SUBROUTINE MB03BZ( JOB, COMPQ, K, N, ILO, IHI, S, A, LDA1, LDA2,
     $                   Q, LDQ1, LDQ2, ALPHA, BETA, SCAL, DWORK,
     $                   LDWORK, ZWORK, LZWORK, INFO )
C
C     PURPOSE
C
C     To find the eigenvalues of the complex generalized matrix product
C
C                  S(1)           S(2)                 S(K)
C          A(:,:,1)     * A(:,:,2)     * ... * A(:,:,K)    ,  S(1) = 1,
C
C     where A(:,:,1) is upper Hessenberg and A(:,:,i) is upper
C     triangular, i = 2, ..., K, using a single-shift version of the
C     periodic QZ method. In addition, A may be reduced to periodic
C     Schur form by unitary transformations: all factors A(:,:,i) become
C     upper triangular.
C
C     If COMPQ = 'V' or COMPQ = 'I', then the unitary factors are
C     computed and stored in the array Q so that for S(I) = 1,
C
C                         H
C             Q(:,:,I)(in)   A(:,:,I)(in)   Q(:,:,MOD(I,K)+1)(in)
C                          H                                        (1)
C         =   Q(:,:,I)(out)  A(:,:,I)(out)  Q(:,:,MOD(I,K)+1)(out),
C
C     and for S(I) = -1,
C
C                                  H
C             Q(:,:,MOD(I,K)+1)(in)   A(:,:,I)(in)   Q(:,:,I)(in)
C                                   H                               (2)
C         =   Q(:,:,MOD(I,K)+1)(out)  A(:,:,I)(out)  Q(:,:,I)(out).
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     JOB     CHARACTER*1
C             Specifies the computation to be performed, as follows:
C             = 'E': compute the eigenvalues only; A will not
C                    necessarily be put into periodic Schur form;
C             = 'S': put A into periodic Schur form, and return the
C                    eigenvalues in ALPHA, BETA, and SCAL.
C
C     COMPQ   CHARACTER*1
C             Specifies whether or not the unitary transformations
C             should be accumulated in the array Q, as follows:
C             = 'N': do not modify Q;
C             = 'V': modify the array Q by the unitary transformations
C                    that are applied to the matrices in the array A to
C                    reduce them to periodic Schur form;
C             = 'I': like COMPQ = 'V', except that each matrix in the
C                    array Q will be first initialized to the identity
C                    matrix.
C
C     Input/Output Parameters
C
C     K       (input)  INTEGER
C             The number of factors.  K >= 1.
C
C     N       (input)  INTEGER
C             The order of each factor in the array A.  N >= 0.
C
C     ILO     (input)  INTEGER
C     IHI     (input)  INTEGER
C             It is assumed that each factor in A is already upper
C             triangular in rows and columns 1:ILO-1 and IHI+1:N.
C             1 <= ILO <= IHI <= N, if N > 0;
C             ILO = 1 and IHI  = 0, if N = 0.
C
C     S       (input)  INTEGER array, dimension (K)
C             The leading K elements of this array must contain the
C             signatures of the factors. Each entry in S must be either
C             1 or -1. By definition, S(1) must be set to 1.
C
C     A       (input/output) COMPLEX*16 array, dimension (LDA1,LDA2,K)
C             On entry, the leading N-by-N-by-K part of this array
C             must contain the factors in upper Hessenberg-triangular
C             form, that is, A(:,:,1) is upper Hessenberg and the other
C             factors are upper triangular.
C             On exit, if JOB = 'S' and INFO = 0, the leading
C             N-by-N-by-K part of this array contains the factors of
C             A in periodic Schur form. All factors are reduced to
C             upper triangular form and, moreover, A(:,:,2), ...,
C             A(:,:,K) are normalized so that their diagonals contain
C             nonnegative real numbers.
C             On exit, if JOB = 'E', then the leading N-by-N-by-K part
C             of this array contains meaningless elements.
C
C     LDA1    INTEGER
C             The first leading dimension of the array A.
C             LDA1 >= MAX(1,N).
C
C     LDA2    INTEGER
C             The second leading dimension of the array A.
C             LDA2 >= MAX(1,N).
C
C     Q       (input/output) COMPLEX*16 array, dimension (LDQ1,LDQ2,K)
C             On entry, if COMPQ = 'V', the leading N-by-N-by-K part
C             of this array must contain the initial unitary factors
C             as described in (1) and (2).
C             On exit, if COMPQ = 'V' or COMPQ = 'I', the leading
C             N-by-N-by-K part of this array contains the modified
C             unitary factors as described in (1) and (2).
C             This array is not referenced if COMPQ = 'N'.
C
C     LDQ1    INTEGER
C             The first leading dimension of the array Q.  LDQ1 >= 1,
C             and, if COMPQ <> 'N', LDQ1 >= MAX(1,N).
C
C     LDQ2    INTEGER
C             The second leading dimension of the array Q.  LDQ2 >= 1,
C             and, if COMPQ <> 'N', LDQ2 >= MAX(1,N).
C
C     ALPHA   (output) COMPLEX*16 array, dimension (N)
C             On exit, if INFO = 0, the leading N elements of this
C             array contain the scaled eigenvalues of the matrix
C             product A. The i-th eigenvalue of A is given by
C
C             ALPHA(I) / BETA(I) * BASE**(SCAL(I)),
C
C             where ABS(ALPHA(I)) = 0.0 or 1.0 <= ABS(ALPHA(I)) < BASE,
C             and BASE is the machine base (normally 2.0).
C
C     BETA    (output) COMPLEX*16 array, dimension (N)
C             On exit, if INFO = 0, the leading N elements of this
C             array contain indicators for infinite eigenvalues. That
C             is, if BETA(I) = 0.0, then the i-th eigenvalue is
C             infinite. Otherwise BETA(I) is set to 1.0.
C
C     SCAL    (output) INTEGER array, dimension (N)
C             On exit, if INFO = 0, the leading N elements of this
C             array contain the scaling parameters for the eigenvalues
C             of A.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) returns the minimal value
C             of LDWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.  LDWORK >= MAX(1,N).
C
C     ZWORK   COMPLEX*16 array, dimension (LZWORK)
C             On exit, if INFO = 0, ZWORK(1) returns the minimal value
C             of LZWORK.
