control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
      SUBROUTINE AB09HD( DICO, JOB, EQUIL, ORDSEL, N, M, P, NR, ALPHA,
     $                   BETA, A, LDA, B, LDB, C, LDC, D, LDD, NS, HSV,
     $                   TOL1, TOL2, IWORK, DWORK, LDWORK, BWORK, IWARN,
     $                   INFO )
C
C     PURPOSE
C
C     To compute a reduced order model (Ar,Br,Cr,Dr) for an original
C     state-space representation (A,B,C,D) by using the stochastic
C     balancing approach in conjunction with the square-root or
C     the balancing-free square-root Balance & Truncate (B&T)
C     or Singular Perturbation Approximation (SPA) model reduction
C     methods for the ALPHA-stable part of the system.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     DICO    CHARACTER*1
C             Specifies the type of the original system as follows:
C             = 'C':  continuous-time system;
C             = 'D':  discrete-time system.
C
C     JOB     CHARACTER*1
C             Specifies the model reduction approach to be used
C             as follows:
C             = 'B':  use the square-root Balance & Truncate method;
C             = 'F':  use the balancing-free square-root
C                     Balance & Truncate method;
C             = 'S':  use the square-root Singular Perturbation
C                     Approximation method;
C             = 'P':  use the balancing-free square-root
C                     Singular Perturbation Approximation method.
C
C     EQUIL   CHARACTER*1
C             Specifies whether the user wishes to preliminarily
C             equilibrate the triplet (A,B,C) as follows:
C             = 'S':  perform equilibration (scaling);
C             = 'N':  do not perform equilibration.
C
C     ORDSEL  CHARACTER*1
C             Specifies the order selection method as follows:
C             = 'F':  the resulting order NR is fixed;
C             = 'A':  the resulting order NR is automatically determined
C                     on basis of the given tolerance TOL1.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the original state-space representation,
C             i.e., the order of the matrix A.  N >= 0.
C
C     M       (input) INTEGER
C             The number of system inputs.  M >= 0.
C
C     P       (input) INTEGER
C             The number of system outputs.  P >= 0.
C             P <= M if BETA = 0.
C
C     NR      (input/output) INTEGER
C             On entry with ORDSEL = 'F', NR is the desired order of the
C             resulting reduced order system.  0 <= NR <= N.
C             On exit, if INFO = 0, NR is the order of the resulting
C             reduced order model. For a system with NU ALPHA-unstable
C             eigenvalues and NS ALPHA-stable eigenvalues (NU+NS = N),
C             NR is set as follows: if ORDSEL = 'F', NR is equal to
C             NU+MIN(MAX(0,NR-NU),NMIN), where NR is the desired order
C             on entry, and NMIN is the order of a minimal realization
C             of the ALPHA-stable part of the given system; NMIN is
C             determined as the number of Hankel singular values greater
C             than NS*EPS, where EPS is the machine precision
C             (see LAPACK Library Routine DLAMCH);
C             if ORDSEL = 'A', NR is the sum of NU and the number of
C             Hankel singular values greater than MAX(TOL1,NS*EPS);
C             NR can be further reduced to ensure that
C             HSV(NR-NU) > HSV(NR+1-NU).
C
C     ALPHA   (input) DOUBLE PRECISION
C             Specifies the ALPHA-stability boundary for the eigenvalues
C             of the state dynamics matrix A. For a continuous-time
C             system (DICO = 'C'), ALPHA <= 0 is the boundary value for
C             the real parts of eigenvalues, while for a discrete-time
C             system (DICO = 'D'), 0 <= ALPHA <= 1 represents the
C             boundary value for the moduli of eigenvalues.
C             The ALPHA-stability domain does not include the boundary.
C
C     BETA    (input) DOUBLE PRECISION
C             BETA > 0 specifies the absolute/relative error weighting
C             parameter. A large positive value of BETA favours the
C             minimization of the absolute approximation error, while a
C             small value of BETA is appropriate for the minimization
C             of the relative error.
C             BETA = 0 means a pure relative error method and can be
C             used only if rank(D) = P.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading N-by-N part of this array must
C             contain the state dynamics matrix A.
C             On exit, if INFO = 0, the leading NR-by-NR part of this
C             array contains the state dynamics matrix Ar of the reduced
C             order system.
C             The resulting A has a block-diagonal form with two blocks.
