control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
      SUBROUTINE TB01PX( JOB, EQUIL, N, M, P, A, LDA, B, LDB, C, LDC,
     $                   NR, INFRED, TOL, IWORK, DWORK, LDWORK, INFO )
C
C     PURPOSE
C
C     To find a reduced (controllable, observable, or minimal) state-
C     space representation (Ar,Br,Cr) for any original state-space
C     representation (A,B,C). The matrix Ar is in an upper block
C     Hessenberg staircase form.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     JOB     CHARACTER*1
C             Indicates whether the user wishes to remove the
C             uncontrollable and/or unobservable parts as follows:
C             = 'M':  Remove both the uncontrollable and unobservable
C                     parts to get a minimal state-space representation;
C             = 'C':  Remove the uncontrollable part only to get a
C                     controllable state-space representation;
C             = 'O':  Remove the unobservable part only to get an
C                     observable state-space representation.
C
C     EQUIL   CHARACTER*1
C             Specifies whether the user wishes to preliminarily balance
C             the triplet (A,B,C) as follows:
C             = 'S':  Perform balancing (scaling);
C             = 'N':  Do not perform balancing.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the original state-space representation, i.e.
C             the order of the matrix A.  N >= 0.
C
C     M       (input) INTEGER
C             The number of system inputs.  M >= 0.
C
C     P       (input) INTEGER
C             The number of system outputs.   P >= 0.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading N-by-N part of this array must
C             contain the original state dynamics matrix A.
C             On exit, if INFRED(1) >= 0 and/or INFRED(2) >= 0, the
C             leading NR-by-NR part of this array contains the upper
C             block Hessenberg state dynamics matrix Ar of a minimal,
C             controllable, or observable realization for the original
C             system, depending on the value of JOB, JOB = 'M',
C             JOB = 'C', or JOB = 'O', respectively.
C             The block structure of the resulting staircase form is
C             contained in the leading INFRED(4) elements of IWORK.
C             If INFRED(1:2) < 0, then A contains the original matrix.
C
C     LDA     INTEGER
C             The leading dimension of the array A.  LDA >= MAX(1,N).
C
C     B       (input/output) DOUBLE PRECISION array, dimension (LDB,M),
C             if JOB = 'C', or (LDB,MAX(M,P)), otherwise.
C             On entry, the leading N-by-M part of this array must
C             contain the original input/state matrix B; if JOB = 'M',
C             or JOB = 'O', the remainder of the leading N-by-MAX(M,P)
C             part is used as internal workspace.
C             On exit, if INFRED(1) >= 0 and/or INFRED(2) >= 0, the
C             leading NR-by-M part of this array contains the
C             input/state matrix Br of a minimal, controllable, or
C             observable realization for the original system, depending
C             on the value of JOB, JOB = 'M', JOB = 'C', or JOB = 'O',
C             respectively. If JOB = 'C', only the first IWORK(1) rows
C             of B are nonzero.
C             If INFRED(1:2) < 0, then B contains the original matrix.
C
C     LDB     INTEGER
C             The leading dimension of the array B.  LDB >= MAX(1,N).
C
C     C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C             On entry, the leading P-by-N part of this array must
C             contain the original state/output matrix C; if JOB = 'M',
C             or JOB = 'O', the remainder of the leading MAX(M,P)-by-N
C             part is used as internal workspace.
C             On exit, if INFRED(1) >= 0 and/or INFRED(2) >= 0, the
C             leading P-by-NR part of this array contains the
C             state/output matrix Cr of a minimal, controllable, or
C             observable realization for the original system, depending
C             on the value of JOB, JOB = 'M', JOB = 'C', or JOB = 'O',
C             respectively. If JOB = 'M', or JOB = 'O', only the last
C             IWORK(1) columns (in the first NR columns) of C are
C             nonzero.
C             If INFRED(1:2) < 0, then C contains the original matrix.
C
C     LDC     INTEGER
C             The leading dimension of the array C.
C             LDC >= MAX(1,M,P), if N > 0.
C             LDC >= 1,          if N = 0.
C
C     NR      (output) INTEGER
C             The order of the reduced state-space representation
C             (Ar,Br,Cr) of a minimal, controllable, or observable
C             realization for the original system, depending on
C             JOB = 'M', JOB = 'C', or JOB = 'O'.
C
C     INFRED  (output) INTEGER array, dimension 4
C             This array contains information on the performed reduction
C             and on structure of resulting system matrices, as follows:
C             INFRED(k) >= 0 (k = 1 or 2) if Phase k of the reduction
C                            (see METHOD) has been performed. In this
C                            case, INFRED(k) is the achieved order
C                            reduction in Phase k.
