                  IF ( ABS( TEMP ).LT.DWORK(L)*TOLL ) THEN
                     IWARN = N + 1
                     IWORK(2*K+ILAST) = ILAST
                     GO TO 410
                  END IF
               END IF
  400       CONTINUE
         END IF
C
C        Go to next block - exit if finished.
C
  410    CONTINUE
         ILAST = ILAST - 1
         IF ( ILAST.LT.ILO )
     $      GO TO 550
C
C        Reset iteration counters.
C
         IITER  = 0
         TITER  = 0
         COUNT  = 0
         COUNTE = 0
         IF ( ZITER.NE.-1 )
     $      ZITER = 0
         IF ( .NOT.LSCHR ) THEN
            ILASTM = ILAST
            IF ( IFRSTM.GT.ILAST )
     $         IFRSTM = ILO
         END IF
C
C        No QZ iteration.
C
         GO TO 530
C
C        **************************************************************
C        *                      PERIODIC QZ STEP                      *
C        **************************************************************
C
C        It is assumed that IFIRST < ILAST.
C
  420    CONTINUE
C
         IITER = IITER + 1
         ZITER = ZITER + 1
         IF( .NOT.LSCHR )
     $      IFRSTM = IFIRST
         IF ( IFIRST+1.EQ.ILAST ) THEN
C
C           Special case -- 2x2 block.
C
            J = ILAST - 1
            IF ( TITER.LT.2 ) THEN
               TITER = TITER + 1
C
C              Try to deflate the 2-by-2 problem.
C
               PDW = PFREE + 1
               DO 430  L = 1, K
                  DWORK(PDW  ) = A(J,J,L)
                  DWORK(PDW+1) = A(J+1,J,L)
                  DWORK(PDW+2) = A(J,J+1,L)
                  DWORK(PDW+3) = A(J+1,J+1,L)
                  PDW = PDW + 4
  430          CONTINUE
               IF ( SINV.LT.0 ) THEN
                  I = IWORK(MAPQ+1)
                  IWORK(MAPQ+1) = IWORK(MAPA+1)
               END IF
               CALL MB03BF( K, IWORK(MAPH), S, SINV, DWORK(PFREE+1),
     $                      2, 2, ULP )
               IF ( SINV.LT.0 )
     $            IWORK(MAPQ+1) = I
               I = PFREE + 4*( H - 1 )
               IF ( ABS( DWORK(I+2) ).LT.
     $              ULP*( MAX( ABS( DWORK(I+1) ), ABS( DWORK(I+3) ),
     $                         ABS( DWORK(I+4) ) ) ) ) THEN
C
C                 Construct a perfect shift polynomial. This may fail,
C                 so we try it twice (indicated by TITER).
C
                  CS1 = ONE
                  SN1 = ONE
                  DO 440  L = K, 2, -1
                     AIND = IWORK(MAPA+L)
                     TEMP = DWORK(PFREE+AIND*4)
                     IF ( S(AIND).EQ.SINV ) THEN
                        CALL DLARTG( CS1*A(J,J,AIND), SN1*TEMP, CS1,
     $                               SN1, TEMP )
                     ELSE
                        CALL DLARTG( CS1*TEMP, SN1*A(J,J,AIND), CS1,
     $                               SN1, TEMP )
                     END IF
  440             CONTINUE
                  AIND = IWORK(MAPA+1)
                  TEMP = DWORK(PFREE+AIND*4)
                  CALL DLARTG( A(J,J,AIND)*CS1-TEMP*SN1,
     $                         A(J+1,J,AIND)*CS1, CS1, SN1, TEMP )
                  GO TO 510
               END IF
            END IF
C
C           Looks like a complex block.
C           1. Compute the product SVD of the triangular matrices
C             (optionally).
C
            IF ( LSVD ) THEN
               CALL MB03BC( K, IWORK(MAPA+1), S, SINV, A(J,J,1), LDA1,
     $                      LDA2, MACPAR, DWORK(PFREE+1),
     $                      DWORK(PFREE+K+1), DWORK(PFREE+2*K+1) )
C
C              Update factors and transformations.