C             For a system with NU ALPHA-unstable eigenvalues and
C             NS ALPHA-stable eigenvalues (NU+NS = N), the leading
C             NU-by-NU block contains the unreduced part of A
C             corresponding to ALPHA-unstable eigenvalues in an
C             upper real Schur form.
C             The trailing (NR+NS-N)-by-(NR+NS-N) block contains
C             the reduced part of A corresponding to ALPHA-stable
C             eigenvalues.
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= MAX(1,N).
C
C     B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C             On entry, the leading N-by-M part of this array must
C             contain the original input/state matrix B.
C             On exit, if INFO = 0, the leading NR-by-M part of this
C             array contains the input/state matrix Br of the reduced
C             order system.
C
C     LDB     INTEGER
C             The leading dimension of array B.  LDB >= MAX(1,N).
C
C     C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C             On entry, the leading P-by-N part of this array must
C             contain the original state/output matrix C.
C             On exit, if INFO = 0, the leading P-by-NR part of this
C             array contains the state/output matrix Cr of the reduced
C             order system.
C
C     LDC     INTEGER
C             The leading dimension of array C.  LDC >= MAX(1,P).
C
C     D       (input/output) DOUBLE PRECISION array, dimension (LDD,M)
C             On entry, the leading P-by-M part of this array must
C             contain the original input/output matrix D.
C             On exit, if INFO = 0, the leading P-by-M part of this
C             array contains the input/output matrix Dr of the reduced
C             order system.
C
C     LDD     INTEGER
C             The leading dimension of array D.  LDD >= MAX(1,P).
C
C     NS      (output) INTEGER
C             The dimension of the ALPHA-stable subsystem.
C
C     HSV     (output) DOUBLE PRECISION array, dimension (N)
C             If INFO = 0, the leading NS elements of HSV contain the
C             Hankel singular values of the phase system corresponding
C             to the ALPHA-stable part of the original system.
C             The Hankel singular values are ordered decreasingly.
C
C     Tolerances
C
C     TOL1    DOUBLE PRECISION
C             If ORDSEL = 'A', TOL1 contains the tolerance for
C             determining the order of reduced system.
C             For model reduction, the recommended value of TOL1 lies
C             in the interval [0.00001,0.001].
C             If TOL1 <= 0 on entry, the used default value is
C             TOL1 = NS*EPS, where NS is the number of
C             ALPHA-stable eigenvalues of A and EPS is the machine
C             precision (see LAPACK Library Routine DLAMCH).
C             If ORDSEL = 'F', the value of TOL1 is ignored.
C             TOL1 < 1.
C
C     TOL2    DOUBLE PRECISION
C             The tolerance for determining the order of a minimal
C             realization of the phase system (see METHOD) corresponding
C             to the ALPHA-stable part of the given system.
C             The recommended value is TOL2 = NS*EPS.
C             This value is used by default if TOL2 <= 0 on entry.
C             If TOL2 > 0 and ORDSEL = 'A', then TOL2 <= TOL1.
C             TOL2 < 1.
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (MAX(1,2*N))
C             On exit with INFO = 0, IWORK(1) contains the order of the
C             minimal realization of the system.
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) returns the optimal value
C             of LDWORK and DWORK(2) contains RCOND, the reciprocal
C             condition number of the U11 matrix from the expression
C             used to compute the solution X = U21*inv(U11) of the
C             Riccati equation for spectral factorization.
C             A small value RCOND indicates possible ill-conditioning
C             of the respective Riccati equation.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             LDWORK >= 2*N*N + MB*(N+P) + MAX( 2, N*(MAX(N,MB,P)+5),
C                                    2*N*P+MAX(P*(MB+2),10*N*(N+1) ) ),
C             where MB = M if BETA = 0 and MB = M+P if BETA > 0.
C             For optimum performance LDWORK should be larger.