C             INFRED(k) < 0  (k = 1 or 2) if Phase k was not performed.
C                            This can also appear when Phase k was
C                            tried, but did not reduce the order, if
C                            enough workspace is provided for saving the
C                            system matrices (see LDWORK description).
C             INFRED(3)  -   the number of nonzero subdiagonals of A.
C             INFRED(4)  -   the number of blocks in the resulting
C                            staircase form at the last performed
C                            reduction phase. The block dimensions are
C                            contained in the first INFRED(4) elements
C                            of IWORK.
C
C     Tolerances
C
C     TOL     DOUBLE PRECISION
C             The tolerance to be used in rank determinations when
C             transforming (A, B, C). If the user sets TOL > 0, then
C             the given value of TOL is used as a lower bound for the
C             reciprocal condition number (see the description of the
C             argument RCOND in the SLICOT routine MB03OD);  a
C             (sub)matrix whose estimated condition number is less than
C             1/TOL is considered to be of full rank.  If the user sets
C             TOL <= 0, then an implicitly computed, default tolerance
C             (determined by the SLICOT routine TB01UD) is used instead.
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (c*N+MAX(M,P)), where
C             c = 2, if JOB = 'M', and c = 1, otherwise.
C             On exit, if INFO = 0, the first INFRED(4) elements of
C             IWORK return the orders of the diagonal blocks of A.
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) returns the optimal value
C             of LDWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.  LDWORK >= 1, and if N > 0,
C             LDWORK >= N + MAX(N, 3*M, 3*P).
C             For optimum performance LDWORK should be larger.
C             If LDWORK >= MAX(1, N + MAX(N, 3*M, 3*P) + N*(N+M+P) ),
C             then more accurate results are to be expected by accepting
C             only those reductions phases (see METHOD), where effective
C             order reduction occurs. This is achieved by saving the
C             system matrices before each phase and restoring them if
C             no order reduction took place in that phase.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     The order reduction is performed in two phases:
C
C     Phase 1:
C     If JOB = 'M' or 'C', the pair (A,B) is reduced by orthogonal
C     similarity transformations to the controllability staircase form
C     (see [1]) and a controllable realization (Ac,Bc,Cc) is extracted.
C     Ac results in an upper block Hessenberg form.
C
C     Phase 2:
C     If JOB = 'M' or 'O', the same algorithm is applied to the dual
C     of the controllable realization (Ac,Bc,Cc), or to the dual of
C     the original system, respectively, to extract an observable
C     realization (Ar,Br,Cr). If JOB = 'M', the resulting realization
C     is also controllable, and thus minimal.
C     Ar results in an upper block Hessenberg form.
C
C     REFERENCES
C
C     [1] Van Dooren, P.
C         The Generalized Eigenstructure Problem in Linear System
C         Theory. (Algorithm 1)
C         IEEE Trans. Auto. Contr., AC-26, pp. 111-129, 1981.
C
C     NUMERICAL ASPECTS
C                               3
C     The algorithm requires 0(N ) operations and is backward stable.
C
C     CONTRIBUTOR
C
C     V. Sima, Katholieke Univ. Leuven, Belgium.
C     A. Varga, DLR - Oberpfaffenhofen, April 1999.
C
C     REVISIONS
C
C     A. Varga, DLR - Oberpfaffenhofen, March 2002.
C     V.Sima, Dec. 2016, Mar. 2017.
C
C     KEYWORDS
C
C     Hessenberg form, minimal realization, multivariable system,
C     orthogonal transformation, state-space model, state-space
C     representation.
C
C     ******************************************************************
C
C     .. Parameters ..
      INTEGER           LDIZ
      PARAMETER         ( LDIZ = 1 )
      DOUBLE PRECISION  ONE, HUNDR
      PARAMETER         ( ONE = 1.0D0, HUNDR = 100.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         EQUIL, JOB
      INTEGER           INFO, LDA, LDB, LDC, LDWORK, M, N, NR, P
      DOUBLE PRECISION  TOL
C     .. Array Arguments ..
      INTEGER           INFRED(*), IWORK(*)
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), C(LDC,*), DWORK(*)
C     .. Local Scalars ..
      LOGICAL           LEQUIL, LNJOBC, LNJOBO, LSPACE
      INTEGER           I, IB, ICON, INDCON, ITAU, IZ, JWORK, KL, KWA,
     $                  KWB, KWC, LDWMIN, MAXMP, NCONT, WRKOPT
      DOUBLE PRECISION  ANORM, BNORM, CNORM, MAXRED
C     .. External Functions ..