C
               AIND = IWORK(MAPA+1)
               CS2  = DWORK(PFREE+1)
               SN2  = DWORK(PFREE+K+1)
               CALL DROT( ILASTM-IFRSTM+1, A(IFRSTM,J,AIND), 1,
     $                    A(IFRSTM,J+1,AIND), 1, CS2, SN2 )
               DO 450  L = 2, K
                  AIND = IWORK(MAPA+L)
                  IF ( LCMPQ ) THEN
                     QI = IWORK(MAPQ+L)
                  ELSE IF ( LPARQ ) THEN
                     QI = ABS( QIND(IWORK(MAPQ+L)) )
                  END IF
                  IF ( QI.NE.0 )
     $               CALL DROT( N, Q(1,J,QI), 1, Q(1,J+1,QI), 1, CS2,
     $                          SN2 )
                  CS1 = CS2
                  SN1 = SN2
                  CS2 = DWORK(PFREE+L)
                  SN2 = DWORK(PFREE+K+L)
                  IF (S(AIND).EQ.SINV) THEN
                     CALL DROT( ILASTM-J-1, A(J,J+2,AIND), LDA1,
     $                          A(J+1,J+2,AIND), LDA1, CS1, SN1 )
                     CALL DROT( J-IFRSTM, A(IFRSTM,J,AIND), 1,
     $                          A(IFRSTM,J+1,AIND), 1, CS2, SN2 )
                  ELSE
                     CALL DROT( ILASTM-J-1, A(J,J+2,AIND), LDA1,
     $                          A(J+1,J+2,AIND), LDA1, CS2, SN2 )
                     CALL DROT( J-IFRSTM, A(IFRSTM,J,AIND), 1,
     $                          A(IFRSTM,J+1,AIND), 1, CS1, SN1 )
                  END IF
  450          CONTINUE
               IF ( LCMPQ ) THEN
                  QI = IWORK(MAPQ+1)
               ELSE IF ( LPARQ ) THEN
                  QI = ABS( QIND(IWORK(MAPQ+1)) )
               END IF
               IF ( QI.NE.0 )
     $            CALL DROT( N, Q(1,J,QI), 1, Q(1,J+1,QI), 1, CS2, SN2 )
               AIND = IWORK(MAPA+1)
               CALL DROT( ILASTM-J+1, A(J,J,AIND), LDA1,
     $                    A(J+1,J,AIND), LDA1, CS2, SN2 )
            END IF
C
C           2. Compute complex eigenvalues.
C
            CALL MB03BB( BASE, LGBAS, ULP, K, IWORK(MAPA+1), S, SINV,
     $                   A(J,J,1), LDA1, LDA2, ALPHAR(J), ALPHAI(J),
     $                   BETA(J), SCAL(J), DWORK(PFREE+1), IERR )
            IF ( IERR.EQ.1 ) THEN
C
C              The single shift periodic QZ did not converge, set
C              IWARN = J to indicate that the eigenvalues are not
C              assigned.
C
               IWARN = MAX( J, IWARN )
            ELSE IF ( IERR.EQ.2 ) THEN
C
C              Some computed eigenvalues might be inaccurate.
C
               IF ( IWARN.EQ.0 )
     $            IWARN = N
            END IF
C
C           Check for real eigenvalues and possible loss of accuracy.
C           Also, set zero or infinite eigenvalues where appropriate.
C
            DO 460  L = 1, K
               AIND = IWORK(MAPA+L)
               IF ( ALPHAI(J).EQ.ZERO .AND. BETA(J).NE.ZERO ) THEN
                  IF ( ABS( A(J,J,AIND) ).LT.DWORK(L)*TOLL ) THEN
                     IWARN = N + 1
                     IWORK(2*K+J) = -J
                     GO TO 470
                  END IF
               ELSE
                  A1  = A(J,J,AIND)
                  A3  = A(J,J+1,AIND)
                  A4  = A(J+1,J+1,AIND)
                  NRM = DLAPY3( A1, A3, A4 )
                  IF ( L.EQ.IWORK(MAPA+1) ) THEN
                     A2  = A(J+1,J,L)
                     NRM = DLAPY2( NRM, A2 )
                  END IF
                  SDET = ( MAX( ABS( A1 ), ABS( A4 ) )/NRM )
     $                    *MIN( ABS( A1 ), ABS( A4 ) )*
     $                    SIGN( ONE, A1 )*SIGN( ONE, A4 )
                  IF ( L.EQ.IWORK(MAPA+1) )
     $               SDET = SDET - ( MAX( ABS( A2 ), ABS( A3 ) )/NRM )
     $                              *MIN( ABS( A2 ), ABS( A3 ) )*
     $                              SIGN( ONE, A2 )*SIGN( ONE, A3 )
                  IF ( ABS( SDET ).LT.DWORK(L)*TOLL ) THEN
C
C                    Make a more accurate singularity test using SVD.