C
C     BWORK   LOGICAL array, dimension 2*N
C
C     Warning Indicator
C
C     IWARN   INTEGER
C             = 0:  no warning;
C             = 1:  with ORDSEL = 'F', the selected order NR is greater
C                   than NSMIN, the sum of the order of the
C                   ALPHA-unstable part and the order of a minimal
C                   realization of the ALPHA-stable part of the given
C                   system; in this case, the resulting NR is set equal
C                   to NSMIN;
C             = 2:  with ORDSEL = 'F', the selected order NR corresponds
C                   to repeated singular values for the ALPHA-stable
C                   part, which are neither all included nor all
C                   excluded from the reduced model; in this case, the
C                   resulting NR is automatically decreased to exclude
C                   all repeated singular values;
C             = 3:  with ORDSEL = 'F', the selected order NR is less
C                   than the order of the ALPHA-unstable part of the
C                   given system; in this case NR is set equal to the
C                   order of the ALPHA-unstable part.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = 1:  the computation of the ordered real Schur form of A
C                   failed;
C             = 2:  the reduction of the Hamiltonian matrix to real
C                   Schur form failed;
C             = 3:  the reordering of the real Schur form of the
C                   Hamiltonian matrix failed;
C             = 4:  the Hamiltonian matrix has less than N stable
C                   eigenvalues;
C             = 5:  the coefficient matrix U11 in the linear system
C                   X*U11 = U21 to determine X is singular to working
C                   precision;
C             = 6:  BETA = 0 and D has not a maximal row rank;
C             = 7:  the computation of Hankel singular values failed;
C             = 8:  the separation of the ALPHA-stable/unstable diagonal
C                   blocks failed because of very close eigenvalues;
C             = 9:  the resulting order of reduced stable part is less
C                   than the number of unstable zeros of the stable
C                   part.
C     METHOD
C
C     Let be the following linear system
C
C          d[x(t)] = Ax(t) + Bu(t)
C          y(t)    = Cx(t) + Du(t),                      (1)
C
C     where d[x(t)] is dx(t)/dt for a continuous-time system and x(t+1)
C     for a discrete-time system. The subroutine AB09HD determines for
C     the given system (1), the matrices of a reduced order system
C
C          d[z(t)] = Ar*z(t) + Br*u(t)
C          yr(t)   = Cr*z(t) + Dr*u(t),                  (2)
C
C     such that
C
C          INFNORM[inv(conj(W))*(G-Gr)] <=
C                       (1+HSV(NR+NS-N+1)) / (1-HSV(NR+NS-N+1)) + ...
C                       + (1+HSV(NS)) / (1-HSV(NS)) - 1,
C
C     where G and Gr are transfer-function matrices of the systems
C     (A,B,C,D) and (Ar,Br,Cr,Dr), respectively, W is the right, minimum
C     phase spectral factor satisfying
C
C         G1*conj(G1) = conj(W)* W,                      (3)
C
C     G1 is the NS-order ALPHA-stable part of G, and INFNORM(G) is the
C     infinity-norm of G. HSV(1), ... , HSV(NS) are the Hankel-singular
C     values of the stable part of the phase system (Ap,Bp,Cp)
C     with the transfer-function matrix
C
C          P = inv(conj(W))*G1.
C
C     If BETA > 0, then the model reduction is performed on [G BETA*I]
C     instead of G. This is the recommended approach to be used when D
C     has not a maximal row rank or when a certain balance between
C     relative and absolute approximation errors is desired. For
C     increasingly large values of BETA, the obtained reduced system
C     assymptotically approaches that computed by using the
C     Balance & Truncate or Singular Perturbation Approximation methods.
C
C     Note: conj(G)  denotes either G'(-s) for a continuous-time system
C           or G'(1/z) for a discrete-time system.
C           inv(G) is the inverse of G.
C
C     The following procedure is used to reduce a given G:
C
C     1) Decompose additively G as
C
C          G = G1 + G2,
C
C        such that G1 = (As,Bs,Cs,D) has only ALPHA-stable poles and
C        G2 = (Au,Bu,Cu) has only ALPHA-unstable poles.
C
C     2) Determine G1r, a reduced order approximation of the
C        ALPHA-stable part G1 using the balancing stochastic method
C        in conjunction with either the B&T [1,2] or SPA methods [3].
C
C     3) Assemble the reduced model Gr as
C
C           Gr = G1r + G2.
C
C     Note: The employed stochastic truncation algorithm [2,3] has the
C     property that right half plane zeros of G1 remain as right half
C     plane zeros of G1r. Thus, the order can not be chosen smaller than
C     the sum of the number of unstable poles of G and the number of
C     unstable zeros of G1.
C
C     The reduction of the ALPHA-stable part G1 is done as follows.
C
C     If JOB = 'B', the square-root stochastic Balance & Truncate
C     method of [1] is used.
C     For an ALPHA-stable continuous-time system (DICO = 'C'),
C     the resulting reduced model is stochastically balanced.
C
C     If JOB = 'F', the balancing-free square-root version of the
C     stochastic Balance & Truncate method [1] is used to reduce
C     the ALPHA-stable part G1.
