control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
      SUBROUTINE MB03BZ( JOB, COMPQ, K, N, ILO, IHI, S, A, LDA1, LDA2,
     $                   Q, LDQ1, LDQ2, ALPHA, BETA, SCAL, DWORK,
     $                   LDWORK, ZWORK, LZWORK, INFO )
C
C     PURPOSE
C
C     To find the eigenvalues of the complex generalized matrix product
C
C                  S(1)           S(2)                 S(K)
C          A(:,:,1)     * A(:,:,2)     * ... * A(:,:,K)    ,  S(1) = 1,
C
C     where A(:,:,1) is upper Hessenberg and A(:,:,i) is upper
C     triangular, i = 2, ..., K, using a single-shift version of the
C     periodic QZ method. In addition, A may be reduced to periodic
C     Schur form by unitary transformations: all factors A(:,:,i) become
C     upper triangular.
C
C     If COMPQ = 'V' or COMPQ = 'I', then the unitary factors are
C     computed and stored in the array Q so that for S(I) = 1,
C
C                         H
C             Q(:,:,I)(in)   A(:,:,I)(in)   Q(:,:,MOD(I,K)+1)(in)
C                          H                                        (1)
C         =   Q(:,:,I)(out)  A(:,:,I)(out)  Q(:,:,MOD(I,K)+1)(out),
C
C     and for S(I) = -1,
C
C                                  H
C             Q(:,:,MOD(I,K)+1)(in)   A(:,:,I)(in)   Q(:,:,I)(in)
C                                   H                               (2)
C         =   Q(:,:,MOD(I,K)+1)(out)  A(:,:,I)(out)  Q(:,:,I)(out).
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     JOB     CHARACTER*1
C             Specifies the computation to be performed, as follows:
C             = 'E': compute the eigenvalues only; A will not
C                    necessarily be put into periodic Schur form;
C             = 'S': put A into periodic Schur form, and return the
C                    eigenvalues in ALPHA, BETA, and SCAL.
C
C     COMPQ   CHARACTER*1
C             Specifies whether or not the unitary transformations
C             should be accumulated in the array Q, as follows:
C             = 'N': do not modify Q;
C             = 'V': modify the array Q by the unitary transformations
C                    that are applied to the matrices in the array A to
C                    reduce them to periodic Schur form;
C             = 'I': like COMPQ = 'V', except that each matrix in the
C                    array Q will be first initialized to the identity
C                    matrix.
C
C     Input/Output Parameters
C
C     K       (input)  INTEGER
C             The number of factors.  K >= 1.
C
C     N       (input)  INTEGER
C             The order of each factor in the array A.  N >= 0.
C
C     ILO     (input)  INTEGER
C     IHI     (input)  INTEGER
C             It is assumed that each factor in A is already upper
C             triangular in rows and columns 1:ILO-1 and IHI+1:N.
C             1 <= ILO <= IHI <= N, if N > 0;
C             ILO = 1 and IHI  = 0, if N = 0.
C
C     S       (input)  INTEGER array, dimension (K)
C             The leading K elements of this array must contain the
C             signatures of the factors. Each entry in S must be either
C             1 or -1. By definition, S(1) must be set to 1.
C
C     A       (input/output) COMPLEX*16 array, dimension (LDA1,LDA2,K)
C             On entry, the leading N-by-N-by-K part of this array
C             must contain the factors in upper Hessenberg-triangular
C             form, that is, A(:,:,1) is upper Hessenberg and the other
C             factors are upper triangular.
C             On exit, if JOB = 'S' and INFO = 0, the leading
C             N-by-N-by-K part of this array contains the factors of
C             A in periodic Schur form. All factors are reduced to
C             upper triangular form and, moreover, A(:,:,2), ...,
C             A(:,:,K) are normalized so that their diagonals contain
C             nonnegative real numbers.
C             On exit, if JOB = 'E', then the leading N-by-N-by-K part
C             of this array contains meaningless elements.
C
C     LDA1    INTEGER
C             The first leading dimension of the array A.
C             LDA1 >= MAX(1,N).
C
C     LDA2    INTEGER
C             The second leading dimension of the array A.
C             LDA2 >= MAX(1,N).
C
C     Q       (input/output) COMPLEX*16 array, dimension (LDQ1,LDQ2,K)
C             On entry, if COMPQ = 'V', the leading N-by-N-by-K part
C             of this array must contain the initial unitary factors
C             as described in (1) and (2).
C             On exit, if COMPQ = 'V' or COMPQ = 'I', the leading
C             N-by-N-by-K part of this array contains the modified
C             unitary factors as described in (1) and (2).
C             This array is not referenced if COMPQ = 'N'.
C
C     LDQ1    INTEGER
C             The first leading dimension of the array Q.  LDQ1 >= 1,
C             and, if COMPQ <> 'N', LDQ1 >= MAX(1,N).
C
C     LDQ2    INTEGER
C             The second leading dimension of the array Q.  LDQ2 >= 1,
C             and, if COMPQ <> 'N', LDQ2 >= MAX(1,N).
C
C     ALPHA   (output) COMPLEX*16 array, dimension (N)
C             On exit, if INFO = 0, the leading N elements of this
C             array contain the scaled eigenvalues of the matrix
C             product A. The i-th eigenvalue of A is given by
C
C             ALPHA(I) / BETA(I) * BASE**(SCAL(I)),
C
C             where ABS(ALPHA(I)) = 0.0 or 1.0 <= ABS(ALPHA(I)) < BASE,
C             and BASE is the machine base (normally 2.0).
C
C     BETA    (output) COMPLEX*16 array, dimension (N)
C             On exit, if INFO = 0, the leading N elements of this
C             array contain indicators for infinite eigenvalues. That
C             is, if BETA(I) = 0.0, then the i-th eigenvalue is
C             infinite. Otherwise BETA(I) is set to 1.0.
C
C     SCAL    (output) INTEGER array, dimension (N)
C             On exit, if INFO = 0, the leading N elements of this
C             array contain the scaling parameters for the eigenvalues
C             of A.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) returns the minimal value
C             of LDWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.  LDWORK >= MAX(1,N).