C
C     LZWORK  INTEGER
C             The length of the array ZWORK.  LZWORK >= MAX(1,N).
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0      :  succesful exit;
C             < 0      :  if INFO = -i, the i-th argument had an illegal
C                         value;
C             = 1,..,N :  the periodic QZ iteration did not converge.
C                         A is not in periodic Schur form, but
C                         ALPHA(I), BETA(I), and SCAL(I), for
C                         I = INFO+1,...,N should be correct.
C
C     METHOD
C
C     A slightly modified version of the periodic QZ algorithm is
C     used. For more details, see [2].
C
C     REFERENCES
C
C     [1] Bojanczyk, A., Golub, G. H. and Van Dooren, P.
C         The periodic Schur decomposition: algorithms and applications.
C         In F.T. Luk (editor), Advanced Signal Processing Algorithms,
C         Architectures, and Implementations III, Proc. SPIE Conference,
C         vol. 1770, pp. 31-42, 1992.
C
C     [2] Kressner, D.
C         An efficient and reliable implementation of the periodic QZ
C         algorithm. IFAC Workshop on Periodic Control Systems (PSYCO
C         2001), Como (Italy), August 27-28 2001. Periodic Control
C         Systems 2001 (IFAC Proceedings Volumes), Pergamon.
C
C     NUMERICAL ASPECTS
C
C     The implemented method is numerically backward stable.
C                                 3
C     The algorithm requires 0(K N ) floating point operations.
C
C     CONTRIBUTOR
C
C     D. Kressner, Technical Univ. Berlin, Germany, Dec. 2002.
C
C     REVISIONS
C
C     V. Sima, Research Institute for Informatics, Bucharest, Romania,
C     Aug. 2009, SLICOT Library version of the routine ZPGEQZ.
C     V. Sima, Nov. 2011, July 2012.
C
C     KEYWORDS
C
C     Eigenvalues, periodic QZ algorithm, periodic Schur form, unitary
C     equivalence transformations.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D+0, ONE = 1.0D+0 )
      COMPLEX*16        CONE, CZERO
      PARAMETER         ( CONE  = ( 1.0D+0, 0.0D+0 ),
     $                    CZERO = ( 0.0D+0, 0.0D+0 ) )
C     .. Scalar Arguments ..
      CHARACTER         COMPQ, JOB
      INTEGER           IHI, ILO, INFO, K, LDA1, LDA2, LDQ1, LDQ2,
     $                  LDWORK, LZWORK, N
C     .. Array Arguments ..
      INTEGER           S(*), SCAL(*)
      DOUBLE PRECISION  DWORK(*)
      COMPLEX*16        A(LDA1, LDA2, *), ALPHA(*), BETA(*),
     $                  Q(LDQ1, LDQ2, *), ZWORK(*)
C     .. Local Scalars ..
      LOGICAL           LINIQ, LSCHR, SOK, WANTQ
      INTEGER           IFIRST, IFRSTM, IITER, ILAST, ILASTM, IN, J, J1,
     $                  JDEF, JITER, JLO, L, LDEF, LN, MAXIT, NTRA,
     $                  ZITER
      DOUBLE PRECISION  ABST, BASE, CS, SAFMAX, SAFMIN, SMLNUM, TOL, ULP
      COMPLEX*16        SN, TEMP
C     .. Local Arrays ..
      INTEGER           ISEED(4)
      COMPLEX*16        RND(4)
C     .. External Functions ..
      LOGICAL           LSAME
      DOUBLE PRECISION  DLAMCH, ZLANHS, ZLANTR
      EXTERNAL          DLAMCH, LSAME, ZLANHS, ZLANTR
C     .. External Subroutines ..
      EXTERNAL          DLABAD, MA01BZ, XERBLA, ZLARNV, ZLARTG, ZLASET,
     $                  ZROT, ZSCAL
C     .. Intrinsic Functions ..
      INTRINSIC         ABS, DBLE, DCMPLX, DCONJG, INT, LOG, MAX, MIN,
     $                  MOD
C
C     .. Executable Statements ..
C
C     Decode the scalar input parameters.
C
      LSCHR = LSAME( JOB,   'S' )
      LINIQ = LSAME( COMPQ, 'I' )
      WANTQ = LSAME( COMPQ, 'V' ) .OR. LINIQ
C
C     Check the scalar input parameters.
C
      INFO = 0
      IF ( .NOT. ( LSCHR .OR. LSAME( JOB, 'E' ) ) ) THEN
         INFO = -1
      ELSE IF( .NOT.WANTQ .AND. .NOT.LSAME( COMPQ, 'N' ) ) THEN
         INFO = -2
      ELSE IF ( K.LT.0 ) THEN
         INFO = -3
      ELSE IF ( N.LT.0 ) THEN
         INFO = -4
      ELSE IF ( ILO.LT.1 ) THEN
         INFO = -5
      ELSE IF ( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN
         INFO = -6
      ELSE
         SOK = S(1).EQ.1
         DO 10  L = 2, K
            SOK = SOK .AND. ( S(L).EQ.1 .OR. S(L).EQ.-1 )
   10    CONTINUE
         IF ( .NOT.SOK ) THEN
            INFO = -7
         ELSE IF ( LDA1.LT.MAX( 1, N ) ) THEN
            INFO = -9
         ELSE IF ( LDA2.LT.MAX( 1, N ) ) THEN
            INFO = -10
         ELSE IF ( LDQ1.LT.1 .OR. ( WANTQ .AND. LDQ1.LT.N ) ) THEN
            INFO = -12
         ELSE IF ( LDQ2.LT.1 .OR. ( WANTQ .AND. LDQ2.LT.N ) ) THEN
            INFO = -13
         ELSE IF ( LDWORK.LT.MAX( 1, N ) ) THEN
            INFO = -18
         ELSE IF ( LZWORK.LT.MAX( 1, N ) ) THEN
            INFO = -20
         END IF
      END IF
C
C     Return if there were illegal values.
C
      IF ( INFO.NE.0 ) THEN
         CALL XERBLA( 'MB03BZ', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF ( N.EQ.0 ) THEN
         DWORK(1) = ONE
         ZWORK(1) = CONE
         RETURN
      END IF
C
C     Initialize Q.