C
C     If JOB = 'S', the stochastic balancing method is used to reduce
C     the ALPHA-stable part G1, in conjunction with the square-root
C     version of the Singular Perturbation Approximation method [3,4].
C
C     If JOB = 'P', the stochastic balancing method is used to reduce
C     the ALPHA-stable part G1, in conjunction with the balancing-free
C     square-root version of the Singular Perturbation Approximation
C     method [3,4].
C
C     REFERENCES
C
C     [1] Varga A. and Fasol K.H.
C         A new square-root balancing-free stochastic truncation model
C         reduction algorithm.
C         Proc. 12th IFAC World Congress, Sydney, 1993.
C
C     [2] Safonov M. G. and Chiang R. Y.
C         Model reduction for robust control: a Schur relative error
C         method.
C         Int. J. Adapt. Contr. Sign. Proc., vol. 2, pp. 259-272, 1988.
C
C     [3] Green M. and Anderson B. D. O.
C         Generalized balanced stochastic truncation.
C         Proc. 29-th CDC, Honolulu, Hawaii, pp. 476-481, 1990.
C
C     [4] Varga A.
C         Balancing-free square-root algorithm for computing
C         singular perturbation approximations.
C         Proc. 30-th IEEE CDC,  Brighton, Dec. 11-13, 1991,
C         Vol. 2, pp. 1062-1065.
C
C     NUMERICAL ASPECTS
C
C     The implemented methods rely on accuracy enhancing square-root or
C     balancing-free square-root techniques. The effectiveness of the
C     accuracy enhancing technique depends on the accuracy of the
C     solution of a Riccati equation. An ill-conditioned Riccati
C     solution typically results when [D BETA*I] is nearly
C     rank deficient.
C                                      3
C     The algorithm requires about 100N  floating point operations.
C
C     CONTRIBUTORS
C
C     A. Varga, German Aerospace Center, Oberpfaffenhofen, May 2000.
C     D. Sima, University of Bucharest, May 2000.
C     V. Sima, Research Institute for Informatics, Bucharest, May 2000.
C     Partly based on the RASP routine SRBFS, by A. Varga, 1992.
C
C     REVISIONS
C
C     A. Varga, Australian National University, Canberra, November 2000.
C     V. Sima, Research Institute for Informatics, Bucharest, Dec. 2000.
C              Oct. 2001.
C
C     KEYWORDS
C
C     Minimal realization, model reduction, multivariable system,
C     state-space model, state-space representation,
C     stochastic balancing.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE, TWO, TWOBY3, C100
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
     $                    TWOBY3 = TWO/3.0D0, C100 = 100.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         DICO, EQUIL, JOB, ORDSEL
      INTEGER           INFO, IWARN, LDA, LDB, LDC, LDD, LDWORK,
     $                  M, N, NR, NS, P
      DOUBLE PRECISION  ALPHA, BETA, TOL1, TOL2
C     .. Array Arguments ..
      INTEGER           IWORK(*)
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*),
     $                  DWORK(*), HSV(*)
      LOGICAL           BWORK(*)
C     .. Local Scalars ..
      LOGICAL           BTA, DISCR, FIXORD, LEQUIL, SPA
      INTEGER           IERR, IWARNL, KB, KD, KT, KTI, KU, KW, KWI, KWR,
     $                  LW, LWR, MB, NMR, NN, NRA, NU, NU1, WRKOPT
      DOUBLE PRECISION  EPSM, MAXRED, RICOND, SCALEC, SCALEO
C     .. External Functions ..
      LOGICAL           LSAME
      DOUBLE PRECISION  DLAMCH
      EXTERNAL          DLAMCH, LSAME
C     .. External Subroutines ..
      EXTERNAL          AB04MD, AB09HY, AB09IX, DLACPY, DLASET, TB01ID,
     $                  TB01KD, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         INT, MAX, MIN
C     .. Executable Statements ..
C
      INFO   = 0
      IWARN  = 0
      DISCR  = LSAME( DICO,   'D' )
      FIXORD = LSAME( ORDSEL, 'F' )
      LEQUIL = LSAME( EQUIL,  'S' )
      BTA    = LSAME( JOB,    'B' ) .OR. LSAME( JOB, 'F' )
      SPA    = LSAME( JOB,    'S' ) .OR. LSAME( JOB, 'P' )
      MB = M
      IF( BETA.GT.ZERO ) MB = M + P
      LW = 2*N*N + MB*(N+P) + MAX( 2, N*(MAX( N, MB, P )+5),
     $                 2*N*P+MAX( P*(MB+2), 10*N*(N+1) ) )
C
C     Test the input scalar arguments.
