SUBROUTINE SB01DD( N, M, INDCON, A, LDA, B, LDB, NBLK, WR, WI,
     $                   Z, LDZ, Y, COUNT, G, LDG, TOL, IWORK, DWORK,
     $                   LDWORK, INFO )
C
C     PURPOSE
C
C     To compute for a controllable matrix pair ( A, B ) a matrix G
C     such that the matrix A - B*G has the desired eigenstructure,
C     specified by desired eigenvalues and free eigenvector elements.
C
C     The pair ( A, B ) should be given in orthogonal canonical form
C     as returned by the SLICOT Library routine AB01ND.
C
C     ARGUMENTS
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrix A and the number of rows of the
C             matrix B.  N >= 0.
C
C     M       (input) INTEGER
C             The number of columns of the matrix B.  M >= 0.
C
C     INDCON  (input) INTEGER
C             The controllability index of the pair ( A, B ).
C             0 <= INDCON <= N.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading N-by-N part of this array must
C             contain the N-by-N matrix A in orthogonal canonical form,
C             as returned by SLICOT Library routine AB01ND.
C             On exit, the leading N-by-N part of this array contains
C             the real Schur form of the matrix A - B*G.
C             The elements below the real Schur form of A are set to
C             zero.
C
C     LDA     INTEGER
C             The leading dimension of the array A.  LDA >= max(1,N).
C
C     B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C             On entry, the leading N-by-M part of this array must
C             contain the N-by-M matrix B in orthogonal canonical form,
C             as returned by SLICOT Library routine AB01ND.
C             On exit, the leading N-by-M part of this array contains
C             the transformed matrix B.
C
C     LDB     INTEGER
C             The leading dimension of the array B.  LDB >= max(1,N).
C
C     NBLK    (input) INTEGER array, dimension (N)
C             The leading INDCON elements of this array must contain the
C             orders of the diagonal blocks in the orthogonal canonical
C             form of A, as returned by SLICOT Library routine AB01ND.
C             The values of these elements must satisfy the following
C             conditions:
C             NBLK(1) >= NBLK(2) >= ... >= NBLK(INDCON),
C             NBLK(1) + NBLK(2) + ... + NBLK(INDCON) = N.
C
C     WR      (input) DOUBLE PRECISION array, dimension (N)
C     WI      (input) DOUBLE PRECISION array, dimension (N)
C             These arrays must contain the real and imaginary parts,
C             respectively, of the desired poles of the closed-loop
C             system, i.e., the eigenvalues of A - B*G. The poles can be
C             unordered, except that complex conjugate pairs of poles
C             must appear consecutively.
C             The elements of WI for complex eigenvalues are modified
C             internally, but restored on exit.
C
C     Z       (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
C             On entry, the leading N-by-N part of this array must
C             contain the orthogonal matrix Z generated by SLICOT
C             Library routine AB01ND in the reduction of ( A, B ) to
C             orthogonal canonical form.
C             On exit, the leading N-by-N part of this array contains
C             the orthogonal transformation matrix which reduces A - B*G
C             to real Schur form.
C
C     LDZ     INTEGER
C             The leading dimension of the array Z.  LDZ >= max(1,N).
C
C     Y       (input) DOUBLE PRECISION array, dimension (M*N)
C             Y contains elements which are used as free parameters
C             in the eigenstructure design. The values of these
C             parameters are often set by an external optimization
C             procedure.
C
C     COUNT   (output) INTEGER
C             The actual number of elements in Y used as free
C             eigenvector and feedback matrix elements in the
C             eigenstructure design.
C
C     G       (output) DOUBLE PRECISION array, dimension (LDG,N)
C             The leading M-by-N part of this array contains the
C             feedback matrix which assigns the desired eigenstructure
C             of A - B*G.
C
C     LDG     INTEGER
C             The leading dimension of the array G.  LDG >= max(1,M).