C
      IF ( LINIQ ) THEN
         DO 20  L = 1, K
            CALL ZLASET( 'Full', N, N, CZERO, CONE, Q(1,1,L), LDQ1 )
   20    CONTINUE
      END IF
C
C     Machine Constants.
C
      IN = IHI + 1 - ILO
      SAFMIN = DLAMCH( 'SafeMinimum' )
      SAFMAX = ONE / SAFMIN
      ULP = DLAMCH( 'Precision' )
      CALL DLABAD( SAFMIN, SAFMAX )
      SMLNUM = SAFMIN*( IN / ULP )
      BASE = DLAMCH( 'Base' )
      IF ( K.GE.INT( LOG( DLAMCH( 'Underflow' ) ) / LOG( ULP ) ) ) THEN
C
C        Start Iteration with a controlled zero shift.
C
         ZITER = -1
      ELSE
         ZITER = 0
      END IF
C
C     Set Eigenvalues IHI+1:N.
C
      DO 30  J = IHI + 1, N
         CALL MA01BZ( BASE, K, S, A(J,J,1), LDA1*LDA2, ALPHA(J),
     $                BETA(J), SCAL(J) )
   30 CONTINUE
C
C     If IHI < ILO, skip QZ steps.
C
      IF ( IHI.LT.ILO )
     $   GO TO 460
C
C     MAIN PERIODIC QZ ITERATION LOOP.
C
C     Initialize dynamic indices.
C
C     Eigenvalues ILAST+1:N have been found.
C        Column operations modify rows IFRSTM:whatever.
C        Row operations modify columns whatever:ILASTM.
C
C     If only eigenvalues are being computed, then
C        IFRSTM is the row of the last splitting row above row ILAST;
C        this is always at least ILO.
C     IITER counts iterations since the last eigenvalue was found,
C        to tell when to use an observed zero or random shift.
C     MAXIT is the maximum number of QZ sweeps allowed.
C
      ILAST = IHI
      IF ( LSCHR ) THEN
         IFRSTM = 1
         ILASTM = N
      ELSE
         IFRSTM = ILO
         ILASTM = IHI
      END IF
      IITER = 0
      ISEED(1) = 1
      ISEED(2) = 0
      ISEED(3) = 0
      ISEED(4) = 1
      MAXIT = 30 * IN
C
      DO  450 JITER = 1, MAXIT
C
C        Special Case: ILAST = ILO.
C
         IF ( ILAST.EQ.ILO )
     $      GO TO 390
C
C        **************************************************************
C        *                     CHECK FOR DEFLATION                    *
C        **************************************************************
C
C        Test 1:  Deflation in the Hessenberg matrix.
C
         JLO = ILO
         DO 40  J = ILAST, ILO + 1, -1
            TOL = ABS( A(J-1,J-1,1) ) + ABS( A(J,J,1) )
            IF ( TOL.EQ.ZERO )
     $         TOL = ZLANHS( '1', J-ILO+1, A(ILO,ILO,1), LDA1, DWORK )
            TOL = MAX( ULP*TOL, SMLNUM )
            IF ( ABS( A(J,J-1,1) ).LE.TOL ) THEN
               A(J,J-1,1) = CZERO
               JLO = J
               IF ( J.EQ.ILAST )
     $            GO TO 390
               GO TO 50
            END IF
   40    CONTINUE
C
   50    CONTINUE
C
C        Test 2:  Deflation in the triangular matrices with index 1.
C
         DO 70  LDEF = 2, K
            IF ( S(LDEF).EQ.1 ) THEN
               DO 60  J = ILAST, JLO, -1
                  IF ( J.EQ.ILAST ) THEN
                     TOL = ABS( A(J-1,J,LDEF) )
                  ELSE IF ( J.EQ.JLO ) THEN
                     TOL = ABS( A(J,J+1,LDEF) )
                  ELSE
                     TOL = ABS( A(J-1,J,LDEF) ) + ABS( A(J,J+1,LDEF) )
                  END IF
                  IF ( TOL.EQ.ZERO )
     $               TOL = ZLANTR( '1', 'Upper', 'Non-unit', J-JLO+1,
     $                             J-JLO+1, A(JLO,JLO,LDEF), LDA1,
     $                             DWORK )
                  TOL = MAX( ULP*TOL, SMLNUM )
                  IF ( ABS( A(J,J,LDEF) ).LE.TOL ) THEN
                     A(J,J,LDEF) = CZERO
                     GO TO 170
                  END IF
   60          CONTINUE
            END IF
   70    CONTINUE
C
C        Test 3:  Deflation in the triangular matrices with index -1.
C
         DO 90  LDEF = 2, K
            IF ( S(LDEF).EQ.-1 ) THEN
               DO 80  J = ILAST, JLO, -1
                  IF ( J.EQ.ILAST ) THEN
                     TOL = ABS( A(J-1,J,LDEF) )
                  ELSE IF ( J.EQ.JLO ) THEN
                     TOL = ABS( A(J,J+1,LDEF) )
                  ELSE
                     TOL = ABS( A(J-1,J,LDEF) ) + ABS( A(J,J+1,LDEF) )
                  END IF
                  IF ( TOL.EQ.ZERO )
     $               TOL = ZLANTR( '1', 'Upper', 'Non-unit', J-JLO+1,
     $                             J-JLO+1, A(JLO,JLO,LDEF), LDA1,
     $                             DWORK )
                  TOL = MAX( ULP*TOL, SMLNUM )
                  IF ( ABS( A(J,J,LDEF) ).LE.TOL ) THEN
                     A(J,J,LDEF) = CZERO
                     GO TO 320
                  END IF
   80          CONTINUE
            END IF
   90    CONTINUE
C
C        Test 4:  Controlled zero shift.
C
         IF ( ZITER.GE.7 .OR. ZITER.LT.0 ) THEN
C
C           Make Hessenberg matrix upper triangular.