C
      IF( .NOT. ( LSAME( DICO, 'C' ) .OR. DISCR ) ) THEN
         INFO = -1
      ELSE IF( .NOT. ( BTA .OR. SPA ) ) THEN
         INFO = -2
      ELSE IF( .NOT. ( LEQUIL .OR. LSAME( EQUIL, 'N' ) ) ) THEN
         INFO = -3
      ELSE IF( .NOT. ( FIXORD .OR. LSAME( ORDSEL, 'A' ) ) ) THEN
         INFO = -4
      ELSE IF( N.LT.0 ) THEN
         INFO = -5
      ELSE IF( M.LT.0 ) THEN
         INFO = -6
      ELSE IF( P.LT.0 .OR. ( BETA.EQ.ZERO .AND. P.GT.M ) ) THEN
         INFO = -7
      ELSE IF( FIXORD .AND. ( NR.LT.0 .OR. NR.GT.N ) ) THEN
         INFO = -8
      ELSE IF( ( DISCR .AND. ( ALPHA.LT.ZERO .OR. ALPHA.GT.ONE ) ) .OR.
     $    ( .NOT.DISCR .AND.   ALPHA.GT.ZERO ) ) THEN
         INFO = -9
      ELSE IF( BETA.LT.ZERO ) THEN
         INFO = -10
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -12
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -14
      ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
         INFO = -16
      ELSE IF( LDD.LT.MAX( 1, P ) ) THEN
         INFO = -18
      ELSE IF( TOL1.GE.ONE ) THEN
         INFO = -21
      ELSE IF( ( TOL2.GT.ZERO .AND. .NOT.FIXORD .AND. TOL2.GT.TOL1 )
     $         .OR. TOL2.GE.ONE ) THEN
         INFO = -22
      ELSE IF( LDWORK.LT.LW ) THEN
         INFO = -25
      END IF
C
      IF( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'AB09HD', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF( MIN( N, M, P ).EQ.0 .OR.
     $   ( BTA .AND. FIXORD .AND. NR.EQ.0 ) ) THEN
         NR = 0
         NS = 0
         IWORK(1) = 0
         DWORK(1) = TWO
         DWORK(2) = ONE
         RETURN
      END IF
C
      IF( LEQUIL ) THEN
C
C        Scale simultaneously the matrices A, B and C:
C        A <- inv(D)*A*D, B <- inv(D)*B and C <- C*D, where D is a
C        diagonal matrix.
C        Workspace: N.
C
         MAXRED = C100
         CALL TB01ID( 'All', N, M, P, MAXRED, A, LDA, B, LDB, C, LDC,
     $                DWORK, INFO )
      END IF
C
C     Allocate working storage.
C
      NN  = N*N
      KU  = 1
      KWR = KU + NN
      KWI = KWR + N
      KW  = KWI + N
      LWR = LDWORK - KW + 1
C
C     Reduce A to a block-diagonal real Schur form, with the
C     ALPHA-unstable part in the leading diagonal position, using a
C     non-orthogonal similarity transformation A <- inv(T)*A*T and
C     apply the transformation to B and C: B <- inv(T)*B and C <- C*T.
C
C     Workspace needed:      N*(N+2);
C     Additional workspace:  need   3*N;
C                            prefer larger.
C
      CALL TB01KD( DICO, 'Unstable', 'General', N, M, P, ALPHA, A, LDA,
     $             B, LDB, C, LDC, NU, DWORK(KU), N, DWORK(KWR),
     $             DWORK(KWI), DWORK(KW), LWR, IERR )
C
      IF( IERR.NE.0 ) THEN
         IF( IERR.NE.3 ) THEN
            INFO = 1
         ELSE
            INFO = 8
         END IF
         RETURN
      END IF
C
      WRKOPT = INT( DWORK(KW) ) + KW - 1
C
      IWARNL = 0
      NS = N - NU
      IF( FIXORD ) THEN
         NRA = MAX( 0, NR-NU )
         IF( NR.LT.NU )
     $      IWARNL = 3
      ELSE
         NRA = 0
      END IF
C
C     Finish if the system is completely unstable.
C
      IF( NS.EQ.0 ) THEN
         NR = NU
         IWORK(1) = NS
         DWORK(1) = WRKOPT
         DWORK(2) = ONE
         RETURN
      END IF
C
      NU1 = NU + 1
C
C     Allocate working storage.