C
C     Tolerances
C
C     TOL     DOUBLE PRECISION
C             The tolerance to be used in rank determination when
C             transforming (A, B). If the user sets TOL > 0, then
C             the given value of TOL is used as a lower bound for the
C             reciprocal condition number (see the description of the
C             argument RCOND in the SLICOT routine MB03OD);  a
C             (sub)matrix whose estimated condition number is less than
C             1/TOL is considered to be of full rank.  If the user sets
C             TOL <= 0, then an implicitly computed, default tolerance,
C             defined by  TOLDEF = N*N*EPS,  is used instead, where
C             EPS  is the machine precision (see LAPACK Library routine
C             DLAMCH).
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (M)
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) returns the optimal value
C             of LDWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             LDWORK >= MAX(M*N,M*M+2*N+4*M+1).
C             For optimum performance LDWORK should be larger.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = 1:  if the pair ( A, B ) is not controllable or the free
C                   parameters are not set appropriately.
C
C     METHOD
C
C     The routine implements the method proposed in [1], [2].
C
C     REFERENCES
C
C     [1] Petkov, P.Hr., Konstantinov, M.M., Gu, D.W. and
C         Postlethwaite, I.
C         Optimal pole assignment design of linear multi-input systems.
C         Report 96-11, Department of Engineering, Leicester University,
C         1996.
C
C     [2] Petkov, P.Hr., Christov, N.D. and Konstantinov, M.M.
C         A computational algorithm for pole assignment of linear multi
C         input systems. IEEE Trans. Automatic Control, vol. AC-31,
C         pp. 1044-1047, 1986.
C
C     NUMERICAL ASPECTS
C
C     The method implemented is backward stable.
C
C     FURTHER COMMENTS
C
C     The eigenvalues of the real Schur form matrix As, returned in the
C     array A, are very close to the desired eigenvalues WR+WI*i.
C     However, the eigenvalues of the closed-loop matrix A - B*G,
C     computed by the QR algorithm using the matrices A and B, given on
C     entry, may be far from WR+WI*i, although the relative error
C        norm( Z'*(A - B*G)*Z - As )/norm( As )
C     is close to machine accuracy. This may happen when the eigenvalue
C     problem for the matrix A - B*G is ill-conditioned.
C
C     CONTRIBUTORS
C
C     P.Hr. Petkov, Technical University of Sofia, Oct. 1998.
C     V. Sima, Katholieke Universiteit Leuven, Jan. 1999, SLICOT Library
C     version.
C
C     REVISIONS
C
C     V. Sima, Research Institute for Informatics, Bucharest, Mar. 2005,
C     Apr. 2017.
C
C     KEYWORDS
C
C     Closed loop spectrum, closed loop systems, eigenvalue assignment,
C     orthogonal canonical form, orthogonal transformation, pole
C     placement, Schur form.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
C
C     .. Scalar Arguments ..
      INTEGER            COUNT, INDCON, INFO, LDA, LDB, LDG, LDWORK,
     $                   LDZ, M, N
      DOUBLE PRECISION   TOL
C     ..
C     .. Array Arguments ..
      INTEGER            IWORK( * ), NBLK( * )
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), DWORK( * ),
     $                   G( LDG, * ), WI( * ), WR( * ), Y( * ),
     $                   Z( LDZ, * )
C     ..
C     .. Local Scalars ..
      LOGICAL            COMPLX
      INTEGER            I, IA, INDCN1, INDCN2, INDCRT, IP, IRMX, IWRK,
     $                   K, KK, KMR, L, LP1, M1, MAXWRK, MI, MP1, MR,
     $                   MR1, NBLKCR, NC, NI, NJ, NP1, NR, NR1, RANK
      DOUBLE PRECISION   P, Q, R, S, SVLMXA, SVLMXB, TOLDEF
C     ..
C     .. Local Arrays ..
      DOUBLE PRECISION   SVAL( 3 )
C     ..
C     .. External Functions ..
      DOUBLE PRECISION   DASUM, DLAMCH, DLANGE, DLAPY2
      EXTERNAL           DASUM, DLAMCH, DLANGE, DLAPY2
C     ..
C     .. External Subroutines ..
      EXTERNAL           DAXPY, DCOPY, DGEMM, DGEMV, DLACPY, DLARF,
     $                   DLARFG, DLARTG, DLASET, DROT, DSCAL, MB02QD,
     $                   XERBLA
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC          DBLE, INT, MAX, MIN
C     ..
C     .. Executable Statements ..