C
            DO 100 J = JLO, ILAST - 1
               TEMP = A(J,J,1)
               CALL ZLARTG( TEMP, A(J+1,J,1), CS, SN, A(J,J,1) )
               A(J+1,J,1) = CZERO
               CALL ZROT( ILASTM-J, A(J,J+1,1), LDA1,
     $                    A(J+1,J+1,1), LDA1, CS, SN )
               DWORK(J) = CS
               ZWORK(J) = SN
  100       CONTINUE
            IF ( WANTQ ) THEN
               DO 110  J = JLO, ILAST - 1
                  CALL ZROT( N, Q(1,J,1), 1, Q(1,J+1,1), 1, DWORK(J),
     $                       DCONJG( ZWORK(J) ) )
  110          CONTINUE
            END IF
C
C           Propagate Transformations back to A_1.
C
            DO 150  L = K, 2, -1
               IF ( S(L).EQ.1 ) THEN
                  DO 120  J = JLO, ILAST - 1
                     SN = ZWORK(J)
                     IF ( SN.NE.CZERO ) THEN
                        CS = DWORK(J)
                        CALL ZROT( J+2-IFRSTM, A(IFRSTM,J,L), 1,
     $                             A(IFRSTM,J+1,L), 1, CS,
     $                             DCONJG( SN ) )
C
C                       Check for deflation.
C
                        TOL = ABS( A(J,J,L) ) + ABS( A(J+1,J+1,L) )
                        IF ( TOL.EQ.ZERO )
     $                     TOL = ZLANHS( '1', J-JLO+2, A(JLO,JLO,L),
     $                                   LDA1, DWORK )
                        TOL = MAX( ULP*TOL, SMLNUM )
                        IF ( ABS( A(J+1,J,L) ).LE.TOL ) THEN
                           CS = ONE
                           SN = CZERO
                           A(J+1,J,L) = CZERO
                        ELSE
C
                           TEMP = A(J,J,L)
                           CALL ZLARTG( TEMP, A(J+1,J,L), CS, SN,
     $                                  A(J,J,L) )
                           A(J+1,J,L) = CZERO
                           CALL ZROT( ILASTM-J, A(J,J+1,L), LDA1,
     $                                A(J+1,J+1,L), LDA1, CS, SN )
                        END IF
                        DWORK(J) = CS
                        ZWORK(J) = SN
                     END IF
  120             CONTINUE
               ELSE
                  DO 130  J = JLO, ILAST - 1
                     SN = ZWORK(J)
                     IF ( SN.NE.CZERO ) THEN
                        CS = DWORK(J)
                        CALL ZROT( ILASTM-J+1, A(J,J,L), LDA1,
     $                             A(J+1,J,L), LDA1, CS, SN )
C
C                       Check for deflation.
C
                        TOL = ABS( A(J,J,L) ) + ABS( A(J+1,J+1,L) )
                        IF ( TOL.EQ.ZERO )
     $                     TOL = ZLANHS( '1', J-JLO+2, A(JLO,JLO,L),
     $                                   LDA1, DWORK )
                        TOL = MAX( ULP*TOL, SMLNUM )
                        IF ( ABS( A(J+1,J,L) ).LE.TOL ) THEN
                           CS = ONE
                           SN = CZERO
                           A(J+1,J,L) = CZERO
                        ELSE
C
                           TEMP = A(J+1,J+1,L)
                           CALL ZLARTG( TEMP, A(J+1,J,L), CS, SN,
     $                                  A(J+1,J+1,L) )
                           A(J+1,J,L) = CZERO
                           CALL ZROT( J+1-IFRSTM, A(IFRSTM,J+1,L), 1,
     $                                A(IFRSTM,J,L), 1, CS, SN )
                        END IF
                        DWORK(J) =  CS
                        ZWORK(J) = -SN
                     END IF
  130             CONTINUE
               END IF
C
               IF ( WANTQ ) THEN
                  DO 140  J = JLO, ILAST - 1
                     CALL ZROT( N, Q(1,J,L), 1, Q(1,J+1,L), 1, DWORK(J),
     $                          DCONJG( ZWORK(J) ) )
  140             CONTINUE
               END IF
  150       CONTINUE
C
C           Apply the transformations to the right hand side of the
C           Hessenberg factor.
C
            ZITER = 0
            DO 160  J = JLO, ILAST - 1
               CS = DWORK(J)
               SN = ZWORK(J)
               CALL ZROT( J+2-IFRSTM, A(IFRSTM,J,1), 1,
     $                    A(IFRSTM,J+1,1), 1, CS, DCONJG( SN ) )
               IF ( SN.EQ.CZERO )
     $            ZITER = 1
  160       CONTINUE
C
C           No QZ iteration.
C
            GO TO 440
         END IF
C
C        **************************************************************
C        *                     HANDLE DEFLATIONS                      *
C        **************************************************************
C
C        Case I: Deflation occurs in the Hessenberg matrix. The QZ
C                iteration is only applied to the JLO:ILAST part.
C
         IFIRST = JLO
C
C        Go to the periodic QZ steps.
C
         GO TO 400
C
C        Case II: Deflation occurs in a triangular matrix with index 1.
C
C        Do an unshifted periodic QZ step.
C
  170    CONTINUE
         JDEF = J
         DO 180  J = JLO, JDEF - 1
            TEMP = A(J,J,1)
            CALL ZLARTG( TEMP, A(J+1,J,1), CS, SN, A(J,J,1) )
            A(J+1,J,1) = CZERO
            CALL ZROT( ILASTM-J, A(J,J+1,1), LDA1, A(J+1,J+1,1), LDA1,
     $                 CS, SN )
            DWORK(J) = CS
            ZWORK(J) = SN
  180    CONTINUE
         IF ( WANTQ ) THEN
            DO 190  J = JLO, JDEF - 1
               CALL ZROT( N, Q(1,J,1), 1, Q(1,J+1,1), 1, DWORK(J),
     $                    DCONJG( ZWORK(J) ) )
  190       CONTINUE
         END IF
C
C        Propagate the transformations through the triangular matrices.
C        Due to the zero element on the diagonal of the LDEF-th factor,
C        the number of transformations drops by one.