C
C     ZWORK   COMPLEX*16 array, dimension (LZWORK)
C             On exit, if INFO = 0, ZWORK(1) returns the minimal value
C             of LZWORK.
C
C     LZWORK  INTEGER
C             The length of the array ZWORK.  LZWORK >= MAX(1,N).
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0      :  succesful exit;
C             < 0      :  if INFO = -i, the i-th argument had an illegal
C                         value;
C             = 1,..,N :  the periodic QZ iteration did not converge.
C                         A is not in periodic Schur form, but
C                         ALPHA(I), BETA(I), and SCAL(I), for
C                         I = INFO+1,...,N should be correct.
C
C     METHOD
C
C     A slightly modified version of the periodic QZ algorithm is
C     used. For more details, see [2].
C
C     REFERENCES
C
C     [1] Bojanczyk, A., Golub, G. H. and Van Dooren, P.
C         The periodic Schur decomposition: algorithms and applications.
C         In F.T. Luk (editor), Advanced Signal Processing Algorithms,
C         Architectures, and Implementations III, Proc. SPIE Conference,
C         vol. 1770, pp. 31-42, 1992.
C
C     [2] Kressner, D.
C         An efficient and reliable implementation of the periodic QZ
C         algorithm. IFAC Workshop on Periodic Control Systems (PSYCO
C         2001), Como (Italy), August 27-28 2001. Periodic Control
C         Systems 2001 (IFAC Proceedings Volumes), Pergamon.
C
C     NUMERICAL ASPECTS
C
C     The implemented method is numerically backward stable.
C                                 3
C     The algorithm requires 0(K N ) floating point operations.
C
C     CONTRIBUTOR
C
C     D. Kressner, Technical Univ. Berlin, Germany, Dec. 2002.
C
C     REVISIONS
C
C     V. Sima, Research Institute for Informatics, Bucharest, Romania,
C     Aug. 2009, SLICOT Library version of the routine ZPGEQZ.
C     V. Sima, Nov. 2011, July 2012.
C
C     KEYWORDS
C
C     Eigenvalues, periodic QZ algorithm, periodic Schur form, unitary
C     equivalence transformations.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D+0, ONE = 1.0D+0 )
      COMPLEX*16        CONE, CZERO
      PARAMETER         ( CONE  = ( 1.0D+0, 0.0D+0 ),
     $                    CZERO = ( 0.0D+0, 0.0D+0 ) )
C     .. Scalar Arguments ..
      CHARACTER         COMPQ, JOB
      INTEGER           IHI, ILO, INFO, K, LDA1, LDA2, LDQ1, LDQ2,
     $                  LDWORK, LZWORK, N
C     .. Array Arguments ..
      INTEGER           S(*), SCAL(*)
      DOUBLE PRECISION  DWORK(*)
      COMPLEX*16        A(LDA1, LDA2, *), ALPHA(*), BETA(*),
     $                  Q(LDQ1, LDQ2, *), ZWORK(*)
C     .. Local Scalars ..
      LOGICAL           LINIQ, LSCHR, SOK, WANTQ
      INTEGER           IFIRST, IFRSTM, IITER, ILAST, ILASTM, IN, J, J1,
     $                  JDEF, JITER, JLO, L, LDEF, LN, MAXIT, NTRA,
     $                  ZITER
      DOUBLE PRECISION  ABST, BASE, CS, SAFMAX, SAFMIN, SMLNUM, TOL, ULP
      COMPLEX*16        SN, TEMP
C     .. Local Arrays ..
      INTEGER           ISEED(4)
      COMPLEX*16        RND(4)
C     .. External Functions ..
      LOGICAL           LSAME
      DOUBLE PRECISION  DLAMCH, ZLANHS, ZLANTR
      EXTERNAL          DLAMCH, LSAME, ZLANHS, ZLANTR
C     .. External Subroutines ..
      EXTERNAL          DLABAD, MA01BZ, XERBLA, ZLARNV, ZLARTG, ZLASET,
     $                  ZROT, ZSCAL
C     .. Intrinsic Functions ..
      INTRINSIC         ABS, DBLE, DCMPLX, DCONJG, INT, LOG, MAX, MIN,
     $                  MOD
C
C     .. Executable Statements ..
C
C     Decode the scalar input parameters.
C
      LSCHR = LSAME( JOB,   'S' )
      LINIQ = LSAME( COMPQ, 'I' )
      WANTQ = LSAME( COMPQ, 'V' ) .OR. LINIQ
C
C     Check the scalar input parameters.
C
      INFO = 0
      IF ( .NOT. ( LSCHR .OR. LSAME( JOB, 'E' ) ) ) THEN
         INFO = -1
      ELSE IF( .NOT.WANTQ .AND. .NOT.LSAME( COMPQ, 'N' ) ) THEN
         INFO = -2
      ELSE IF ( K.LT.0 ) THEN
         INFO = -3
      ELSE IF ( N.LT.0 ) THEN
         INFO = -4
      ELSE IF ( ILO.LT.1 ) THEN
         INFO = -5
      ELSE IF ( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN
         INFO = -6
      ELSE
         SOK = S(1).EQ.1
         DO 10  L = 2, K
            SOK = SOK .AND. ( S(L).EQ.1 .OR. S(L).EQ.-1 )
   10    CONTINUE
         IF ( .NOT.SOK ) THEN
            INFO = -7
         ELSE IF ( LDA1.LT.MAX( 1, N ) ) THEN
            INFO = -9
         ELSE IF ( LDA2.LT.MAX( 1, N ) ) THEN
            INFO = -10
         ELSE IF ( LDQ1.LT.1 .OR. ( WANTQ .AND. LDQ1.LT.N ) ) THEN
            INFO = -12
         ELSE IF ( LDQ2.LT.1 .OR. ( WANTQ .AND. LDQ2.LT.N ) ) THEN
            INFO = -13
         ELSE IF ( LDWORK.LT.MAX( 1, N ) ) THEN
            INFO = -18
         ELSE IF ( LZWORK.LT.MAX( 1, N ) ) THEN
            INFO = -20
         END IF
      END IF
C
C     Return if there were illegal values.
C
      IF ( INFO.NE.0 ) THEN
         CALL XERBLA( 'MB03BZ', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF ( N.EQ.0 ) THEN
         DWORK(1) = ONE
         ZWORK(1) = CONE
         RETURN
      END IF
C
C     Initialize Q.