C
C     Test the input arguments.
C
      INFO = 0
      NR   = 0
      IWRK = MAX( M*N, M*M + 2*N + 4*M + 1 )
      DO 10 I = 1, MIN( INDCON, N )
         NR = NR + NBLK( I )
         IF( I.GT.1 ) THEN
            IF( NBLK( I-1 ).LT.NBLK( I ) )
     $         INFO = -8
         END IF
   10 CONTINUE
      IF( N.LT.0 ) THEN
         INFO = -1
      ELSE IF( M.LT.0 ) THEN
         INFO = -2
      ELSE IF( INDCON.LT.0 .OR. INDCON.GT.N ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -5
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -7
      ELSE IF( NR.NE.N ) THEN
         INFO = -8
      ELSE IF( LDZ.LT.MAX( 1, N ) ) THEN
         INFO = -12
      ELSE IF( LDG.LT.MAX( 1, M ) ) THEN
         INFO = -16
      ELSE IF( LDWORK.LT.IWRK ) THEN
         INFO = -20
      END IF
C
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SB01DD', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF( MIN( M, N, INDCON ).EQ.0 ) THEN
         COUNT = 0
         DWORK( 1 ) = ONE
         RETURN
      END IF
C
      MAXWRK = IWRK
      TOLDEF = TOL
      IF ( TOLDEF.LE.ZERO ) THEN
C
C        Use the default tolerance, based on machine precision.
C
         TOLDEF = DBLE( N*N )*DLAMCH( 'EPSILON' )
      END IF
C
      IRMX = 2*N + 1
      IWRK = IRMX + M*M
      M1   = NBLK( 1 )
      COUNT  = 1
      INDCRT = INDCON
      NBLKCR = NBLK( INDCRT )
C
C     Compute the Frobenius norm of [ B  A ] (used for rank estimation),
C     taking into account the structure.
C
      NR = M1
      NC = 1
      SVLMXB = DLANGE( 'Frobenius', M1, M, B, LDB, DWORK )
      SVLMXA = ZERO
C
      DO 20 I = 1, INDCRT - 1
         NR = NR + NBLK( I+1 )
         SVLMXA = DLAPY2( SVLMXA,
     $                    DLANGE( 'Frobenius', NR, NBLK( I ),
     $                            A( 1, NC ), LDA, DWORK ) )
         NC = NC + NBLK( I )
   20 CONTINUE
C
      SVLMXA = DLAPY2( SVLMXA,
     $                 DLANGE( 'Frobenius', N, NBLKCR, A( 1, NC ), LDA,
     $                         DWORK ) )
      L  = 1
      MR = NBLKCR
      NR = N - MR + 1
   30 CONTINUE
C     WHILE( INDCRT.GT.1 )LOOP
      IF( INDCRT.GT.1 ) THEN
C
C        Assign next eigenvalue/eigenvector.
C
         LP1 = L + M1
         INDCN1 = INDCRT - 1
         MR1 = NBLK( INDCN1 )
         NR1 = NR - MR1
         COMPLX = WI(L).NE.ZERO
         CALL DCOPY( MR, Y( COUNT ), 1, DWORK( NR ), 1 )
         COUNT = COUNT + MR
         NC = 1
         IF( COMPLX ) THEN
            CALL DCOPY( MR, Y( COUNT ), 1, DWORK( N+NR ), 1 )
            COUNT = COUNT + MR
            WI( L+1 ) = WI( L )*WI( L+1 )
            NC = 2
         END IF
C
C        Compute and transform eigenvector.
C
         DO 50 IP = 1, INDCRT
            IF( IP.NE.INDCRT ) THEN
               CALL DLACPY( 'Full', MR, MR1, A( NR, NR1 ), LDA,
     $                      DWORK( IRMX ), M )
               IF( IP.EQ.1 ) THEN
                  MP1 = MR
                  NP1 = NR + MP1
               ELSE
                  MP1 = MR + 1
                  NP1 = NR + MP1
                  S = DASUM( MP1, DWORK( NR ), 1 )
                  IF( COMPLX ) S = S + DASUM( MP1, DWORK( N+NR ), 1 )
                  IF( S.NE.ZERO ) THEN
C
C                    Scale eigenvector elements.