      LOGICAL           LSAME
      DOUBLE PRECISION  DLANGE
      EXTERNAL          DLANGE, LSAME
C     .. External Subroutines ..
      EXTERNAL          AB07MD, DLACPY, TB01ID, TB01UD, TB01XD, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         INT, MAX
C     .. Executable Statements ..
C
      INFO   = 0
      MAXMP  = MAX( M, P )
      LDWMIN = N + MAX( N, 3*MAXMP )
      LNJOBC = .NOT.LSAME( JOB,   'C' )
      LNJOBO = .NOT.LSAME( JOB,   'O' )
      LEQUIL =      LSAME( EQUIL, 'S' )
C
C     Test the input scalar arguments.
C
      IF( LNJOBC .AND. LNJOBO .AND. .NOT.LSAME( JOB, 'M' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.LEQUIL .AND. .NOT.LSAME( EQUIL, 'N' ) ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( M.LT.0 ) THEN
         INFO = -4
      ELSE IF( P.LT.0 ) THEN
         INFO = -5
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -7
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -9
      ELSE IF( LDC.LT.1 .OR. ( N.GT.0 .AND. LDC.LT.MAXMP ) ) THEN
         INFO = -11
      ELSE IF( LDWORK.LT.1 .OR. ( N.GT.0 .AND. LDWORK.LT.LDWMIN ) ) THEN
         INFO = -17
      END IF
C
      IF ( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'TB01PX', -INFO )
         RETURN
      END IF
C
      INFRED(1) = -1
      INFRED(2) = -1
      INFRED(4) = 0
C
C     Quick return if possible.
C
      IF ( N.EQ.0 .OR. ( LNJOBC .AND. P.EQ.0 ) .OR.
     $                 ( LNJOBO .AND. M.EQ.0 ) ) THEN
         NR = 0
         INFRED(3) = 0
         DWORK(1)  = ONE
         RETURN
      END IF
      ANORM = DLANGE( '1-norm', N, N, A, LDA, DWORK )
      BNORM = DLANGE( '1-norm', N, M, B, LDB, DWORK )
      CNORM = DLANGE( '1-norm', P, N, C, LDC, DWORK )
*
*     In case of absolute error control, the following
*     squence can be employed:
*
*     IF( .NOT. LEQUIL .AND. BNORM.LE.TOL ) THEN
*        NR = 0
*        INFRED(1) = N
*        DWORK(1)  = ONE
*        RETURN
*     END IF
*     IF( .NOT. LEQUIL .AND. CNORM.LE.TOL ) THEN
*        NR = 0
*        INFRED(2) = N
*        DWORK(1)  = ONE
*        RETURN
*     END IF
C
C     If required, balance the triplet (A,B,C).
C     Workspace: need N.
C
C     (Note: Comments in the code beginning "Workspace:" describe the
C     minimal amount of real workspace needed at that point in the code,
C     as well as the preferred amount for good performance.)
C
      IF ( LEQUIL ) THEN
         MAXRED = MAX( HUNDR, ANORM, BNORM, CNORM )
         CALL TB01ID( 'A', N, M, P, MAXRED, A, LDA, B, LDB, C, LDC,
     $                DWORK, INFO )
      END IF
C
C     Set large workspace option and determine offsets.
C
      LSPACE = LDWORK.GE.N*( N + M + P ) + LDWMIN
      IF ( LSPACE ) THEN
         KWA = 1
         KWB = KWA + N*N
         KWC = KWB + N*M
         IZ  = KWC + P*N
      ELSE
         IZ  = 1
      END IF
C
      ITAU  = IZ
      JWORK = ITAU + N
      KL = MAX( 0, N-1 )
      IB = 1
C
      IF ( LNJOBO ) THEN
C
C        Phase 1: Eliminate uncontrolable eigenvalues.
C
         IF( LSPACE ) THEN
C
C           Save system matrices.
C
            CALL DLACPY( 'Full', N, N, A, LDA, DWORK(KWA), N )
            CALL DLACPY( 'Full', N, M, B, LDB, DWORK(KWB), N )
            CALL DLACPY( 'Full', P, N, C, LDC, DWORK(KWC), MAX( 1, P ) )
         END IF
C
C        Separate out controllable subsystem (of order NCONT):
C        A <-- Z'*A*Z,  B <-- Z'*B,  C <-- C*Z.
C
C        Workspace: need   N + MAX(N, 3*M, P).
C                   prefer larger.