C
      IF ( LINIQ ) THEN
         DO 20  L = 1, K
            CALL ZLASET( 'Full', N, N, CZERO, CONE, Q(1,1,L), LDQ1 )
   20    CONTINUE
      END IF
C
C     Machine Constants.
C
      IN = IHI + 1 - ILO
      SAFMIN = DLAMCH( 'SafeMinimum' )
      SAFMAX = ONE / SAFMIN
      ULP = DLAMCH( 'Precision' )
      CALL DLABAD( SAFMIN, SAFMAX )
      SMLNUM = SAFMIN*( IN / ULP )
      BASE = DLAMCH( 'Base' )
      IF ( K.GE.INT( LOG( DLAMCH( 'Underflow' ) ) / LOG( ULP ) ) ) THEN
C
C        Start Iteration with a controlled zero shift.
C
         ZITER = -1
      ELSE
         ZITER = 0
      END IF
C
C     Set Eigenvalues IHI+1:N.
C
      DO 30  J = IHI + 1, N
         CALL MA01BZ( BASE, K, S, A(J,J,1), LDA1*LDA2, ALPHA(J),
     $                BETA(J), SCAL(J) )
   30 CONTINUE
C
C     If IHI < ILO, skip QZ steps.
C
      IF ( IHI.LT.ILO )
     $   GO TO 460
C
C     MAIN PERIODIC QZ ITERATION LOOP.
C
C     Initialize dynamic indices.
C
C     Eigenvalues ILAST+1:N have been found.
C        Column operations modify rows IFRSTM:whatever.
C        Row operations modify columns whatever:ILASTM.
C
C     If only eigenvalues are being computed, then
C        IFRSTM is the row of the last splitting row above row ILAST;
C        this is always at least ILO.
C     IITER counts iterations since the last eigenvalue was found,
C        to tell when to use an observed zero or random shift.
C     MAXIT is the maximum number of QZ sweeps allowed.
C
      ILAST = IHI
      IF ( LSCHR ) THEN
         IFRSTM = 1
         ILASTM = N
      ELSE
         IFRSTM = ILO
         ILASTM = IHI
      END IF
      IITER = 0
      ISEED(1) = 1
      ISEED(2) = 0
      ISEED(3) = 0
      ISEED(4) = 1
      MAXIT = 30 * IN
C
      DO  450 JITER = 1, MAXIT
C
C        Special Case: ILAST = ILO.
C
         IF ( ILAST.EQ.ILO )
     $      GO TO 390
C
C        **************************************************************
C        *                     CHECK FOR DEFLATION                    *
C        **************************************************************
C
C        Test 1:  Deflation in the Hessenberg matrix.
C
         JLO = ILO
         DO 40  J = ILAST, ILO + 1, -1
            TOL = ABS( A(J-1,J-1,1) ) + ABS( A(J,J,1) )
            IF ( TOL.EQ.ZERO )
     $         TOL = ZLANHS( '1', J-ILO+1, A(ILO,ILO,1), LDA1, DWORK )
            TOL = MAX( ULP*TOL, SMLNUM )
            IF ( ABS( A(J,J-1,1) ).LE.TOL ) THEN
               A(J,J-1,1) = CZERO
               JLO = J
               IF ( J.EQ.ILAST )
     $            GO TO 390
               GO TO 50
            END IF
   40    CONTINUE
C
   50    CONTINUE
C
C        Test 2:  Deflation in the triangular matrices with index 1.
C
         DO 70  LDEF = 2, K
            IF ( S(LDEF).EQ.1 ) THEN
               DO 60  J = ILAST, JLO, -1
                  IF ( J.EQ.ILAST ) THEN
                     TOL = ABS( A(J-1,J,LDEF) )
                  ELSE IF ( J.EQ.JLO ) THEN
                     TOL = ABS( A(J,J+1,LDEF) )
                  ELSE
                     TOL = ABS( A(J-1,J,LDEF) ) + ABS( A(J,J+1,LDEF) )
                  END IF
                  IF ( TOL.EQ.ZERO )
     $               TOL = ZLANTR( '1', 'Upper', 'Non-unit', J-JLO+1,
     $                             J-JLO+1, A(JLO,JLO,LDEF), LDA1,
     $                             DWORK )
                  TOL = MAX( ULP*TOL, SMLNUM )
                  IF ( ABS( A(J,J,LDEF) ).LE.TOL ) THEN
                     A(J,J,LDEF) = CZERO
                     GO TO 170
                  END IF
   60          CONTINUE
            END IF
   70    CONTINUE
C
C        Test 3:  Deflation in the triangular matrices with index -1.
C
         DO 90  LDEF = 2, K
            IF ( S(LDEF).EQ.-1 ) THEN
               DO 80  J = ILAST, JLO, -1
                  IF ( J.EQ.ILAST ) THEN
                     TOL = ABS( A(J-1,J,LDEF) )
                  ELSE IF ( J.EQ.JLO ) THEN
                     TOL = ABS( A(J,J+1,LDEF) )
                  ELSE
                     TOL = ABS( A(J-1,J,LDEF) ) + ABS( A(J,J+1,LDEF) )
                  END IF
                  IF ( TOL.EQ.ZERO )
     $               TOL = ZLANTR( '1', 'Upper', 'Non-unit', J-JLO+1,
     $                             J-JLO+1, A(JLO,JLO,LDEF), LDA1,
     $                             DWORK )
                  TOL = MAX( ULP*TOL, SMLNUM )
                  IF ( ABS( A(J,J,LDEF) ).LE.TOL ) THEN
                     A(J,J,LDEF) = CZERO
                     GO TO 320
                  END IF
   80          CONTINUE
            END IF
   90    CONTINUE
C
C        Test 4:  Controlled zero shift.
C
         IF ( ZITER.GE.7 .OR. ZITER.LT.0 ) THEN
C
C           Make Hessenberg matrix upper triangular.
