control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
      SUBROUTINE SB08MD( ACONA, DA, A, RES, E, DWORK, LDWORK, INFO )
C
C     PURPOSE
C
C     To compute a real polynomial E(s) such that
C
C        (a)  E(-s) * E(s) = A(-s) * A(s) and
C        (b)  E(s) is stable - that is, all the zeros of E(s) have
C             non-positive real parts,
C
C     which corresponds to computing the spectral factorization of the
C     real polynomial A(s) arising from continuous optimality problems.
C
C     The input polynomial may be supplied either in the form
C
C        A(s) = a(0) + a(1) * s + ... + a(DA) * s**DA
C
C     or as
C
C        B(s) = A(-s) * A(s)
C             = b(0) + b(1) * s**2  + ... + b(DA) * s**(2*DA)        (1)
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     ACONA   CHARACTER*1
C             Indicates whether the coefficients of A(s) or B(s) =
C             A(-s) * A(s) are to be supplied as follows:
C             = 'A':  The coefficients of A(s) are to be supplied;
C             = 'B':  The coefficients of B(s) are to be supplied.
C
C     Input/Output Parameters
C
C     DA      (input) INTEGER
C             The degree of the polynomials A(s) and E(s).  DA >= 0.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (DA+1)
C             On entry, this array must contain either the coefficients
C             of the polynomial A(s) in increasing powers of s if
C             ACONA = 'A', or the coefficients of the polynomial B(s) in
C             increasing powers of s**2 (see equation (1)) if ACONA =
C             'B'.
C             On exit, this array contains the coefficients of the
C             polynomial B(s) in increasing powers of s**2.
C
C     RES     (output) DOUBLE PRECISION
C             An estimate of the accuracy with which the coefficients of
C             the polynomial E(s) have been computed (see also METHOD
C             and NUMERICAL ASPECTS).
C
C     E       (output) DOUBLE PRECISION array, dimension (DA+1)
C             The coefficients of the spectral factor E(s) in increasing
C             powers of s.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C
C     LDWORK  INTEGER
C             The length of the array DWORK.  LDWORK >= 5*DA+5.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = 1:  if on entry, A(I) = 0.0, for I = 1,2,...,DA+1.
C             = 2:  if on entry, ACONA = 'B' but the supplied
C                   coefficients of the polynomial B(s) are not the
C                   coefficients of A(-s) * A(s) for some real A(s);
C                   in this case, RES and E are unassigned;
C             = 3:  if the iterative process (see METHOD) has failed to
C                   converge in 30 iterations;
C             = 4:  if the last computed iterate (see METHOD) is
C                   unstable. If ACONA = 'B', then the supplied
C                   coefficients of the polynomial B(s) may not be the
C                   coefficients of A(-s) * A(s) for some real A(s).
C
C     METHOD
C         _                                               _
C     Let A(s) be the conjugate polynomial of A(s), i.e., A(s) = A(-s).
C
C     The method used by the routine is based on applying the
C     Newton-Raphson iteration to the function
C               _       _
C        F(e) = A * A - e * e,
C
C     which leads to the iteration formulae (see [1]):
C
C        _(i)   (i)  _(i)   (i)     _      )
C        q   * x   + x   * q    = 2 A * A  )
C                                          )   for i = 0, 1, 2,...
C         (i+1)    (i)   (i)               )
C        q     = (q   + x   )/2            )
C
C                    (0)         DA
C     Starting from q   = (1 + s)   (which has no zeros in the closed
C                                                  (1)   (2)   (3)
C     right half-plane), the sequence of iterates q   , q   , q   ,...
C     converges to a solution of F(e) = 0 which has no zeros in the
C     open right half-plane.
C
C     The iterates satisfy the following conditions:
C
C              (i)
C        (a)  q   is a stable polynomial (no zeros in the closed right
C             half-plane) and
C
C              (i)        (i-1)
C        (b)  q   (1) <= q     (1).