C
         DO 230  L = K, 2, -1
            IF ( L.LT.LDEF ) THEN
               NTRA = JDEF - 2
            ELSE
               NTRA = JDEF - 1
            END IF
            IF ( S(L).EQ.1 ) THEN
               DO 200  J = JLO, NTRA
                  CALL ZROT( J+2-IFRSTM, A(IFRSTM,J,L), 1,
     $                       A(IFRSTM,J+1,L), 1, DWORK(J),
     $                       DCONJG( ZWORK(J) ) )
                  TEMP = A(J,J,L)
                  CALL ZLARTG( TEMP, A(J+1,J,L), CS, SN, A(J,J,L) )
                  A(J+1,J,L) = CZERO
                  CALL ZROT( ILASTM-J, A(J,J+1,L), LDA1,
     $                       A(J+1,J+1,L), LDA1, CS, SN )
                  DWORK(J) = CS
                  ZWORK(J) = SN
  200          CONTINUE
            ELSE
               DO 210  J = JLO, NTRA
                  CALL ZROT( ILASTM-J+1, A(J,J,L), LDA1, A(J+1,J,L),
     $                       LDA1, DWORK(J), ZWORK(J) )
                  TEMP = A(J+1,J+1,L)
                  CALL ZLARTG( TEMP, A(J+1,J,L), CS, SN, A(J+1,J+1,L) )
                  A(J+1,J,L) = CZERO
                  CALL ZROT( J+1-IFRSTM, A(IFRSTM,J+1,L), 1,
     $                       A(IFRSTM,J,L), 1, CS, SN )
                  DWORK(J) =  CS
                  ZWORK(J) = -SN
  210          CONTINUE
            END IF
            IF ( WANTQ ) THEN
               DO 220  J = JLO, NTRA
                  CALL ZROT( N, Q(1,J,L), 1, Q(1,J+1,L), 1, DWORK(J),
     $                       DCONJG( ZWORK(J) ) )
  220          CONTINUE
            END IF
  230    CONTINUE
C
C        Apply the transformations to the right hand side of the
C        Hessenberg factor.
C
         DO 240  J = JLO, JDEF - 2
            CALL ZROT( J+2-IFRSTM, A(IFRSTM,J,1), 1, A(IFRSTM,J+1,1),
     $                 1, DWORK(J), DCONJG( ZWORK(J) ) )
  240    CONTINUE
C
C        Do an unshifted periodic QZ step.
C
         DO 250  J = ILAST, JDEF + 1, -1
            TEMP = A(J,J,1)
            CALL ZLARTG( TEMP, A(J,J-1,1), CS, SN, A(J,J,1) )
            A(J,J-1,1) = CZERO
            CALL ZROT( J-IFRSTM, A(IFRSTM,J,1), 1,
     $                 A(IFRSTM,J-1,1), 1, CS, SN )
            DWORK(J) =  CS
            ZWORK(J) = -SN
  250    CONTINUE
         IF ( WANTQ ) THEN
            DO 260  J = ILAST, JDEF + 1, -1
               CALL ZROT( N, Q(1,J-1,2), 1, Q(1,J,2),
     $                    1, DWORK(J), DCONJG( ZWORK(J) ) )
  260       CONTINUE
         END IF
C
C        Propagate the transformations through the triangular matrices.
C
         DO 300  L = 2, K
            IF ( L.GT.LDEF ) THEN
               NTRA = JDEF + 2
            ELSE
               NTRA = JDEF + 1
            END IF
            IF ( S(L).EQ.-1 ) THEN
               DO 270  J = ILAST, NTRA, -1
                  CS = DWORK(J)
                  SN = ZWORK(J)
                  CALL ZROT( J+1-IFRSTM, A(IFRSTM,J-1,L), 1,
     $                       A(IFRSTM,J,L), 1, CS, DCONJG( SN ) )
                  TEMP = A(J-1,J-1,L)
                  CALL ZLARTG( TEMP, A(J,J-1,L), CS, SN, A(J-1,J-1,L) )
                  A(J,J-1,L) = CZERO
                  CALL ZROT( ILASTM-J+1, A(J-1,J,L), LDA1, A(J,J,L),
     $                       LDA1, CS, SN )
                  DWORK(J) = CS
                  ZWORK(J) = SN
  270          CONTINUE
            ELSE
               DO 280  J = ILAST, NTRA, -1
                  CALL ZROT( ILASTM-J+2, A(J-1,J-1,L), LDA1,
     $                       A(J,J-1,L), LDA1, DWORK(J), ZWORK(J) )
                  TEMP = A(J,J,L)
                  CALL ZLARTG( TEMP, A(J,J-1,L), CS, SN, A(J,J,L) )
                  A(J,J-1,L) = CZERO
                  CALL ZROT( J-IFRSTM, A(IFRSTM,J,L), 1,
     $                       A(IFRSTM,J-1,L), 1, CS, SN )
                  DWORK(J) =  CS
                  ZWORK(J) = -SN
  280          CONTINUE
            END IF
            IF ( WANTQ ) THEN
               IF ( L.EQ.K ) THEN
                  LN = 1
               ELSE
                  LN = L + 1
               END IF
               DO 290  J = ILAST, NTRA, -1
                  CALL ZROT( N, Q(1,J-1,LN), 1, Q(1,J,LN), 1, DWORK(J),
     $                       DCONJG( ZWORK(J) ) )
  290          CONTINUE
            END IF
  300    CONTINUE
C
C        Apply the transformations to the left hand side of the
C        Hessenberg factor.
C
         DO 310  J = ILAST, JDEF + 2, -1
            CALL ZROT( ILASTM-J+2, A(J-1,J-1,1), LDA1, A(J,J-1,1),
     $                 LDA1, DWORK(J), ZWORK(J) )
  310    CONTINUE
C
C        No QZ iteration.
C
         GO TO 440
C
C        Case III: Deflation occurs in a triangular matrix with
C                  index -1.
C
  320    CONTINUE
         JDEF = J
         IF ( JDEF.GT.( ( ILAST - JLO + 1 )/2 ) ) THEN
C
C           Chase the zero downwards to the last position.