C
            DO 100 J = JLO, ILAST - 1
               TEMP = A(J,J,1)
               CALL ZLARTG( TEMP, A(J+1,J,1), CS, SN, A(J,J,1) )
               A(J+1,J,1) = CZERO
               CALL ZROT( ILASTM-J, A(J,J+1,1), LDA1,
     $                    A(J+1,J+1,1), LDA1, CS, SN )
               DWORK(J) = CS
               ZWORK(J) = SN
  100       CONTINUE
            IF ( WANTQ ) THEN
               DO 110  J = JLO, ILAST - 1
                  CALL ZROT( N, Q(1,J,1), 1, Q(1,J+1,1), 1, DWORK(J),
     $                       DCONJG( ZWORK(J) ) )
  110          CONTINUE
            END IF
C
C           Propagate Transformations back to A_1.
C
            DO 150  L = K, 2, -1
               IF ( S(L).EQ.1 ) THEN
                  DO 120  J = JLO, ILAST - 1
                     SN = ZWORK(J)
                     IF ( SN.NE.CZERO ) THEN
                        CS = DWORK(J)
                        CALL ZROT( J+2-IFRSTM, A(IFRSTM,J,L), 1,
     $                             A(IFRSTM,J+1,L), 1, CS,
     $                             DCONJG( SN ) )
C
C                       Check for deflation.
C
                        TOL = ABS( A(J,J,L) ) + ABS( A(J+1,J+1,L) )
                        IF ( TOL.EQ.ZERO )
     $                     TOL = ZLANHS( '1', J-JLO+2, A(JLO,JLO,L),
     $                                   LDA1, DWORK )
                        TOL = MAX( ULP*TOL, SMLNUM )
                        IF ( ABS( A(J+1,J,L) ).LE.TOL ) THEN
                           CS = ONE
                           SN = CZERO
                           A(J+1,J,L) = CZERO
                        ELSE
C
                           TEMP = A(J,J,L)
                           CALL ZLARTG( TEMP, A(J+1,J,L), CS, SN,
     $                                  A(J,J,L) )
                           A(J+1,J,L) = CZERO
                           CALL ZROT( ILASTM-J, A(J,J+1,L), LDA1,
     $                                A(J+1,J+1,L), LDA1, CS, SN )
                        END IF
                        DWORK(J) = CS
                        ZWORK(J) = SN
                     END IF
  120             CONTINUE
               ELSE
                  DO 130  J = JLO, ILAST - 1
                     SN = ZWORK(J)
                     IF ( SN.NE.CZERO ) THEN
                        CS = DWORK(J)
                        CALL ZROT( ILASTM-J+1, A(J,J,L), LDA1,
     $                             A(J+1,J,L), LDA1, CS, SN )
C
C                       Check for deflation.
C
                        TOL = ABS( A(J,J,L) ) + ABS( A(J+1,J+1,L) )
                        IF ( TOL.EQ.ZERO )
     $                     TOL = ZLANHS( '1', J-JLO+2, A(JLO,JLO,L),
     $                                   LDA1, DWORK )
                        TOL = MAX( ULP*TOL, SMLNUM )
                        IF ( ABS( A(J+1,J,L) ).LE.TOL ) THEN
                           CS = ONE
                           SN = CZERO
                           A(J+1,J,L) = CZERO
                        ELSE
C
                           TEMP = A(J+1,J+1,L)
                           CALL ZLARTG( TEMP, A(J+1,J,L), CS, SN,
     $                                  A(J+1,J+1,L) )
                           A(J+1,J,L) = CZERO
                           CALL ZROT( J+1-IFRSTM, A(IFRSTM,J+1,L), 1,
     $                                A(IFRSTM,J,L), 1, CS, SN )
                        END IF
                        DWORK(J) =  CS
                        ZWORK(J) = -SN
                     END IF
  130             CONTINUE
               END IF
C
               IF ( WANTQ ) THEN
                  DO 140  J = JLO, ILAST - 1
                     CALL ZROT( N, Q(1,J,L), 1, Q(1,J+1,L), 1, DWORK(J),
     $                          DCONJG( ZWORK(J) ) )
  140             CONTINUE
               END IF
  150       CONTINUE
C
C           Apply the transformations to the right hand side of the
C           Hessenberg factor.
C
            ZITER = 0
            DO 160  J = JLO, ILAST - 1
               CS = DWORK(J)
               SN = ZWORK(J)
               CALL ZROT( J+2-IFRSTM, A(IFRSTM,J,1), 1,
     $                    A(IFRSTM,J+1,1), 1, CS, DCONJG( SN ) )
               IF ( SN.EQ.CZERO )
     $            ZITER = 1
  160       CONTINUE
C
C           No QZ iteration.
C
            GO TO 440
         END IF
C
C        **************************************************************
C        *                     HANDLE DEFLATIONS                      *
C        **************************************************************
C
C        Case I: Deflation occurs in the Hessenberg matrix. The QZ
C                iteration is only applied to the JLO:ILAST part.
C
         IFIRST = JLO
C
C        Go to the periodic QZ steps.
C
         GO TO 400
C
C        Case II: Deflation occurs in a triangular matrix with index 1.
C
C        Do an unshifted periodic QZ step.
C
  170    CONTINUE
         JDEF = J
         DO 180  J = JLO, JDEF - 1
            TEMP = A(J,J,1)
            CALL ZLARTG( TEMP, A(J+1,J,1), CS, SN, A(J,J,1) )
            A(J+1,J,1) = CZERO
            CALL ZROT( ILASTM-J, A(J,J+1,1), LDA1, A(J+1,J+1,1), LDA1,
     $                 CS, SN )
            DWORK(J) = CS
            ZWORK(J) = SN
  180    CONTINUE
         IF ( WANTQ ) THEN
            DO 190  J = JLO, JDEF - 1
               CALL ZROT( N, Q(1,J,1), 1, Q(1,J+1,1), 1, DWORK(J),
     $                    DCONJG( ZWORK(J) ) )
  190       CONTINUE
         END IF
C
C        Propagate the transformations through the triangular matrices.
C        Due to the zero element on the diagonal of the LDEF-th factor,
C        the number of transformations drops by one.