C
C                                       (i-1)                       (i)
C     The iterative process stops with q     , (where i <= 30)  if q
C     violates either (a) or (b), or if the condition
C                       _(i) (i)  _
C        (c)  RES  = ||(q   q   - A A)|| < tol,
C
C     is satisfied, where || . || denotes the largest coefficient of
C                     _(i) (i)  _
C     the polynomial (q   q   - A A) and tol is an estimate of the
C                                                    _(i)  (i)
C     rounding error in the computed coefficients of q    q   . If there
C     is no convergence after 30 iterations then the routine returns
C     with the Error Indicator (INFO) set to 3, and the value of RES may
C     indicate whether or not the last computed iterate is close to the
C     solution.
C
C     If ACONA = 'B', then it is possible that the equation e(-s) *
C     e(s) = B(s) has no real solution, which will be the case if A(1)
C     < 0 or if ( -1)**DA * A(DA+1) < 0.
C
C     REFERENCES
C
C     [1] Vostry, Z.
C         New Algorithm for Polynomial Spectral Factorization with
C         Quadratic Convergence II.
C         Kybernetika, 12, pp. 248-259, 1976.
C
C     NUMERICAL ASPECTS
C
C     The conditioning of the problem depends upon the distance of the
C     zeros of A(s) from the imaginary axis and on their multiplicity.
C     For a well-conditioned problem the accuracy of the computed
C     coefficients of E(s) is of the order of RES. However, for problems
C     with zeros near the imaginary axis or with multiple zeros, the
C     value of RES may be an overestimate of the true accuracy.
C
C     FURTHER COMMENTS
C
C     In order for the problem e(-s) * e(s) = B(s) to have a real
C     solution e(s), it is necessary and sufficient that B(j*omega)
C     >= 0 for any purely imaginary argument j*omega (see [1]).
C
C     CONTRIBUTOR
C
C     Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Aug. 1997.
C     Supersedes Release 2.0 routine SB08AD by A.J. Geurts.
C
C     REVISIONS
C
C     -
C
C     KEYWORDS
C
C     Factorization, Laplace transform, optimal control, optimal
C     filtering, polynomial operations, spectral factorization, zeros.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, HALF, ONE
      PARAMETER         ( ZERO = 0.0D0, HALF = 0.5D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         ACONA
      INTEGER           DA, INFO, LDWORK
      DOUBLE PRECISION  RES
C     .. Array Arguments ..
      DOUBLE PRECISION  A(*), DWORK(*), E(*)
C     .. Local Scalars ..
      LOGICAL           CONV, LACONA, STABLE
      INTEGER           BINC, DA1, I, I0, J, K, LAMBDA, LAY, LAYEND,
     $                  LDIF, LPHEND, LPHI, LQ, M, NC
      DOUBLE PRECISION  A0, EPS, MU, MUJ, SI, SIGNI, SIGNI0, SIGNJ,
     $                  SIMIN1, SQRTA0, SQRTMJ, SQRTMU, TOLPHI, W, XDA
C     .. External Functions ..
      LOGICAL           LSAME
      INTEGER           IDAMAX
      DOUBLE PRECISION  DLAMCH
      EXTERNAL          DLAMCH, IDAMAX, LSAME
C     .. External Subroutines ..
      EXTERNAL          DAXPY, DCOPY, SB08MY, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         ABS, DBLE, MOD, SQRT
C     .. Executable Statements ..
C
      INFO = 0
      LACONA = LSAME( ACONA, 'A' )
C
C     Test the input scalar arguments.
C
      IF( .NOT.LACONA .AND. .NOT.LSAME( ACONA, 'B' ) ) THEN
         INFO = -1
      ELSE IF( DA.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDWORK.LT.5*DA + 5 ) THEN
         INFO = -7
      END IF
C
      IF ( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'SB08MD', -INFO )
         RETURN
      END IF
C
      IF ( .NOT.LACONA ) THEN
         CALL DCOPY( DA+1, A, 1, E, 1 )
      ELSE
         W = ZERO
         CALL SB08MY( DA, A, E, W )
      END IF
C
C     Reduce E such that the first and the last element are non-zero.