C
            DO 340  J1 = JDEF, ILAST - 1
               J = J1
               TEMP = A(J,J+1,LDEF)
               CALL ZLARTG( TEMP, A(J+1,J+1,LDEF), CS, SN,
     $                      A(J,J+1,LDEF) )
               A(J+1,J+1,LDEF) = CZERO
               CALL ZROT( ILASTM-J-1, A(J,J+2,LDEF), LDA1,
     $                    A(J+1,J+2,LDEF), LDA1, CS, SN )
               IF ( LDEF.EQ.K ) THEN
                  LN = 1
               ELSE
                  LN = LDEF + 1
               END IF
               IF ( WANTQ ) THEN
                  CALL ZROT( N, Q(1,J,LN), 1, Q(1,J+1,LN), 1, CS,
     $                       DCONJG( SN ) )
               END IF
               DO 330  L = 1, K - 1
                  IF ( LN.EQ.1 ) THEN
                     CALL ZROT( ILASTM-J+2, A(J,J-1,LN), LDA1,
     $                          A(J+1,J-1,LN), LDA1, CS, SN )
                     TEMP = A(J+1,J,LN)
                     CALL ZLARTG( TEMP, A(J+1,J-1,LN), CS, SN,
     $                            A(J+1,J,LN) )
                     A(J+1,J-1,LN) = CZERO
                     CALL ZROT( J-IFRSTM+1, A(IFRSTM,J,LN), 1,
     $                          A(IFRSTM,J-1,LN), 1, CS, SN )
                     SN = -SN
                     J  = J - 1
                  ELSE IF ( S(LN).EQ.1 ) THEN
                     CALL ZROT( ILASTM-J+1, A(J,J,LN), LDA1,
     $                          A(J+1,J,LN), LDA1, CS, SN )
                     TEMP = A(J+1,J+1,LN)
                     CALL ZLARTG( TEMP, A(J+1,J,LN), CS, SN,
     $                            A(J+1,J+1,LN) )
                     A(J+1,J,LN) = CZERO
                     CALL ZROT( J-IFRSTM+1, A(IFRSTM,J+1,LN), 1,
     $                          A(IFRSTM,J,LN), 1, CS, SN )
                     SN = -SN
                  ELSE
                     CALL ZROT( J-IFRSTM+2, A(IFRSTM,J,LN), 1,
     $                          A(IFRSTM,J+1,LN), 1, CS, DCONJG( SN ) )
                     TEMP = A(J,J,LN)
                     CALL ZLARTG( TEMP, A(J+1,J,LN), CS, SN, A(J,J,LN) )
                     A(J+1,J,LN) = CZERO
                     CALL ZROT( ILASTM-J, A(J,J+1,LN), LDA1,
     $                          A(J+1,J+1,LN), LDA1, CS, SN )
                  END IF
                  LN = LN + 1
                  IF ( LN.GT.K )
     $               LN = 1
                  IF ( WANTQ ) THEN
                     CALL ZROT( N, Q(1,J,LN), 1, Q(1,J+1,LN), 1, CS,
     $                          DCONJG( SN ) )
                  END IF
  330          CONTINUE
               CALL ZROT( J-IFRSTM+1, A(IFRSTM,J,LDEF), 1,
     $                    A(IFRSTM,J+1,LDEF), 1, CS, DCONJG( SN ) )
  340       CONTINUE
C
C           Deflate the last element in the Hessenberg matrix.
C
            J = ILAST
            TEMP = A(J,J,1)
            CALL ZLARTG( TEMP, A(J,J-1,1), CS, SN, A(J,J,1) )
            A(J,J-1,1) = CZERO
            CALL ZROT( J-IFRSTM, A(IFRSTM,J,1), 1,
     $                 A(IFRSTM,J-1,1), 1, CS, SN )
            SN = -SN
            IF ( WANTQ ) THEN
               CALL ZROT( N, Q(1,J-1,2), 1, Q(1,J,2), 1, CS,
     $                    DCONJG( SN ) )
            END IF
            DO 350  L = 2, LDEF - 1
               IF ( S(L).EQ.-1 ) THEN
                  CALL ZROT( J+1-IFRSTM, A(IFRSTM,J-1,L), 1,
     $                       A(IFRSTM,J,L), 1, CS, DCONJG( SN ) )
                  TEMP = A(J-1,J-1,L)
                  CALL ZLARTG( TEMP, A(J,J-1,L), CS, SN,
     $                         A(J-1,J-1,L) )
                  A(J,J-1,L) = CZERO
                  CALL ZROT( ILASTM-J+1, A(J-1,J,L), LDA1,
     $                       A(J,J,L), LDA1, CS, SN )
               ELSE
                  CALL ZROT( ILASTM-J+2, A(J-1,J-1,L), LDA1,
     $                       A(J,J-1,L), LDA1, CS, SN )
                  TEMP = A(J,J,L)
                  CALL ZLARTG( TEMP, A(J,J-1,L), CS, SN,
     $                         A(J,J,L) )
                  A(J,J-1,L) = CZERO
                  CALL ZROT( J-IFRSTM, A(IFRSTM,J,L), 1,
     $                       A(IFRSTM,J-1,L), 1, CS, SN )
                  SN = -SN
               END IF
               IF ( WANTQ ) THEN
                  IF ( L.EQ.K ) THEN
                     LN = 1
                  ELSE
                     LN = L + 1
                  END IF
                  CALL ZROT( N, Q(1,J-1,LN), 1, Q(1,J,LN), 1, CS,
     $                       DCONJG( SN ) )
               END IF
  350       CONTINUE
            CALL ZROT( J+1-IFRSTM, A(IFRSTM,J-1,LDEF), 1,
     $                 A(IFRSTM,J,LDEF), 1, CS, DCONJG( SN ) )
         ELSE
C
C           Chase the zero upwards to the first position.