C
         DO 230  L = K, 2, -1
            IF ( L.LT.LDEF ) THEN
               NTRA = JDEF - 2
            ELSE
               NTRA = JDEF - 1
            END IF
            IF ( S(L).EQ.1 ) THEN
               DO 200  J = JLO, NTRA
                  CALL ZROT( J+2-IFRSTM, A(IFRSTM,J,L), 1,
     $                       A(IFRSTM,J+1,L), 1, DWORK(J),
     $                       DCONJG( ZWORK(J) ) )
                  TEMP = A(J,J,L)
                  CALL ZLARTG( TEMP, A(J+1,J,L), CS, SN, A(J,J,L) )
                  A(J+1,J,L) = CZERO
                  CALL ZROT( ILASTM-J, A(J,J+1,L), LDA1,
     $                       A(J+1,J+1,L), LDA1, CS, SN )
                  DWORK(J) = CS
                  ZWORK(J) = SN
  200          CONTINUE
            ELSE
               DO 210  J = JLO, NTRA
                  CALL ZROT( ILASTM-J+1, A(J,J,L), LDA1, A(J+1,J,L),
     $                       LDA1, DWORK(J), ZWORK(J) )
                  TEMP = A(J+1,J+1,L)
                  CALL ZLARTG( TEMP, A(J+1,J,L), CS, SN, A(J+1,J+1,L) )
                  A(J+1,J,L) = CZERO
                  CALL ZROT( J+1-IFRSTM, A(IFRSTM,J+1,L), 1,
     $                       A(IFRSTM,J,L), 1, CS, SN )
                  DWORK(J) =  CS
                  ZWORK(J) = -SN
  210          CONTINUE
            END IF
            IF ( WANTQ ) THEN
               DO 220  J = JLO, NTRA
                  CALL ZROT( N, Q(1,J,L), 1, Q(1,J+1,L), 1, DWORK(J),
     $                       DCONJG( ZWORK(J) ) )
  220          CONTINUE
            END IF
  230    CONTINUE
C
C        Apply the transformations to the right hand side of the
C        Hessenberg factor.
C
         DO 240  J = JLO, JDEF - 2
            CALL ZROT( J+2-IFRSTM, A(IFRSTM,J,1), 1, A(IFRSTM,J+1,1),
     $                 1, DWORK(J), DCONJG( ZWORK(J) ) )
  240    CONTINUE
C
C        Do an unshifted periodic QZ step.
C
         DO 250  J = ILAST, JDEF + 1, -1
            TEMP = A(J,J,1)
            CALL ZLARTG( TEMP, A(J,J-1,1), CS, SN, A(J,J,1) )
            A(J,J-1,1) = CZERO
            CALL ZROT( J-IFRSTM, A(IFRSTM,J,1), 1,
     $                 A(IFRSTM,J-1,1), 1, CS, SN )
            DWORK(J) =  CS
            ZWORK(J) = -SN
  250    CONTINUE
         IF ( WANTQ ) THEN
            DO 260  J = ILAST, JDEF + 1, -1
               CALL ZROT( N, Q(1,J-1,2), 1, Q(1,J,2),
     $                    1, DWORK(J), DCONJG( ZWORK(J) ) )
  260       CONTINUE
         END IF
C
C        Propagate the transformations through the triangular matrices.
C
         DO 300  L = 2, K
            IF ( L.GT.LDEF ) THEN
               NTRA = JDEF + 2
            ELSE
               NTRA = JDEF + 1
            END IF
            IF ( S(L).EQ.-1 ) THEN
               DO 270  J = ILAST, NTRA, -1
                  CS = DWORK(J)
                  SN = ZWORK(J)
                  CALL ZROT( J+1-IFRSTM, A(IFRSTM,J-1,L), 1,
     $                       A(IFRSTM,J,L), 1, CS, DCONJG( SN ) )
                  TEMP = A(J-1,J-1,L)
                  CALL ZLARTG( TEMP, A(J,J-1,L), CS, SN, A(J-1,J-1,L) )
                  A(J,J-1,L) = CZERO
                  CALL ZROT( ILASTM-J+1, A(J-1,J,L), LDA1, A(J,J,L),
     $                       LDA1, CS, SN )
                  DWORK(J) = CS
                  ZWORK(J) = SN
  270          CONTINUE
            ELSE
               DO 280  J = ILAST, NTRA, -1
                  CALL ZROT( ILASTM-J+2, A(J-1,J-1,L), LDA1,
     $                       A(J,J-1,L), LDA1, DWORK(J), ZWORK(J) )
                  TEMP = A(J,J,L)
                  CALL ZLARTG( TEMP, A(J,J-1,L), CS, SN, A(J,J,L) )
                  A(J,J-1,L) = CZERO
                  CALL ZROT( J-IFRSTM, A(IFRSTM,J,L), 1,
     $                       A(IFRSTM,J-1,L), 1, CS, SN )
                  DWORK(J) =  CS
                  ZWORK(J) = -SN
  280          CONTINUE
            END IF
            IF ( WANTQ ) THEN
               IF ( L.EQ.K ) THEN
                  LN = 1
               ELSE
                  LN = L + 1
               END IF
               DO 290  J = ILAST, NTRA, -1
                  CALL ZROT( N, Q(1,J-1,LN), 1, Q(1,J,LN), 1, DWORK(J),
     $                       DCONJG( ZWORK(J) ) )
  290          CONTINUE
            END IF
  300    CONTINUE
C
C        Apply the transformations to the left hand side of the
C        Hessenberg factor.
C
         DO 310  J = ILAST, JDEF + 2, -1
            CALL ZROT( ILASTM-J+2, A(J-1,J-1,1), LDA1, A(J,J-1,1),
     $                 LDA1, DWORK(J), ZWORK(J) )
  310    CONTINUE
C
C        No QZ iteration.
C
         GO TO 440
C
C        Case III: Deflation occurs in a triangular matrix with
C                  index -1.
C
  320    CONTINUE
         JDEF = J
         IF ( JDEF.GT.( ( ILAST - JLO + 1 )/2 ) ) THEN
C
C           Chase the zero downwards to the last position.