C
      KB  = 1
      KD  = KB  + N*MB
      KT  = KD  + P*MB
      KTI = KT  + N*N
      KW  = KTI + N*N
C
C     Form [B 0] and [D BETA*I].
C
      CALL DLACPY( 'F', NS, M, B(NU1,1), LDB, DWORK(KB), N )
      CALL DLACPY( 'F', P, M, D, LDD, DWORK(KD), P )
      IF( BETA.GT.ZERO ) THEN
         CALL DLASET( 'F', NS, P, ZERO, ZERO, DWORK(KB+N*M), N )
         CALL DLASET( 'F', P,  P, ZERO, BETA, DWORK(KD+P*M), P )
      END IF
C
C     For discrete-time case, apply the discrete-to-continuous bilinear
C     transformation to the stable part.
C
      IF( DISCR ) THEN
C
C        Real workspace:    need  N, prefer larger;
C        Integer workspace: need  N.
C
         CALL AB04MD( 'Discrete', NS, MB, P, ONE, ONE, A(NU1,NU1), LDA,
     $                DWORK(KB), N, C(1,NU1), LDC, DWORK(KD), P,
     $                IWORK, DWORK(KT), LDWORK-KT+1, IERR )
         WRKOPT = MAX( WRKOPT, INT( DWORK(KT) ) + KT - 1 )
      END IF
C
C     Compute in DWORK(KTI) and DWORK(KT) the Cholesky factors S and R
C     of the controllability and observability Grammians, respectively.
C     Real workspace:    need  2*N*N + MB*(N+P)+
C                              MAX( 2, N*(MAX(N,MB,P)+5),
C                                   2*N*P+MAX(P*(MB+2), 10*N*(N+1) ) );
C                        prefer larger.
C     Integer workspace: need  2*N.
C
      CALL AB09HY( NS, MB, P, A(NU1,NU1), LDA, DWORK(KB), N,
     $             C(1,NU1), LDC, DWORK(KD), P, SCALEC, SCALEO,
     $             DWORK(KTI), N, DWORK(KT), N, IWORK, DWORK(KW),
     $             LDWORK-KW+1, BWORK, INFO )
      IF( INFO.NE.0 )
     $   RETURN
      WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
      RICOND = DWORK(KW+1)
C
C     Compute a BTA or SPA of the stable part.
C     Real workspace:  need  2*N*N + MB*(N+P)+
C                            MAX( 1, 2*N*N+5*N, N*MAX(MB,P) ).
C
      EPSM = DLAMCH( 'Epsilon' )
      CALL AB09IX( 'C', JOB, 'Schur', ORDSEL, NS, MB, P, NRA, SCALEC,
     $             SCALEO, A(NU1,NU1), LDA, DWORK(KB), N, C(1,NU1), LDC,
     $             DWORK(KD), P, DWORK(KTI), N, DWORK(KT), N, NMR, HSV,
     $             MAX( TOL1, N*EPSM ), TOL2, IWORK, DWORK(KW),
     $             LDWORK-KW+1, IWARN, IERR )
      IWARN = MAX( IWARN, IWARNL )
      IF( IERR.NE.0 ) THEN
         INFO = 7
         RETURN
      END IF
      WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
C
C     Check if the resulting order is greater than the number of
C     unstable zeros (this check is implicit by looking at Hankel
C     singular values equal to 1).
C
      IF( NRA.LT.NS .AND. HSV(NRA+1).GE.ONE-EPSM**TWOBY3 ) THEN
         INFO = 9
         RETURN
      END IF
C
C     For discrete-time case, apply the continuous-to-discrete
C     bilinear transformation.
C
      IF( DISCR ) THEN
         CALL AB04MD( 'Continuous', NRA, MB, P, ONE, ONE,
     $                A(NU1,NU1), LDA, DWORK(KB), N, C(1,NU1), LDC,
     $                DWORK(KD), P, IWORK, DWORK, LDWORK, IERR )
         WRKOPT = MAX( WRKOPT, INT( DWORK(1) ) )
      END IF
C
      CALL DLACPY( 'F', NRA, M, DWORK(KB), N, B(NU1,1), LDB )
      CALL DLACPY( 'F', P, M, DWORK(KD), P, D, LDD )
C
      NR = NRA + NU
C
      IWORK(1) = NMR
      DWORK(1) = WRKOPT
      DWORK(2) = RICOND
C
      RETURN
C *** Last line of AB09HD ***
      END