C
      DA1 = DA + 1
C
C     WHILE ( DA1 >= 1 and E(DA1) = 0 ) DO
   20 IF ( DA1.GE.1 ) THEN
         IF ( E(DA1).EQ.ZERO ) THEN
            DA1 = DA1 - 1
            GO TO 20
         END IF
      END IF
C     END WHILE 20
C
      DA1 = DA1 - 1
      IF ( DA1.LT.0 ) THEN
         INFO = 1
         RETURN
      END IF
C
      I0 = 1
C
C     WHILE ( E(I0) = 0 ) DO
   40 IF ( E(I0).EQ.ZERO ) THEN
         I0 = I0 + 1
         GO TO 40
      END IF
C     END WHILE 40
C
      I0 = I0 - 1
      IF ( I0.NE.0 ) THEN
         IF ( MOD( I0, 2 ).EQ.0 ) THEN
            SIGNI0 = ONE
         ELSE
            SIGNI0 = -ONE
         END IF
C
         DO 60 I = 1, DA1 - I0 + 1
            E(I) = SIGNI0*E(I+I0)
   60    CONTINUE
C
         DA1 = DA1 - I0
      END IF
      IF ( MOD( DA1, 2 ).EQ.0 ) THEN
         SIGNI = ONE
      ELSE
         SIGNI = -ONE
      END IF
      NC = DA1 + 1
      IF ( ( E(1).LT.ZERO ) .OR. ( ( E(NC)*SIGNI ).LT.ZERO ) ) THEN
         INFO = 2
         RETURN
      END IF
C
C     Initialization.
C
      EPS = DLAMCH( 'Epsilon' )
      SI = ONE/DLAMCH( 'Safe minimum' )
      LQ = 1
      LAY = LQ + NC
      LAMBDA = LAY + NC
      LPHI = LAMBDA + NC
      LDIF = LPHI + NC
C
      A0 = E(1)
      BINC = 1
C
C     Computation of the starting polynomial and scaling of the input
C     polynomial.
C
      MU = ( A0/ABS( E(NC) ) )**( ONE/DBLE( DA1 ) )
      MUJ = ONE
C
      DO 80 J = 1, NC
         W = E(J)*MUJ/A0
         A(J) = W
         E(J) = BINC
         DWORK(LQ+J-1) = BINC
         MUJ = MUJ*MU
         BINC = BINC*( NC - J )/J
   80 CONTINUE
C
      CONV = .FALSE.
      STABLE = .TRUE.
C
C     The contents of the arrays is, cf [1],
C
C     E : the last computed stable polynomial q   ;
C                                              i-1
C     DWORK(LAY+1,...,LAY+DA1-1)  : a'(1), ..., a'(DA1-1), these values
C                                   are changed during the computation
C                                   into y;
C          (LAMBDA+1,...,LAMBDA+DA1-2) : lambda(1), ..., lambda(DA1-2),
C                                        the factors of the Routh
C                                        stability test, (lambda(i) is
C                                        P(i) in [1]);
C          (LPHI+1,...,LPHI+DA1-1) : phi(1), ..., phi(DA1-1), the values
C                                    phi(i,j), see [1], scheme (11);
C          (LDIF,...,LDIF+DA1) : the coeffs of q (-s) * q (s) - b(s).
C                                               i        i
C     DWORK(LQ,...,LQ+DA1) : the last computed polynomial q .
C                                                          i
      I = 0
C
C     WHILE ( I < 30 and CONV = FALSE and STABLE = TRUE ) DO
  100 IF ( I.LT.30 .AND. .NOT.CONV .AND. STABLE ) THEN
         I = I + 1
         CALL DCOPY( NC, A, 1, DWORK(LAY), 1 )
         CALL DCOPY( NC, DWORK(LQ), 1, DWORK(LPHI), 1 )
         M = DA1/2
         LAYEND = LAY + DA1
         LPHEND = LPHI + DA1
         XDA = A(NC)/DWORK(LQ+DA1)
C
         DO 120 K = 1, M
            DWORK(LAY+K) = DWORK(LAY+K) - DWORK(LPHI+2*K)
            DWORK(LAYEND-K) = DWORK(LAYEND-K) - DWORK(LPHEND-2*K)*XDA
  120    CONTINUE
C
C        Computation of lambda(k) and y(k).