C
            DO 340  J1 = JDEF, ILAST - 1
               J = J1
               TEMP = A(J,J+1,LDEF)
               CALL ZLARTG( TEMP, A(J+1,J+1,LDEF), CS, SN,
     $                      A(J,J+1,LDEF) )
               A(J+1,J+1,LDEF) = CZERO
               CALL ZROT( ILASTM-J-1, A(J,J+2,LDEF), LDA1,
     $                    A(J+1,J+2,LDEF), LDA1, CS, SN )
               IF ( LDEF.EQ.K ) THEN
                  LN = 1
               ELSE
                  LN = LDEF + 1
               END IF
               IF ( WANTQ ) THEN
                  CALL ZROT( N, Q(1,J,LN), 1, Q(1,J+1,LN), 1, CS,
     $                       DCONJG( SN ) )
               END IF
               DO 330  L = 1, K - 1
                  IF ( LN.EQ.1 ) THEN
                     CALL ZROT( ILASTM-J+2, A(J,J-1,LN), LDA1,
     $                          A(J+1,J-1,LN), LDA1, CS, SN )
                     TEMP = A(J+1,J,LN)
                     CALL ZLARTG( TEMP, A(J+1,J-1,LN), CS, SN,
     $                            A(J+1,J,LN) )
                     A(J+1,J-1,LN) = CZERO
                     CALL ZROT( J-IFRSTM+1, A(IFRSTM,J,LN), 1,
     $                          A(IFRSTM,J-1,LN), 1, CS, SN )
                     SN = -SN
                     J  = J - 1
                  ELSE IF ( S(LN).EQ.1 ) THEN
                     CALL ZROT( ILASTM-J+1, A(J,J,LN), LDA1,
     $                          A(J+1,J,LN), LDA1, CS, SN )
                     TEMP = A(J+1,J+1,LN)
                     CALL ZLARTG( TEMP, A(J+1,J,LN), CS, SN,
     $                            A(J+1,J+1,LN) )
                     A(J+1,J,LN) = CZERO
                     CALL ZROT( J-IFRSTM+1, A(IFRSTM,J+1,LN), 1,
     $                          A(IFRSTM,J,LN), 1, CS, SN )
                     SN = -SN
                  ELSE
                     CALL ZROT( J-IFRSTM+2, A(IFRSTM,J,LN), 1,
     $                          A(IFRSTM,J+1,LN), 1, CS, DCONJG( SN ) )
                     TEMP = A(J,J,LN)
                     CALL ZLARTG( TEMP, A(J+1,J,LN), CS, SN, A(J,J,LN) )
                     A(J+1,J,LN) = CZERO
                     CALL ZROT( ILASTM-J, A(J,J+1,LN), LDA1,
     $                          A(J+1,J+1,LN), LDA1, CS, SN )
                  END IF
                  LN = LN + 1
                  IF ( LN.GT.K )
     $               LN = 1
                  IF ( WANTQ ) THEN
                     CALL ZROT( N, Q(1,J,LN), 1, Q(1,J+1,LN), 1, CS,
     $                          DCONJG( SN ) )
                  END IF
  330          CONTINUE
               CALL ZROT( J-IFRSTM+1, A(IFRSTM,J,LDEF), 1,
     $                    A(IFRSTM,J+1,LDEF), 1, CS, DCONJG( SN ) )
  340       CONTINUE
C
C           Deflate the last element in the Hessenberg matrix.
C
            J = ILAST
            TEMP = A(J,J,1)
            CALL ZLARTG( TEMP, A(J,J-1,1), CS, SN, A(J,J,1) )
            A(J,J-1,1) = CZERO
            CALL ZROT( J-IFRSTM, A(IFRSTM,J,1), 1,
     $                 A(IFRSTM,J-1,1), 1, CS, SN )
            SN = -SN
            IF ( WANTQ ) THEN
               CALL ZROT( N, Q(1,J-1,2), 1, Q(1,J,2), 1, CS,
     $                    DCONJG( SN ) )
            END IF
            DO 350  L = 2, LDEF - 1
               IF ( S(L).EQ.-1 ) THEN
                  CALL ZROT( J+1-IFRSTM, A(IFRSTM,J-1,L), 1,
     $                       A(IFRSTM,J,L), 1, CS, DCONJG( SN ) )
                  TEMP = A(J-1,J-1,L)
                  CALL ZLARTG( TEMP, A(J,J-1,L), CS, SN,
     $                         A(J-1,J-1,L) )
                  A(J,J-1,L) = CZERO
                  CALL ZROT( ILASTM-J+1, A(J-1,J,L), LDA1,
     $                       A(J,J,L), LDA1, CS, SN )
               ELSE
                  CALL ZROT( ILASTM-J+2, A(J-1,J-1,L), LDA1,
     $                       A(J,J-1,L), LDA1, CS, SN )
                  TEMP = A(J,J,L)
                  CALL ZLARTG( TEMP, A(J,J-1,L), CS, SN,
     $                         A(J,J,L) )
                  A(J,J-1,L) = CZERO
                  CALL ZROT( J-IFRSTM, A(IFRSTM,J,L), 1,
     $                       A(IFRSTM,J-1,L), 1, CS, SN )
                  SN = -SN
               END IF
               IF ( WANTQ ) THEN
                  IF ( L.EQ.K ) THEN
                     LN = 1
                  ELSE
                     LN = L + 1
                  END IF
                  CALL ZROT( N, Q(1,J-1,LN), 1, Q(1,J,LN), 1, CS,
     $                       DCONJG( SN ) )
               END IF
  350       CONTINUE
            CALL ZROT( J+1-IFRSTM, A(IFRSTM,J-1,LDEF), 1,
     $                 A(IFRSTM,J,LDEF), 1, CS, DCONJG( SN ) )
         ELSE
C
C           Chase the zero upwards to the first position.