C
                     IF ( L.EQ.IWORK(MAPA+1) ) THEN
                        IF ( ABS( A1 ).GE.ABS( A4 ) ) THEN
                           CALL DLARTG( A1, A2, CS, SN, TEMP )
                           A1   = TEMP
                           TEMP = CS*A3 + SN*A4
                           A4   = CS*A4 - SN*A3
                           A3   = TEMP
                        ELSE
                           CALL DLARTG( A4, A2, CS, SN, TEMP )
                           A4   = TEMP
                           TEMP = CS*A3 + SN*A1
                           A1   = CS*A1 - SN*A3
                           A3   = TEMP
                        END IF
                     END IF
                     CALL DLAS2( A1, A3, A4, SVMN, TEMP )
                     IF ( SVMN.LT.DWORK(L)*TOLL ) THEN
                        IWARN = N + 1
                        IWORK(2*K+J) = -J
                        GO TO 470
                     END IF
                  END IF
               END IF
  460       CONTINUE
C
C           Go to next block and reset counters.
C
  470       CONTINUE
            ILAST = IFIRST - 1
            IF ( ILAST.LT.ILO )
     $         GO TO 550
            IITER  = 0
            TITER  = 0
            COUNT  = 0
            COUNTE = 0
            IF ( ZITER.NE.-1 )
     $         ZITER = 0
            IF ( .NOT.LSCHR ) THEN
               ILASTM = ILAST
               IF ( IFRSTM.GT.ILAST )
     $           IFRSTM = ILO
            END IF
            GO TO 530
         END IF
C
C        Now, it is assumed that ILAST-IFIRST+1 >= 3.
C
         IF ( COUNT.LT.NITER ) THEN
C
C           Use the normal periodic QZ step routine.
C           Note that the pointer to IWORK is increased by 1.
C           The fact that, for SINV = 1, IWORK(MAPQ+1) = IWORK(MAPA+1)
C           is used.
C
            COUNT = COUNT + 1
            IF ( SINV.LT.0 ) THEN
               I = IWORK(MAPQ+1)
               IWORK(MAPQ+1) = IWORK(MAPA+1)
            END IF
            CALL MB03AF( 'Double', K, ILAST-IFIRST+1, IWORK(MAPH), S,
     $                   SINV, A(IFIRST,IFIRST,1), LDA1, LDA2, CS1,
     $                   SN1, CS2, SN2 )
            IF ( SINV.LT.0 )
     $         IWORK(MAPQ+1) = I
         ELSE IF ( COUNTE.LT.MCOUNT ) THEN
C
C           Compute the two trailing eigenvalues for finding the shifts.
C           Deal with special case of infinite eigenvalues, if needed.
C
            I = ILAST - 1
            IF ( SINV.LT.0 ) THEN
               AIND = IWORK(MAPA+1)
               A1   = A(I,I,AIND)
               A2   = A(I+1,I,AIND)
               A3   = A(I,I+1,AIND)
               A4   = A(I+1,I+1,AIND)
               NRM  = DLANHS( 'Frobenius', 2, A(ILO,ILO,AIND), LDA1,
     $                        DWORK )
               SDET = (  MAX( ABS( A1 ), ABS( A4 ) )/NRM )
     $                  *MIN( ABS( A1 ), ABS( A4 ) )*
     $                  SIGN( ONE, A1 )*SIGN( ONE, A4 ) -
     $                (  MAX( ABS( A2 ), ABS( A3 ) )/NRM )
     $                  *MIN( ABS( A2 ), ABS( A3 ) )*
     $                  SIGN( ONE, A2 )*SIGN( ONE, A3 )
               ISINF = ABS( SDET ).LT.DWORK(AIND)*TOLL
               IF ( ISINF ) THEN
                  ALPHAR(I)     = ONE/DWORK(PNORM+1)
                  ALPHAR(ILAST) = ONE/DWORK(PNORM+1)
                  SCAL(I)       = 1
                  SCAL(ILAST)   = 1
               END IF
               IERR = 0
            ELSE
               ISINF = .FALSE.