C
         K = 1
C
C        WHILE ( K <= DA1 - 2 and STABLE = TRUE ) DO
  140    IF ( ( K.LE.( DA1 - 2 ) ) .AND. STABLE ) THEN
            IF ( DWORK(LPHI+K).LE.ZERO ) STABLE = .FALSE.
            IF ( STABLE ) THEN
               W = DWORK(LPHI+K-1)/DWORK(LPHI+K)
               DWORK(LAMBDA+K) = W
               CALL DAXPY( ( DA1 - K )/2, -W, DWORK(LPHI+K+2), 2,
     $                                        DWORK(LPHI+K+1), 2 )
               W = DWORK(LAY+K)/DWORK(LPHI+K)
               DWORK(LAY+K) = W
               CALL DAXPY( ( DA1 - K )/2, -W, DWORK(LPHI+K+2), 2,
     $                                        DWORK(LAY+K+1), 1 )
               K = K + 1
            END IF
            GO TO 140
         END IF
C        END WHILE 140
C
         IF ( DWORK(LPHI+DA1-1).LE.ZERO ) THEN
            STABLE = .FALSE.
         ELSE
            DWORK(LAY+DA1-1) = DWORK(LAY+DA1-1)/DWORK(LPHI+DA1-1)
         END IF
C
C        STABLE = The polynomial q    is stable.
C                                 i-1
         IF ( STABLE ) THEN
C
C           Computation of x  and q .
C                           i      i
C
            DO 160 K = DA1 - 2, 1, -1
               W = DWORK(LAMBDA+K)
               CALL DAXPY( ( DA1 - K )/2, -W, DWORK(LAY+K+1), 2,
     $                                        DWORK(LAY+K), 2 )
  160       CONTINUE
C
            DWORK(LAY+DA1) = XDA
C
            CALL DCOPY( NC, DWORK(LQ), 1, E, 1 )
            SIMIN1 = SI
            SI = DWORK(LQ)
            SIGNJ = -ONE
C
            DO 180 J = 1, DA1
               W = HALF*( DWORK(LQ+J) + SIGNJ*DWORK(LAY+J) )
               DWORK(LQ+J) = W
               SI = SI + W
               SIGNJ = -SIGNJ
  180       CONTINUE
C
            TOLPHI = EPS
            CALL SB08MY( DA1, E, DWORK(LDIF), TOLPHI )
            CALL DAXPY( NC, -ONE, A, 1, DWORK(LDIF), 1 )
            RES = ABS( DWORK( IDAMAX( NC, DWORK(LDIF), 1 ) + LDIF-1 ) )
C
C           Convergency test.
C
            IF ( ( SI.GT.SIMIN1 ) .OR. ( RES.LT.TOLPHI ) ) THEN
               CONV = .TRUE.
            END IF
            GO TO 100
         END IF
      END IF
C     END WHILE 100
C
C     Backscaling.
C
      MU = ONE/MU
      SQRTA0 = SQRT( A0 )
      SQRTMU = SQRT( MU )
      MUJ = ONE
      SQRTMJ = ONE
C
      DO 200 J = 1, NC
         E(J) = E(J)*SQRTA0*SQRTMJ
         A(J) = A(J)*A0*MUJ
         MUJ = MUJ*MU
         SQRTMJ = SQRTMJ*SQRTMU
  200 CONTINUE
C
      IF ( I0.NE.0 ) THEN
C
         DO 220 J = NC, 1, -1
            E(I0+J) = E(J)
            A(I0+J) = SIGNI0*A(J)
  220    CONTINUE
C
         DO 240 J = 1, I0
            E(J) = ZERO
            A(J) = ZERO
  240    CONTINUE
C
      END IF
C
      IF ( .NOT.CONV ) THEN
         IF ( STABLE ) THEN
            INFO = 3
         ELSE
            INFO = 4
         END IF
      END IF
C
      RETURN
C *** Last line of SB08MD ***
      END