C
            DO 370  J1 = JDEF, JLO + 1, -1
               J = J1
               TEMP = A(J-1,J,LDEF)
               CALL ZLARTG( TEMP, A(J-1,J-1,LDEF), CS, SN,
     $                      A(J-1,J,LDEF) )
               A(J-1,J-1,LDEF) = CZERO
               CALL ZROT( J-IFRSTM-1, A(IFRSTM,J,LDEF), 1,
     $                    A(IFRSTM,J-1,LDEF), 1, CS, SN )
               SN = -SN
               IF ( WANTQ ) THEN
                  CALL ZROT( N, Q(1,J-1,LDEF), 1, Q(1,J,LDEF), 1, CS,
     $                       DCONJG( SN ) )
               END IF
               LN = LDEF - 1
               DO 360  L = 1, K - 1
                  IF ( LN.EQ.1 ) THEN
                     CALL ZROT( J-IFRSTM+2, A(IFRSTM,J-1,LN), 1,
     $                          A(IFRSTM,J,LN), 1, CS, DCONJG( SN ) )
                     TEMP = A(J,J-1,LN)
                     CALL ZLARTG( TEMP, A(J+1,J-1,LN), CS, SN,
     $                            A(J,J-1,LN) )
                     A(J+1,J-1,LN) = CZERO
                     CALL ZROT( ILASTM-J+1, A(J,J,LN), LDA1,
     $                          A(J+1,J,LN), LDA1, CS, SN )
                     J = J + 1
                  ELSE IF ( S(LN).EQ.-1 ) THEN
                     CALL ZROT( ILASTM-J+2, A(J-1,J-1,LN), LDA1,
     $                          A(J,J-1,LN), LDA1, CS, SN )
                     TEMP = A(J,J,LN)
                     CALL ZLARTG( TEMP, A(J,J-1,LN), CS, SN,
     $                            A(J,J,LN) )
                     A(J,J-1,LN) = CZERO
                     CALL ZROT( J-IFRSTM, A(IFRSTM,J,LN), 1,
     $                          A(IFRSTM,J-1,LN), 1, CS, SN )
                     SN = -SN
                  ELSE
                     CALL ZROT( J-IFRSTM+1, A(IFRSTM,J-1,LN), 1,
     $                          A(IFRSTM,J,LN), 1, CS, DCONJG( SN ) )
                     TEMP = A(J-1,J-1,LN)
                     CALL ZLARTG( TEMP, A(J,J-1,LN), CS, SN,
     $                            A(J-1,J-1,LN) )
                     A(J,J-1,LN) = CZERO
                     CALL ZROT( ILASTM-J+1, A(J-1,J,LN), LDA1,
     $                          A(J,J,LN), LDA1, CS, SN )
                  END IF
                  IF ( WANTQ ) THEN
                     CALL ZROT( N, Q(1,J-1,LN), 1, Q(1,J,LN), 1, CS,
     $                          DCONJG( SN ) )
                  END IF
                  LN = LN - 1
                  IF ( LN.LE.0 )
     $               LN = K
  360          CONTINUE
               CALL ZROT( ILASTM-J+1, A(J-1,J,LDEF), LDA1, A(J,J,LDEF),
     $                    LDA1, CS, SN )
  370       CONTINUE
C
C           Deflate the first element in the Hessenberg matrix.
C
            J = JLO
            TEMP = A(J,J,1)
            CALL ZLARTG( TEMP, A(J+1,J,1), CS, SN, A(J,J,1) )
            A(J+1,J,1) = CZERO
            CALL ZROT( ILASTM-J, A(J,J+1,1), LDA1, A(J+1,J+1,1),
     $                 LDA1, CS, SN )
            IF ( WANTQ ) THEN
               CALL ZROT( N, Q(1,J,1), 1, Q(1,J+1,1), 1, CS,
     $                    DCONJG( SN ) )
            END IF
            DO 380  L = K, LDEF + 1, -1
               IF ( S(L).EQ.1 ) THEN
                  CALL ZROT( J+2-IFRSTM, A(IFRSTM,J,L), 1,
     $                       A(IFRSTM,J+1,L), 1, CS, DCONJG( SN ) )
                  TEMP = A(J,J,L)
                  CALL ZLARTG( TEMP, A(J+1,J,L), CS, SN, A(J,J,L) )
                  A(J+1,J,L) = CZERO
                  CALL ZROT( ILASTM-J, A(J,J+1,L), LDA1,
     $                       A(J+1,J+1,L), LDA1, CS, SN )
               ELSE
                  CALL ZROT( ILASTM-J+1, A(J,J,L), LDA1,
     $                       A(J+1,J,L), LDA1, CS, SN )
                  TEMP = A(J+1,J+1,L)
                  CALL ZLARTG( TEMP, A(J+1,J,L), CS, SN,
     $                         A(J+1,J+1,L) )
                  A(J+1,J,L) = CZERO
                  CALL ZROT( J+1-IFRSTM, A(IFRSTM,J+1,L), 1,
     $                       A(IFRSTM,J,L), 1, CS, SN )
                  SN = -SN
               END IF
               IF ( WANTQ ) THEN
                  CALL ZROT( N, Q(1,J,L), 1, Q(1,J+1,L), 1, CS,
     $                       DCONJG( SN ) )
               END IF
  380       CONTINUE
            CALL ZROT( ILASTM-J, A(J,J+1,LDEF), LDA1, A(J+1,J+1,LDEF),
     $                 LDA1, CS, SN )
         END IF
C
C        No QZ iteration.
C
         GO TO 440
C
C        Special case: A 1x1 block splits off at the bottom.
C
  390    CONTINUE
         CALL MA01BZ( BASE, K, S, A(ILAST,ILAST,1), LDA1*LDA2,
     $                ALPHA(ILAST), BETA(ILAST), SCAL(ILAST) )
C
C        Go to next block - exit if finished.
C
         ILAST = ILAST - 1
         IF ( ILAST.LT.ILO )
     $      GO TO 460
C
C        Reset iteration counters.
C
         IITER = 0
         IF ( ZITER.NE.-1 )
     $      ZITER = 0
         IF ( .NOT.LSCHR ) THEN
            ILASTM = ILAST
            IF ( IFRSTM.GT.ILAST )
     $         IFRSTM = ILO
         END IF
C
C        No QZ iteration.
C
         GO TO 440
C
C        **************************************************************
C        *                      PERIODIC QZ STEP                      *
C        **************************************************************
C
C        It is assumed that IFIRST < ILAST.
C
  400    CONTINUE
C
         IITER = IITER + 1
         ZITER = ZITER + 1
         IF( .NOT.LSCHR )
     $      IFRSTM = IFIRST
C
C        Complex single shift.
C
         IF ( MOD( IITER, 10 ).EQ.0 ) THEN
C
C           Exceptional shift.