            END IF
            IF ( .NOT.ISINF ) THEN
               CALL MB03BB( BASE, LGBAS, ULP, K, IWORK(MAPA+1), S, SINV,
     $                      A(I,I,1), LDA1, LDA2, ALPHAR(I), ALPHAI(I),
     $                      BETA(I), SCAL(I), DWORK(PFREE+1), IERR )
               IF ( SINV.LT.0 ) THEN
C
C                 Use the reciprocals of the eigenvalues returned above.
C
                  IF ( ALPHAI(I).EQ.ZERO ) THEN
                     ALPHAR(I)     = SIGN( ONE, ALPHAR(I) )/
     $                               MAX( SAFMIN, ABS( ALPHAR(I) ) )
                     ALPHAR(ILAST) = SIGN( ONE, ALPHAR(ILAST) )/
     $                               MAX( SAFMIN, ABS( ALPHAR(ILAST) ) )
                     SCAL(I)       = -SCAL(I)
                     SCAL(ILAST)   = -SCAL(ILAST)
                  ELSE
                     CALL DLADIV( ONE, ZERO, ALPHAR(ILAST),
     $                            -ALPHAI(ILAST), ALPHAR(I), ALPHAI(I) )
                     SCAL(I) = -SCAL(I)
                  END IF
               END IF
C
               IF ( IERR.NE.0 ) THEN
C
C                 Try an exceptional transformation if MB03BB does not
C                 converge on some special cases.
C
                  TEMP2 = BASE**SCAL(I)
                  IF ( ALPHAI(I).NE.ZERO ) THEN
                     TEMP = ( ABS( ALPHAR(I) ) + ABS( ALPHAI(I) ) )*
     $                      TEMP2
                  ELSE
                     TEMP = MAX( ABS( ALPHAR(ILAST) )*BASE**SCAL(ILAST),
     $                           ABS( ALPHAR(I) )*TEMP2 )
                  END IF
                  IF ( TEMP.LE.SQRT( ULP )*DWORK(PNORM+1) ) THEN
                     ALPHAR(I) = DWORK(PNORM+1)
                     SCAL(I)   = 1
                     ALPHAR(ILAST) = DWORK(PNORM+1)
                     SCAL(ILAST)   = 1
                     IERR = 0
                  END IF
               END IF
            END IF
C
            IF ( IERR.NE.0 ) THEN
C
C              Use the normal periodic QZ step routine.
C
               IERR = 0
               IN   = ILAST - IFIRST + 1
               IF ( SINV.LT.0 ) THEN
                  J1 = IWORK(MAPQ+1)
                  IWORK(MAPQ+1) = IWORK(MAPA+1)
               END IF
               CALL MB03AF( 'Double', K, IN, IWORK(MAPH), S, SINV, 
     $                      A(IFIRST,IFIRST,1), LDA1, LDA2, CS1, SN1,
     $                      CS2, SN2 )
               IF ( SINV.LT.0 )
     $            IWORK(MAPQ+1) = J1
               COUNT  = 0
               COUNTE = 0
            ELSE
C
C              Use explict shifts.
C
               COUNTE = COUNTE + 1
               W1     = ALPHAR(I)*BASE**SCAL(I)
C
               IF ( ALPHAI(I).NE.ZERO ) THEN
C
C                 Use complex conjugate shifts.