C
            DO 370  J1 = JDEF, JLO + 1, -1
               J = J1
               TEMP = A(J-1,J,LDEF)
               CALL ZLARTG( TEMP, A(J-1,J-1,LDEF), CS, SN,
     $                      A(J-1,J,LDEF) )
               A(J-1,J-1,LDEF) = CZERO
               CALL ZROT( J-IFRSTM-1, A(IFRSTM,J,LDEF), 1,
     $                    A(IFRSTM,J-1,LDEF), 1, CS, SN )
               SN = -SN
               IF ( WANTQ ) THEN
                  CALL ZROT( N, Q(1,J-1,LDEF), 1, Q(1,J,LDEF), 1, CS,
     $                       DCONJG( SN ) )
               END IF
               LN = LDEF - 1
               DO 360  L = 1, K - 1
                  IF ( LN.EQ.1 ) THEN
                     CALL ZROT( J-IFRSTM+2, A(IFRSTM,J-1,LN), 1,
     $                          A(IFRSTM,J,LN), 1, CS, DCONJG( SN ) )
                     TEMP = A(J,J-1,LN)
                     CALL ZLARTG( TEMP, A(J+1,J-1,LN), CS, SN,
     $                            A(J,J-1,LN) )
                     A(J+1,J-1,LN) = CZERO
                     CALL ZROT( ILASTM-J+1, A(J,J,LN), LDA1,
     $                          A(J+1,J,LN), LDA1, CS, SN )
                     J = J + 1
                  ELSE IF ( S(LN).EQ.-1 ) THEN
                     CALL ZROT( ILASTM-J+2, A(J-1,J-1,LN), LDA1,
     $                          A(J,J-1,LN), LDA1, CS, SN )
                     TEMP = A(J,J,LN)
                     CALL ZLARTG( TEMP, A(J,J-1,LN), CS, SN,
     $                            A(J,J,LN) )
                     A(J,J-1,LN) = CZERO
                     CALL ZROT( J-IFRSTM, A(IFRSTM,J,LN), 1,
     $                          A(IFRSTM,J-1,LN), 1, CS, SN )
                     SN = -SN
                  ELSE
                     CALL ZROT( J-IFRSTM+1, A(IFRSTM,J-1,LN), 1,
     $                          A(IFRSTM,J,LN), 1, CS, DCONJG( SN ) )
                     TEMP = A(J-1,J-1,LN)
                     CALL ZLARTG( TEMP, A(J,J-1,LN), CS, SN,
     $                            A(J-1,J-1,LN) )
                     A(J,J-1,LN) = CZERO
                     CALL ZROT( ILASTM-J+1, A(J-1,J,LN), LDA1,
     $                          A(J,J,LN), LDA1, CS, SN )
                  END IF
                  IF ( WANTQ ) THEN
                     CALL ZROT( N, Q(1,J-1,LN), 1, Q(1,J,LN), 1, CS,
     $                          DCONJG( SN ) )
                  END IF
                  LN = LN - 1
                  IF ( LN.LE.0 )
     $               LN = K
  360          CONTINUE
               CALL ZROT( ILASTM-J+1, A(J-1,J,LDEF), LDA1, A(J,J,LDEF),
     $                    LDA1, CS, SN )
  370       CONTINUE
C
C           Deflate the first element in the Hessenberg matrix.
C
            J = JLO
            TEMP = A(J,J,1)
            CALL ZLARTG( TEMP, A(J+1,J,1), CS, SN, A(J,J,1) )
            A(J+1,J,1) = CZERO
            CALL ZROT( ILASTM-J, A(J,J+1,1), LDA1, A(J+1,J+1,1),
     $                 LDA1, CS, SN )
            IF ( WANTQ ) THEN
               CALL ZROT( N, Q(1,J,1), 1, Q(1,J+1,1), 1, CS,
     $                    DCONJG( SN ) )
            END IF
            DO 380  L = K, LDEF + 1, -1
               IF ( S(L).EQ.1 ) THEN
                  CALL ZROT( J+2-IFRSTM, A(IFRSTM,J,L), 1,
     $                       A(IFRSTM,J+1,L), 1, CS, DCONJG( SN ) )
                  TEMP = A(J,J,L)
                  CALL ZLARTG( TEMP, A(J+1,J,L), CS, SN, A(J,J,L) )
                  A(J+1,J,L) = CZERO
                  CALL ZROT( ILASTM-J, A(J,J+1,L), LDA1,
     $                       A(J+1,J+1,L), LDA1, CS, SN )
               ELSE
                  CALL ZROT( ILASTM-J+1, A(J,J,L), LDA1,
     $                       A(J+1,J,L), LDA1, CS, SN )
                  TEMP = A(J+1,J+1,L)
                  CALL ZLARTG( TEMP, A(J+1,J,L), CS, SN,
     $                         A(J+1,J+1,L) )
                  A(J+1,J,L) = CZERO
                  CALL ZROT( J+1-IFRSTM, A(IFRSTM,J+1,L), 1,
     $                       A(IFRSTM,J,L), 1, CS, SN )
                  SN = -SN
               END IF
               IF ( WANTQ ) THEN
                  CALL ZROT( N, Q(1,J,L), 1, Q(1,J+1,L), 1, CS,
     $                       DCONJG( SN ) )
               END IF
  380       CONTINUE
            CALL ZROT( ILASTM-J, A(J,J+1,LDEF), LDA1, A(J+1,J+1,LDEF),
     $                 LDA1, CS, SN )
         END IF
C
C        No QZ iteration.
C
         GO TO 440
C
C        Special case: A 1x1 block splits off at the bottom.
C
  390    CONTINUE
         CALL MA01BZ( BASE, K, S, A(ILAST,ILAST,1), LDA1*LDA2,
     $                ALPHA(ILAST), BETA(ILAST), SCAL(ILAST) )
C
C        Go to next block - exit if finished.
C
         ILAST = ILAST - 1
         IF ( ILAST.LT.ILO )
     $      GO TO 460
C
C        Reset iteration counters.
C
         IITER = 0
         IF ( ZITER.NE.-1 )
     $      ZITER = 0
         IF ( .NOT.LSCHR ) THEN
            ILASTM = ILAST
            IF ( IFRSTM.GT.ILAST )
     $         IFRSTM = ILO
         END IF
C
C        No QZ iteration.
C
         GO TO 440
C
C        **************************************************************
C        *                      PERIODIC QZ STEP                      *
C        **************************************************************
C
C        It is assumed that IFIRST < ILAST.
C
  400    CONTINUE
C
         IITER = IITER + 1
         ZITER = ZITER + 1
         IF( .NOT.LSCHR )
     $      IFRSTM = IFIRST
C
C        Complex single shift.
C
         IF ( MOD( IITER, 10 ).EQ.0 ) THEN
C
C           Exceptional shift.