C
                     CALL DSCAL( MP1, ONE/S, DWORK( NR ), 1 )
                     IF( COMPLX ) THEN
                        CALL DSCAL( MP1, ONE/S, DWORK( N+NR ), 1 )
                        IF( NP1.LE.N )
     $                     DWORK( N+NP1 ) = DWORK( N+NP1 ) / S
                     END IF
                  END IF
               END IF
C
C              Compute the right-hand side of the eigenvector equations.
C
               CALL DCOPY( MR, DWORK( NR ), 1, DWORK( NR1 ), 1 )
               CALL DSCAL( MR, WR( L ), DWORK( NR1 ), 1 )
               CALL DGEMV( 'No transpose', MR, MP1, -ONE, A( NR, NR ),
     $                     LDA, DWORK( NR ), 1, ONE, DWORK( NR1 ), 1 )
               IF( COMPLX ) THEN
                  CALL DAXPY( MR, WI( L+1 ), DWORK( N+NR ), 1,
     $                        DWORK( NR1 ), 1 )
                  CALL DCOPY( MR, DWORK( NR ), 1, DWORK( N+NR1 ), 1 )
                  CALL DAXPY( MR, WR( L+1 ), DWORK( N+NR ), 1,
     $                        DWORK( N+NR1 ), 1 )
                  CALL DGEMV( 'No transpose', MR, MP1, -ONE,
     $                        A( NR, NR ), LDA, DWORK( N+NR ), 1, ONE,
     $                        DWORK( N+NR1 ), 1 )
                  IF( NP1.LE.N )
     $               CALL DAXPY( MR, -DWORK( N+NP1 ), A( NR, NP1 ), 1,
     $                           DWORK( N+NR1 ), 1 )
               END IF
C
C              Solve linear equations for eigenvector elements.
C
               CALL MB02QD( 'FreeElements', 'NoPermuting', MR, MR1, NC,
     $                      TOLDEF, SVLMXA, DWORK( IRMX ), M,
     $                      DWORK( NR1 ), N, Y( COUNT ), IWORK, RANK,
     $                      SVAL, DWORK( IWRK ), LDWORK-IWRK+1, INFO )
               MAXWRK = MAX( MAXWRK, INT( DWORK( IWRK ) ) + IWRK - 1 )
               IF( RANK.LT.MR ) GO TO 80
C
               COUNT = COUNT + ( MR1 - MR )*NC
               NJ = NR1
            ELSE
               NJ = NR
            END IF
            NI = NR + MR - 1
            IF( IP.EQ.1 ) THEN
               KMR = MR - 1
            ELSE
               KMR = MR
               IF( IP.EQ.2 ) THEN
                  NI = NI + NBLKCR
               ELSE
                  NI = NI + NBLK( INDCRT-IP+2 ) + 1
                  IF( COMPLX ) NI = MIN( NI+1, N )
               END IF
            END IF
C
            DO 40 KK = 1, KMR
               K = NR + MR - KK
               IF( IP.EQ.1 ) K = N - KK
               CALL DLARTG( DWORK( K ), DWORK( K+1 ), P, Q, R )
               DWORK( K )   = R
               DWORK( K+1 ) = ZERO
C
C              Transform  A.
C
               CALL DROT( N-NJ+1, A( K, NJ ), LDA, A( K+1, NJ ), LDA,
     $                    P, Q )
               CALL DROT( NI, A( 1, K ), 1, A( 1, K+1 ), 1, P, Q )
C
               IF( K.LT.LP1 ) THEN
C
C                 Transform B.
C
                  CALL DROT( M, B( K, 1 ), LDB, B( K+1, 1 ), LDB, P, Q )
               END IF
C
C              Accumulate transformations.
C
               CALL DROT( N, Z( 1, K ), 1, Z( 1, K+1 ), 1, P, Q )
C
               IF( COMPLX ) THEN
                  CALL DROT( 1, DWORK( N+K ), 1, DWORK( N+K+1 ), 1, P,
     $                       Q )
                  K = K + 1
                  IF( K.LT.N ) THEN
                     CALL DLARTG( DWORK( N+K ), DWORK( N+K+1 ), P, Q,
     $                            R )
                     DWORK( N+K )   = R
                     DWORK( N+K+1 ) = ZERO
C
C                    Transform  A.