C
                  SHFT = 'C'
                  W2   = ALPHAI(I)*BASE**SCAL(I)
C
               ELSE
C
C                 Two identical real shifts are tried first. If there is
C                 no convergence after MCOUNT/2 consecutive iterations,
C                 a single shift is applied. The eigenvalue closer to
C                 the last element of the current product is used.
C
                  W2 = ALPHAR(ILAST)*BASE**SCAL(ILAST)
C
                  CALL MA01BD( BASE, LGBAS, K, S, A(ILAST,ILAST,1),
     $                         LDA1*LDA2, TEMP, TEMP2, I )
                  TEMP = TEMP*BASE**I
                  A1   = ABS( TEMP - W1 )
                  A2   = ABS( TEMP - W2 )
C
                  IF ( COUNTE.LE.MAX( 1, MCOUNT/2 ) ) THEN
                     SHFT = 'D'
                     IF ( A1.LT.A2 ) THEN
                        W2 = W1
                     ELSE
                        W1 = W2
                     END IF
                  ELSE
                     SHFT = 'S'
                     IF ( A1.LT.A2 )
     $                  W2 = W1
                  END IF
C
               END IF
C
C              Compute an initial transformation using the selected
C              shifts.
C
               CALL MB03AB( SHFT, K, ILAST-IFIRST+1, IWORK(MAPA+1), S,
     $                      SINV, A(IFIRST,IFIRST,1), LDA1, LDA2, W1,
     $                      W2, CS1, SN1, CS2, SN2 )
            END IF
C
            IF ( COUNT+COUNTE.GE.NITER+MCOUNT ) THEN
C
C              Reset the two counters.
C
               COUNT  = 0
               COUNTE = 0
            END IF
         END IF
C
C        Do the sweeps.
C
         IF ( K.GT.1 ) THEN
C
C           The propagation of the initial transformation is processed
C           here separately.
C
            IN   = IFIRST + 1
            IO   = ILAST  - 2
            J    = IFIRST
            AIND = IWORK(MAPA+1)
            CALL DROT( ILAST-IFRSTM+1, A(IFRSTM,J+1,AIND), 1,
     $                 A(IFRSTM,J+2,AIND), 1, CS2, SN2 )
            CALL DROT( ILAST-IFRSTM+1, A(IFRSTM,J,AIND), 1,
     $                 A(IFRSTM,J+1,AIND), 1, CS1, SN1 )
            IF ( LCMPQ ) THEN
               QI = IWORK(MAPQ+2)
            ELSE IF ( LPARQ ) THEN
               QI = ABS( QIND(IWORK(MAPQ+2)) )
            END IF
            IF ( QI.NE.0 ) THEN
               CALL DROT( N, Q(1,J+1,QI), 1, Q(1,J+2,QI), 1, CS2, SN2 )
               CALL DROT( N, Q(1,J,QI), 1, Q(1,J+1,QI), 1, CS1, SN1 )
            END IF
C
C           Propagate information from the right to A_k.
C
            DO 480 L = 2, K
               AIND = IWORK(MAPA+L)
               IF ( S(AIND).EQ.SINV ) THEN
                  CALL DROT( ILASTM-J+1, A(J+1,J,AIND), LDA1,
     $                       A(J+2,J,AIND), LDA1, CS2, SN2 )
                  TEMP = A(J+2,J+2,AIND)
                  CALL DLARTG( TEMP, -A(J+2,J+1,AIND), CS2, SN2,
     $                         A(J+2,J+2,AIND) )
                  A(J+2,J+1,AIND) = ZERO
                  CALL DROT( J-IFRSTM+2, A(IFRSTM,J+1,AIND), 1,
     $                       A(IFRSTM,J+2,AIND), 1, CS2, SN2 )
C
                  CALL DROT( ILASTM-J+1, A(J,J,AIND), LDA1,
     $                       A(J+1,J,AIND), LDA1, CS1, SN1 )
                  TEMP = A(J+1,J+1,AIND)
                  CALL DLARTG( TEMP, -A(J+1,J,AIND), CS1, SN1,
     $                         A(J+1,J+1,AIND) )
                  A(J+1,J,AIND) = ZERO