C
            CALL ZLARNV( 2, ISEED, 2, RND )
            CALL ZLARTG( RND(1), RND(2), CS, SN, TEMP )
         ELSE
            CALL ZLARTG( CONE, CONE, CS, SN, TEMP )
            DO 410  L = K, 2, -1
               IF ( S(L).EQ.1 ) THEN
                  CALL ZLARTG( A(IFIRST,IFIRST,L)*CS,
     $                         A(ILAST,ILAST,L)*DCONJG( SN ),
     $                         CS, SN, TEMP )
               ELSE
                  CALL ZLARTG( A(ILAST,ILAST,L)*CS,
     $                         -A(IFIRST,IFIRST,L)*DCONJG( SN ),
     $                         CS, SN, TEMP )
                  SN = -SN
               END IF
  410       CONTINUE
            CALL ZLARTG( A(IFIRST,IFIRST,1)*CS
     $                   -A(ILAST,ILAST,1)*DCONJG( SN ),
     $                   A(IFIRST+1,IFIRST,1)*CS, CS, SN, TEMP )
         END IF
C
C        Do the sweeps.
C
         DO 430  J1 = IFIRST - 1, ILAST - 2
            J = J1 + 1
C
C           Create a bulge if J1 = IFIRST - 1, otherwise chase the
C           bulge.
C
            IF ( J1.GE.IFIRST ) THEN
               TEMP = A(J,J-1,1)
               CALL ZLARTG( TEMP, A(J+1,J-1,1), CS, SN, A(J,J-1,1) )
               A(J+1,J-1,1) = CZERO
            END IF
            CALL ZROT( ILASTM-J+1, A(J,J,1), LDA1, A(J+1,J,1), LDA1,
     $                 CS, SN )
            IF ( WANTQ ) THEN
               CALL ZROT( N, Q(1,J,1), 1, Q(1,J+1,1), 1, CS,
     $                    DCONJG( SN ) )
            END IF
C
C           Propagate rotation through AK, ..., A2 to A1.
C
            DO 420  L = K, 2, -1
               IF ( S(L).EQ.1 ) THEN
                  CALL ZROT( J+2-IFRSTM, A(IFRSTM,J,L), 1,
     $                       A(IFRSTM,J+1,L), 1, CS, DCONJG( SN ) )
                  TEMP = A(J,J,L)
                  CALL ZLARTG( TEMP, A(J+1,J,L), CS, SN, A(J,J,L) )
                  A(J+1,J,L) = CZERO
                  CALL ZROT( ILASTM-J, A(J,J+1,L), LDA1,
     $                       A(J+1,J+1,L), LDA1, CS, SN )
               ELSE
                  CALL ZROT( ILASTM-J+1, A(J,J,L), LDA1, A(J+1,J,L),
     $                       LDA1, CS, SN )
                  TEMP = A(J+1,J+1,L)
                  CALL ZLARTG( TEMP, A(J+1,J,L), CS, SN, A(J+1,J+1,L) )
                  A(J+1,J,L) = CZERO
                  CALL ZROT( J+1-IFRSTM, A(IFRSTM,J+1,L), 1,
     $                       A(IFRSTM,J,L), 1, CS, SN )
                  SN = -SN
               END IF
               IF ( WANTQ ) THEN
                  CALL ZROT( N, Q(1,J,L), 1, Q(1,J+1,L), 1, CS,
     $                       DCONJG( SN ) )
               END IF
  420       CONTINUE
            CALL ZROT( MIN( J+2, ILASTM )-IFRSTM+1, A(IFRSTM,J,1), 1,
     $                 A(IFRSTM,J+1,1), 1, CS, DCONJG( SN ) )
  430    CONTINUE
C
C        End of iteration loop.
C
  440    CONTINUE
  450 CONTINUE
C
C     Drop through = non-convergence.
C
      INFO = ILAST
      GO TO 540
C
C     Successful completion of all QZ steps.
C
  460 CONTINUE
C
C     Set eigenvalues 1:ILO-1.
C
      DO 470  J = 1, ILO - 1
         CALL MA01BZ( BASE, K, S, A(J,J,1), LDA1*LDA2, ALPHA(J),
     $                BETA(J), SCAL(J) )
  470 CONTINUE
      IF ( LSCHR ) THEN
C
C        Scale A(2,:,:), ..., A(K,:,:).
C
         DO 530  L = K, 2, -1
            IF ( S(L).EQ.1 )  THEN
               DO 480  J = 1, N
                  ABST = ABS( A(J,J,L) )
                  IF ( ABST.GT.SAFMIN ) THEN
                     TEMP = DCONJG( A(J,J,L) / ABST )
                     A(J,J,L ) = ABST
                     IF ( J.LT.N )
     $                  CALL ZSCAL( N-J, TEMP, A(J,J+1,L), LDA1 )
                  ELSE
                     TEMP = CONE
                  END IF
                  ZWORK(J) = TEMP
  480          CONTINUE
            ELSE
               DO 490  J = 1, N
                  ABST = ABS( A(J,J,L) )
                  IF ( ABST.GT.SAFMIN ) THEN
                     TEMP = DCONJG( A(J,J,L) / ABST )
                     A(J,J,L ) = ABST
                     CALL ZSCAL( J-1, TEMP, A(1,J,L), 1 )
                  ELSE
                     TEMP = CONE
                  END IF
                  ZWORK(J) = DCONJG( TEMP )
  490          CONTINUE
            END IF
            IF ( WANTQ ) THEN
               DO 500  J = 1, N
                  CALL ZSCAL( N, DCONJG( ZWORK(J) ), Q(1,J,L), 1 )
  500          CONTINUE
            END IF
            IF ( S(L-1).EQ.1 )  THEN
               DO 510  J = 1, N
                  CALL ZSCAL( J, DCONJG( ZWORK(J) ), A(1,J,L-1), 1 )
  510          CONTINUE
            ELSE
               DO 520  J = 1, N
                  CALL ZSCAL( N-J+1, ZWORK(J), A(J,J,L-1), LDA1 )
  520          CONTINUE
            END IF
  530    CONTINUE
      END IF
C
  540 CONTINUE
C
      DWORK(1) = DBLE( N )
      ZWORK(1) = DCMPLX( N, 0 )
      RETURN
C *** Last line of MB03BZ ***
      END