C
            CALL ZLARNV( 2, ISEED, 2, RND )
            CALL ZLARTG( RND(1), RND(2), CS, SN, TEMP )
         ELSE
            CALL ZLARTG( CONE, CONE, CS, SN, TEMP )
            DO 410  L = K, 2, -1
               IF ( S(L).EQ.1 ) THEN
                  CALL ZLARTG( A(IFIRST,IFIRST,L)*CS,
     $                         A(ILAST,ILAST,L)*DCONJG( SN ),
     $                         CS, SN, TEMP )
               ELSE
                  CALL ZLARTG( A(ILAST,ILAST,L)*CS,
     $                         -A(IFIRST,IFIRST,L)*DCONJG( SN ),
     $                         CS, SN, TEMP )
                  SN = -SN
               END IF
  410       CONTINUE
            CALL ZLARTG( A(IFIRST,IFIRST,1)*CS
     $                   -A(ILAST,ILAST,1)*DCONJG( SN ),
     $                   A(IFIRST+1,IFIRST,1)*CS, CS, SN, TEMP )
         END IF
C
C        Do the sweeps.
C
         DO 430  J1 = IFIRST - 1, ILAST - 2
            J = J1 + 1
C
C           Create a bulge if J1 = IFIRST - 1, otherwise chase the
C           bulge.
C
            IF ( J1.GE.IFIRST ) THEN
               TEMP = A(J,J-1,1)
               CALL ZLARTG( TEMP, A(J+1,J-1,1), CS, SN, A(J,J-1,1) )
               A(J+1,J-1,1) = CZERO
            END IF
            CALL ZROT( ILASTM-J+1, A(J,J,1), LDA1, A(J+1,J,1), LDA1,
     $                 CS, SN )
            IF ( WANTQ ) THEN
               CALL ZROT( N, Q(1,J,1), 1, Q(1,J+1,1), 1, CS,
     $                    DCONJG( SN ) )
            END IF
C
C           Propagate rotation through AK, ..., A2 to A1.
C
            DO 420  L = K, 2, -1
               IF ( S(L).EQ.1 ) THEN
                  CALL ZROT( J+2-IFRSTM, A(IFRSTM,J,L), 1,
     $                       A(IFRSTM,J+1,L), 1, CS, DCONJG( SN ) )
                  TEMP = A(J,J,L)
                  CALL ZLARTG( TEMP, A(J+1,J,L), CS, SN, A(J,J,L) )
                  A(J+1,J,L) = CZERO
                  CALL ZROT( ILASTM-J, A(J,J+1,L), LDA1,
     $                       A(J+1,J+1,L), LDA1, CS, SN )
               ELSE
                  CALL ZROT( ILASTM-J+1, A(J,J,L), LDA1, A(J+1,J,L),
     $                       LDA1, CS, SN )
                  TEMP = A(J+1,J+1,L)
                  CALL ZLARTG( TEMP, A(J+1,J,L), CS, SN, A(J+1,J+1,L) )
                  A(J+1,J,L) = CZERO
                  CALL ZROT( J+1-IFRSTM, A(IFRSTM,J+1,L), 1,
     $                       A(IFRSTM,J,L), 1, CS, SN )
                  SN = -SN
               END IF
               IF ( WANTQ ) THEN
                  CALL ZROT( N, Q(1,J,L), 1, Q(1,J+1,L), 1, CS,
     $                       DCONJG( SN ) )
               END IF
  420       CONTINUE
            CALL ZROT( MIN( J+2, ILASTM )-IFRSTM+1, A(IFRSTM,J,1), 1,
     $                 A(IFRSTM,J+1,1), 1, CS, DCONJG( SN ) )
  430    CONTINUE
C
C        End of iteration loop.
C
  440    CONTINUE
  450 CONTINUE
C
C     Drop through = non-convergence.
C
      INFO = ILAST
      GO TO 540
C
C     Successful completion of all QZ steps.
C
  460 CONTINUE
C
C     Set eigenvalues 1:ILO-1.
C
      DO 470  J = 1, ILO - 1
         CALL MA01BZ( BASE, K, S, A(J,J,1), LDA1*LDA2, ALPHA(J),
     $                BETA(J), SCAL(J) )
  470 CONTINUE
      IF ( LSCHR ) THEN
C
C        Scale A(2,:,:), ..., A(K,:,:).
C
         DO 530  L = K, 2, -1
            IF ( S(L).EQ.1 )  THEN
               DO 480  J = 1, N
                  ABST = ABS( A(J,J,L) )
                  IF ( ABST.GT.SAFMIN ) THEN
                     TEMP = DCONJG( A(J,J,L) / ABST )
                     A(J,J,L ) = ABST
                     IF ( J.LT.N )
     $                  CALL ZSCAL( N-J, TEMP, A(J,J+1,L), LDA1 )
                  ELSE
                     TEMP = CONE
                  END IF
                  ZWORK(J) = TEMP
  480          CONTINUE
            ELSE
               DO 490  J = 1, N
                  ABST = ABS( A(J,J,L) )
                  IF ( ABST.GT.SAFMIN ) THEN
                     TEMP = DCONJG( A(J,J,L) / ABST )
                     A(J,J,L ) = ABST
                     CALL ZSCAL( J-1, TEMP, A(1,J,L), 1 )
                  ELSE
                     TEMP = CONE
                  END IF
                  ZWORK(J) = DCONJG( TEMP )
  490          CONTINUE
            END IF
            IF ( WANTQ ) THEN
               DO 500  J = 1, N
                  CALL ZSCAL( N, DCONJG( ZWORK(J) ), Q(1,J,L), 1 )
  500          CONTINUE
            END IF
            IF ( S(L-1).EQ.1 )  THEN
               DO 510  J = 1, N
                  CALL ZSCAL( J, DCONJG( ZWORK(J) ), A(1,J,L-1), 1 )
  510          CONTINUE
            ELSE
               DO 520  J = 1, N
                  CALL ZSCAL( N-J+1, ZWORK(J), A(J,J,L-1), LDA1 )
  520          CONTINUE
            END IF
  530    CONTINUE
      END IF
C
  540 CONTINUE
C
      DWORK(1) = DBLE( N )
      ZWORK(1) = DCMPLX( N, 0 )
      RETURN
C *** Last line of MB03BZ ***
      END