                  CALL DROT( J-IFRSTM+1, A(IFRSTM,J,AIND), 1,
     $                       A(IFRSTM,J+1,AIND), 1, CS1, SN1 )
C
               ELSE
C
                  CALL DROT( J+3-IFRSTM, A(IFRSTM,J+1,AIND), 1,
     $                       A(IFRSTM,J+2,AIND), 1, CS2, SN2 )
                  TEMP = A(J+1,J+1,AIND)
                  CALL DLARTG( TEMP, A(J+2,J+1,AIND), CS2, SN2,
     $                         A(J+1,J+1,AIND) )
                  A(J+2,J+1,AIND) = ZERO
                  CALL DROT( ILASTM-J-1, A(J+1,J+2,AIND), LDA1,
     $                       A(J+2,J+2,AIND), LDA1, CS2, SN2 )
C
                  CALL DROT( J+2-IFRSTM, A(IFRSTM,J,AIND), 1,
     $                       A(IFRSTM,J+1,AIND), 1, CS1, SN1 )
                  TEMP = A(J,J,AIND)
                  CALL DLARTG( TEMP, A(J+1,J,AIND), CS1, SN1,
     $                         A(J,J,AIND) )
                  A(J+1,J,AIND) = ZERO
                  CALL DROT( ILASTM-J, A(J,J+1,AIND), LDA1,
     $                       A(J+1,J+1,AIND), LDA1, CS1, SN1 )
               END IF
               IF ( LCMPQ ) THEN
                  QI = IWORK(MAPQ+MOD(L,K)+1)
               ELSE IF ( LPARQ ) THEN
                  QI = ABS( QIND(IWORK(MAPQ+MOD(L,K)+1)) )
               END IF
               IF ( QI.NE.0 ) THEN
                  CALL DROT( N, Q(1,J+1,QI), 1, Q(1,J+2,QI), 1, CS2,
     $                       SN2 )
                  CALL DROT( N, Q(1,J,QI), 1, Q(1,J+1,QI), 1, CS1, SN1 )
               END IF
  480       CONTINUE
C
            AIND = IWORK(MAPA+1)
            CALL DROT( ILASTM-IFIRST+1, A(J+1,IFIRST,AIND), LDA1,
     $                 A(J+2,IFIRST,AIND), LDA1, CS2, SN2 )
            CALL DROT( ILASTM-IFIRST+1, A(J,IFIRST,AIND), LDA1,
     $                 A(J+1,IFIRST,AIND), LDA1, CS1, SN1 )
         ELSE
            IN = IFIRST - 1
            IO = ILAST  - 3
         END IF
C
         DO 500  J1 = IN, IO
            AIND = IWORK(MAPA+1)
            IF ( LCMPQ ) THEN
               QI = IWORK(MAPQ+1)
            ELSE IF ( LPARQ ) THEN
               QI = ABS( QIND(IWORK(MAPQ+1)) )
            END IF
C
C           Create a bulge if J1 = IFIRST - 1, otherwise chase the
C           bulge.
C
            IF ( J1.LT.IFIRST ) THEN
               J = J1 + 1
               CALL DROT( ILASTM-J+1, A(J+1,J,AIND), LDA1,
     $                    A(J+2,J,AIND), LDA1, CS2, SN2 )
               CALL DROT( ILASTM-J+1, A(J,J,AIND), LDA1,
     $                    A(J+1,J,AIND), LDA1, CS1, SN1 )
            ELSE
               IF ( K.EQ.1 ) THEN
                  J = J + 1
               ELSE
                  J = J1
               END IF
               TEMP = A(J+1,J-1,AIND)
               CALL DLARTG( TEMP, A(J+2,J-1,AIND), CS2, SN2,
     $                      TEMP2 )
               TEMP = A(J,J-1,AIND)
               CALL DLARTG( TEMP, TEMP2, CS1, SN1, A(J,J-1,AIND) )
               A(J+1,J-1,AIND) = ZERO
               A(J+2,J-1,AIND) = ZERO
               CALL DROT( ILASTM-J+1, A(J+1,J,AIND), LDA1,
     $                    A(J+2,J,AIND), LDA1, CS2, SN2 )
               CALL DROT( ILASTM-J+1, A(J,J,AIND), LDA1,
     $                    A(J+1,J,AIND), LDA1, CS1, SN1 )
            END IF
            IF ( QI.NE.0 ) THEN
               CALL DROT( N, Q(1,J+1,QI), 1, Q(1,J+2,QI), 1, CS2, SN2 )
               CALL DROT( N, Q(1,J,  QI), 1, Q(1,J+1,QI), 1, CS1, SN1 )
            END IF
C
C           Propagate information from the right to A_1.