C
                     CALL DROT( N-NJ+1, A( K, NJ ), LDA, A( K+1, NJ ),
     $                          LDA, P, Q )
                     CALL DROT( NI, A( 1, K ), 1, A( 1, K+1 ), 1, P, Q )
C
                     IF( K.LE.LP1 ) THEN
C
C                       Transform B.
C
                        CALL DROT( M, B( K, 1 ), LDB, B( K+1, 1 ), LDB,
     $                             P, Q )
                     END IF
C
C                    Accumulate transformations.
C
                     CALL DROT( N, Z( 1, K ), 1, Z( 1, K+1 ), 1, P, Q )
C
                  END IF
               END IF
   40       CONTINUE
C
            IF( IP.NE.INDCRT ) THEN
               MR = MR1
               NR = NR1
               IF( IP.NE.INDCN1 ) THEN
                  INDCN2 = INDCRT - IP - 1
                  MR1 = NBLK( INDCN2 )
                  NR1 = NR1 - MR1
               END IF
            END IF
   50    CONTINUE
C
         IF( .NOT.COMPLX ) THEN
C
C           Find one column of G.
C
            CALL DLACPY( 'Full', M1, M, B( L+1, 1 ), LDB, DWORK( IRMX ),
     $                   M )
            CALL DCOPY(  M1, A( L+1, L ), 1, G( 1, L ), 1 )
         ELSE
C
C           Find two columns of G.
C
            IF( LP1.LT.N ) THEN
               LP1 = LP1 + 1
               K = L + 2
            ELSE
               K = L + 1
            END IF
            CALL DLACPY( 'Full', M1, M, B( K, 1 ), LDB, DWORK( IRMX ),
     $                   M )
            CALL DLACPY( 'Full', M1, 2, A( K, L ), LDA, G( 1, L ), LDG )
            IF( K.EQ.L+1 ) THEN
               G( 1, L )   = G( 1, L ) -
     $                       ( DWORK( N+L+1 ) / DWORK( L ) )*WI( L+1 )
               G( 1, L+1 ) = G( 1, L+1 ) - WR(L+1) +
     $                         ( DWORK( N+L ) / DWORK( L ) )*WI( L+1 )
            END IF
         END IF
C
         CALL MB02QD( 'FreeElements', 'NoPermuting', M1, M, NC, TOLDEF,
     $                SVLMXB, DWORK( IRMX ), M, G( 1, L ), LDG,
     $                Y( COUNT ), IWORK, RANK, SVAL, DWORK( IWRK ),
     $                LDWORK-IWRK+1, INFO )
         MAXWRK = MAX( MAXWRK, INT( DWORK( IWRK ) ) + IWRK - 1 )
         IF( RANK.LT.M1 ) GO TO 80
C
         COUNT = COUNT + ( M - M1 )*NC
         CALL DGEMM( 'No transpose', 'No transpose', LP1, NC, M, -ONE,
     $               B, LDB, G( 1, L ), LDG, ONE, A( 1, L ), LDA )
         L = L + 1
         NBLKCR = NBLKCR - 1
         IF( NBLKCR.EQ.0 ) THEN
            INDCRT = INDCRT - 1
            NBLKCR = NBLK( INDCRT )
         END IF
         IF( COMPLX ) THEN
            WI( L ) = -WI( L-1 )
            L = L + 1
            NBLKCR = NBLKCR - 1
            IF( NBLKCR.EQ.0 ) THEN
               INDCRT = INDCRT - 1
               IF( INDCRT.GT.0 ) NBLKCR = NBLK( INDCRT )
            END IF
         END IF
         MR = NBLKCR
         NR = N - MR + 1
         GO TO 30
      END IF
C     END WHILE 30
C
      IF( L.LE.N ) THEN
C
C        Find the remaining columns of G.
C
C        QR decomposition of the free eigenvectors.
C
         DO 60 I = 1, MR - 1
            IA = L + I - 1
            MI = MR - I + 1
            CALL DCOPY( MI, Y( COUNT ), 1, DWORK( 1 ), 1 )
            COUNT = COUNT + MI
            CALL DLARFG( MI, DWORK( 1 ), DWORK( 2 ), 1, R )
            DWORK( 1 ) = ONE
C
C           Transform A.