C
         CALL TB01UD( 'No Z', N, M, P, A, LDA, B, LDB, C, LDC, NCONT,
     $                ICON, IWORK, DWORK(IZ), LDIZ, DWORK(ITAU), TOL,
     $                IWORK(N+1), DWORK(JWORK), LDWORK-JWORK+1, INFO )
C
         WRKOPT = INT( DWORK(JWORK) ) + JWORK - 1
C
         IF( NCONT.LT.N .OR. .NOT.LSPACE ) THEN
            IF( ICON.GT.1 ) THEN
               KL = IWORK(1) + IWORK(2) - 1
            ELSE IF( ICON.EQ.1 ) THEN
               KL = IWORK(1) - 1
            ELSE
               KL = 0
            END IF
            INFRED(1) = N - NCONT
            INFRED(4) = ICON
            IF ( LNJOBC )
     $         IB = N + 1
         ELSE
C
C           Restore system matrices.
C
            CALL DLACPY( 'Full', N, N, DWORK(KWA), N, A, LDA )
            CALL DLACPY( 'Full', N, M, DWORK(KWB), N, B, LDB )
            CALL DLACPY( 'Full', P, N, DWORK(KWC), MAX( 1, P ), C, LDC )
         END IF
      ELSE
         NCONT = N
      END IF
C
      IF ( LNJOBC ) THEN
C
C        Phase 2: Eliminate unobservable eigenvalues.
C
         IF( LSPACE .AND. ( ( LNJOBO .AND. NCONT.LT.N ) .OR.
     $                   .NOT.LNJOBO ) ) THEN
C
C           Save system matrices.
C
            CALL DLACPY( 'Full', NCONT, NCONT, A, LDA, DWORK(KWA), N )
            CALL DLACPY( 'Full', NCONT, M,     B, LDB, DWORK(KWB), N )
            CALL DLACPY( 'Full', P,     NCONT, C, LDC, DWORK(KWC),
     $                   MAX( 1, P ) )
         END IF
C
C        Separate out the observable subsystem (of order NR):
C        Form the dual of the subsystem of order NCONT (which is
C        controllable, if JOB = 'M'), leaving the rest as it is.
C
         CALL AB07MD( 'Z', NCONT, M, P, A, LDA, B, LDB, C, LDC, DWORK,
     $                1, INFO )
C
C        And separate out the controllable part of this dual subsystem.
C
C        Workspace: need   NCONT + MAX(NCONT, 3*P, M).
C                   prefer larger.
C
         CALL TB01UD( 'No Z', NCONT, P, M, A, LDA, B, LDB, C, LDC, NR,
     $                INDCON, IWORK(IB), DWORK(IZ), LDIZ, DWORK(ITAU),
     $                TOL, IWORK(IB+N), DWORK(JWORK), LDWORK-JWORK+1,
     $                INFO )
C
         WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) ) + JWORK - 1 )
C
C        Transpose and reorder (to get a block upper Hessenberg
C        matrix A), giving, for JOB = 'M', the controllable and
C        observable (i.e., minimal) part of original system.
C
         IF( NR.LT.NCONT .OR. .NOT.LSPACE ) THEN
            IF( INDCON.GT.1 ) THEN
               KL = IWORK(IB) + IWORK(IB+1) - 1
            ELSE IF( INDCON.EQ.1 ) THEN
               KL = IWORK(IB) - 1
            ELSE
               KL = 0
            END IF
            CALL TB01XD( 'Zero D', NR, P, M, KL, MAX( 0, NR-1 ),
     $                   A, LDA, B, LDB, C, LDC, DWORK, 1, INFO )
            INFRED(2) = NCONT - NR
            INFRED(4) = INDCON
            IF ( LNJOBO ) THEN
               DO 10 I = 1, INDCON
                  IWORK(I) = IWORK(IB+I-1)
   10          CONTINUE
            END IF
         ELSE
C
C           Restore system matrices.
C
            CALL DLACPY( 'Full', NCONT, NCONT, DWORK(KWA), N, A, LDA )
            CALL DLACPY( 'Full', NCONT, M,     DWORK(KWB), N, B, LDB )
            CALL DLACPY( 'Full', P,     NCONT, DWORK(KWC), MAX( 1, P ),
     $                   C, LDC )
         END IF
      ELSE
         NR = NCONT
      END IF
C
C     Set structure information and optimal workspace dimension.
C
      INFRED(3) = KL
      DWORK(1)  = MAX( WRKOPT, LDWMIN + N*( N + M + P ) )
      RETURN
C *** Last line of TB01PX ***
      END