C
            DO 490  L = K, 2, -1
               AIND = IWORK(MAPA+L)
               IF ( S(AIND).EQ.SINV ) THEN
                  CALL DROT( J+3-IFRSTM, A(IFRSTM,J+1,AIND), 1,
     $                       A(IFRSTM,J+2,AIND), 1, CS2, SN2 )
                  TEMP = A(J+1,J+1,AIND)
                  CALL DLARTG( TEMP, A(J+2,J+1,AIND), CS2, SN2,
     $                         A(J+1,J+1,AIND) )
                  A(J+2,J+1,AIND) = ZERO
                  CALL DROT( ILASTM-J-1, A(J+1,J+2,AIND), LDA1,
     $                       A(J+2,J+2,AIND), LDA1, CS2, SN2 )
                  CALL DROT( J+2-IFRSTM, A(IFRSTM,J,AIND), 1,
     $                       A(IFRSTM,J+1,AIND), 1, CS1, SN1 )
                  TEMP = A(J,J,AIND)
                  CALL DLARTG( TEMP, A(J+1,J,AIND), CS1, SN1,
     $                         A(J,J,AIND) )
                  A(J+1,J,AIND) = ZERO
                  CALL DROT( ILASTM-J, A(J,J+1,AIND), LDA1,
     $                       A(J+1,J+1,AIND), LDA1, CS1, SN1 )
               ELSE
                  CALL DROT( ILASTM-J+1, A(J+1,J,AIND), LDA1,
     $                       A(J+2,J,AIND), LDA1, CS2, SN2 )
                  TEMP = A(J+2,J+2,AIND)
                  CALL DLARTG( TEMP, -A(J+2,J+1,AIND), CS2, SN2,
     $                         A(J+2,J+2,AIND) )
                  A(J+2,J+1,AIND) = ZERO
                  CALL DROT( J+2-IFRSTM, A(IFRSTM,J+1,AIND), 1,
     $                       A(IFRSTM,J+2,AIND), 1, CS2, SN2 )
                  CALL DROT( ILASTM-J+1, A(J,J,AIND), LDA1,
     $                       A(J+1,J,AIND), LDA1, CS1, SN1 )
                  TEMP = A(J+1,J+1,AIND)
                  CALL DLARTG( TEMP, -A(J+1,J,AIND), CS1, SN1,
     $                         A(J+1,J+1,AIND) )
                  A(J+1,J,AIND) = ZERO
                  CALL DROT( J+1-IFRSTM, A(IFRSTM,J,AIND), 1,
     $                       A(IFRSTM,J+1,AIND), 1, CS1, SN1 )
               END IF
               IF ( LCMPQ ) THEN
                  QI = IWORK(MAPQ+L)
               ELSE IF ( LPARQ ) THEN
                  QI = ABS( QIND(IWORK(MAPQ+L)) )
               END IF
               IF ( QI.NE.0 ) THEN
                  CALL DROT( N, Q(1,J+1,QI), 1, Q(1,J+2,QI), 1, CS2,
     $                       SN2 )
                  CALL DROT( N, Q(1,J,QI), 1, Q(1,J+1,QI), 1, CS1, SN1 )
               END IF
  490       CONTINUE
            AIND = IWORK(MAPA+1)
            LM = MIN( J+3, ILASTM ) - IFRSTM + 1
            CALL DROT( LM, A(IFRSTM,J+1,AIND), 1,
     $                 A(IFRSTM,J+2,AIND), 1, CS2, SN2 )
            CALL DROT( LM, A(IFRSTM,J,AIND), 1,
     $                 A(IFRSTM,J+1,AIND), 1, CS1, SN1 )
  500    CONTINUE
C
C        To avoid IF statements, there is an extra piece of code for
C        the last step.