C
            CALL DLARF( 'Left', MI, MR, DWORK( 1 ), 1, R, A( IA, L ),
     $                  LDA, DWORK( N+1 ) )
            CALL DLARF( 'Right', N, MI, DWORK( 1 ), 1, R, A( 1, IA ),
     $                  LDA, DWORK( N+1 ) )
C
C           Transform B.
C
            CALL DLARF( 'Left', MI, M, DWORK( 1 ), 1, R, B( IA, 1 ),
     $                  LDB, DWORK( N+1 ) )
C
C           Accumulate transformations.
C
            CALL DLARF( 'Right', N, MI, DWORK( 1 ), 1, R, Z( 1, IA ),
     $                  LDZ, DWORK( N+1 ) )
   60    CONTINUE
C
         I = 0
C        REPEAT
   70    CONTINUE
            I  = I + 1
            IA = L + I - 1
            IF( WI( IA ).EQ.ZERO ) THEN
               CALL DCOPY( MR, A( IA, L ), LDA, G( I, L ), LDG )
               CALL DAXPY( MR-I, -ONE, Y( COUNT ), 1, G( I, L+I ), LDG )
               COUNT = COUNT + MR - I
               G( I, IA ) = G( I, IA ) - WR( IA )
            ELSE
               CALL DLACPY( 'Full', 2, MR, A( IA, L ), LDA, G( I, L ),
     $                      LDG )
               CALL DAXPY(  MR-I-1, -ONE, Y( COUNT ), 2, G( I, L+I+1 ),
     $                      LDG )
               CALL DAXPY(  MR-I-1, -ONE, Y( COUNT+1 ), 2,
     $                      G( I+1, L+I+1 ), LDG )
               COUNT = COUNT + 2*( MR - I - 1 )
               G( I, IA )     = G(I, IA )     - WR( IA )
               G( I, IA+1 )   = G(I, IA+1 )   - WI( IA )
               G( I+1, IA )   = G(I+1, IA )   - WI( IA+1 )
               G( I+1, IA+1 ) = G(I+1, IA+1 ) - WR( IA+1 )
               I = I + 1
            END IF
         IF( I.LT.MR ) GO TO 70
C        UNTIL I.GE.MR
C
         CALL DLACPY( 'Full', MR, M, B( L, 1 ), LDB, DWORK( IRMX ), M )
         CALL MB02QD( 'FreeElements', 'NoPermuting', MR, M, MR, TOLDEF,
     $                SVLMXB, DWORK( IRMX ), M, G( 1, L ), LDG,
     $                Y( COUNT ), IWORK, RANK, SVAL, DWORK( IWRK ),
     $                LDWORK-IWRK+1, INFO )
         MAXWRK = MAX( MAXWRK, INT( DWORK( IWRK ) ) + IWRK - 1 )
         IF( RANK.LT.MR ) GO TO 80
C
         COUNT = COUNT + ( M - MR )*MR
         CALL DGEMM( 'No transpose', 'No transpose', N, MR, M, -ONE, B,
     $               LDB, G( 1, L ), LDG, ONE, A( 1, L ), LDA )
      END IF
C
C     Transform G:
C     G := G * Z'.
C
      CALL DGEMM( 'No transpose', 'Transpose', M, N, N, ONE, G, LDG,
     $            Z, LDZ, ZERO, DWORK( 1 ), M )
      CALL DLACPY( 'Full', M, N, DWORK( 1 ), M, G, LDG )
      COUNT = COUNT - 1
C
      IF( N.GT.2) THEN
C
C        Set the elements of A below the Hessenberg part to zero.
C
         CALL DLASET( 'Lower', N-2, N-2, ZERO, ZERO, A( 3, 1 ), LDA )
      END IF
      DWORK( 1 ) = MAXWRK
      RETURN
C
C     Exit with INFO = 1 if the pair ( A, B ) is not controllable or
C     the free parameters are not set appropriately.
C
   80 INFO = 1
      RETURN
C *** Last line of SB01DD ***
      END