C
         J = ILAST - 1
         TEMP = A(J,J-1,AIND)
         CALL DLARTG( TEMP, A(J+1,J-1,AIND), CS1, SN1, A(J,J-1,AIND) )
         A(J+1,J-1,AIND) = ZERO
C
  510    CONTINUE
C
         CALL DROT( ILASTM-J+1, A(J,J,AIND), LDA1,
     $              A(J+1,J,AIND), LDA1, CS1, SN1 )
         IF ( LCMPQ ) THEN
            QI = IWORK(MAPQ+1)
         ELSE IF ( LPARQ ) THEN
            QI = ABS( QIND(IWORK(MAPQ+1)) )
         END IF
         IF ( QI.NE.0 )
     $      CALL DROT( N, Q(1,J,QI), 1, Q(1,J+1,QI), 1, CS1, SN1 )
C
C        Propagate information from the right to A_1.
C
         DO 520  L = K, 2, -1
            AIND = IWORK(MAPA+L)
            IF ( S(AIND).EQ.SINV ) THEN
               CALL DROT( J+2-IFRSTM, A(IFRSTM,J,AIND), 1,
     $                    A(IFRSTM,J+1,AIND), 1, CS1, SN1 )
               TEMP = A(J,J,AIND)
               CALL DLARTG( TEMP, A(J+1,J,AIND), CS1, SN1,
     $                      A(J,J,AIND) )
               A(J+1,J,AIND) = ZERO
               CALL DROT( ILASTM-J, A(J,J+1,AIND), LDA1,
     $                    A(J+1,J+1,AIND), LDA1, CS1, SN1 )
            ELSE
               CALL DROT( ILASTM-J+1, A(J,J,AIND), LDA1,
     $                    A(J+1,J,AIND), LDA1, CS1, SN1 )
               TEMP = A(J+1,J+1,AIND)
               CALL DLARTG( TEMP, -A(J+1,J,AIND), CS1, SN1,
     $                      A(J+1,J+1,AIND) )
               A(J+1,J,AIND) = ZERO
               CALL DROT( J+1-IFRSTM, A(IFRSTM,J,AIND), 1,
     $                    A(IFRSTM,J+1,AIND), 1, CS1, SN1 )
            END IF
            IF ( LCMPQ ) THEN
               QI = IWORK(MAPQ+L)
            ELSE IF ( LPARQ ) THEN
               QI = ABS( QIND(IWORK(MAPQ+L)) )
            END IF
            IF ( QI.NE.0 )
     $         CALL DROT( N, Q(1,J,QI), 1, Q(1,J+1,QI), 1, CS1, SN1 )
  520    CONTINUE
         AIND = IWORK(MAPA+1)
         CALL DROT( ILASTM-IFRSTM+1, A(IFRSTM,J,AIND), 1,
     $              A(IFRSTM,J+1,AIND), 1, CS1, SN1 )
C
C        End of iteration loop.
C
  530    CONTINUE
  540 CONTINUE
C
C     Drop through = non-convergence.
C
      INFO = ILAST
      GO TO 580
C
C     Successful completion of all QZ steps.
C
  550 CONTINUE
C
C     Set eigenvalues 1:ILO-1.
C
      DO 560  J = 1, ILO - 1
         CALL MA01BD( BASE, LGBAS, K, S, A(J,J,1), LDA1*LDA2, ALPHAR(J),
     $                BETA(J), SCAL(J) )
         ALPHAI(J) = ZERO
  560 CONTINUE
C
C     Store information about the splitted 2-by-2 blocks and possible
C     loss of accuracy.
C
      DO 570  I = 2, N + 1
         IWORK(I) = IWORK(2*K+I-1)
  570 CONTINUE
C
  580 CONTINUE
C
      DO 590  L = K + 1, 2, -1
         DWORK(PNORM+L) = DWORK(PNORM+L-1)
  590 CONTINUE
C
      DWORK(1) = DBLE( OPTDW )
      IWORK(1) = OPTIW
C
      RETURN
C *** Last line of MB03BD ***
      END