control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
      SUBROUTINE AB08NW( EQUIL, N, M, P, A, LDA, B, LDB, C, LDC, D, LDD,
     $                   NFZ, NRANK, NIZ, DINFZ, NKROR, NINFE, NKROL,
     $                   INFZ, KRONR, INFE, KRONL, E, LDE, TOL, IWORK,
     $                   DWORK, LDWORK, INFO )
C
C     PURPOSE
C
C     To extract from the system pencil
C
C                       ( A-lambda*I B )
C           S(lambda) = (              )
C                       (      C     D )
C
C     a regular pencil Af-lambda*Ef which has the finite Smith zeros of
C     S(lambda) as generalized eigenvalues. The routine also computes
C     the orders of the infinite Smith zeros and determines the singular
C     and infinite Kronecker structure of the system pencil, i.e., the
C     right and left Kronecker indices, and the multiplicities of the
C     infinite eigenvalues.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     EQUIL   CHARACTER*1
C             Specifies whether the user wishes to balance the system
C             matrix as follows:
C             = 'S':  Perform balancing (scaling);
C             = 'N':  Do not perform balancing.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER.
C             The order of the square matrix A, the number of rows of
C             the matrix B, and number of columns of the matrix C.
C             N >= 0.
C
C     M       (input) INTEGER.
C             The number of columns of the matrix B.  M >= 0.
C
C     P       (input) INTEGER.
C             The number of rows of the matrix C.  P >= 0.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading N-by-N part of this array must
C             contain the state dynamics matrix A of the system.
C             On exit, the leading NFZ-by-NFZ part of this array
C             contains the matrix Af of the reduced pencil.
C
C     LDA     INTEGER
C             The leading dimension of the array A.  LDA >= MAX(1,N).
C
C     B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C             On entry, the leading N-by-M part of this array must
C             contain the input/state matrix B of the system.
C             On exit, this matrix does not contain useful information.
C
C     LDB     INTEGER
C             The leading dimension of the array B.  LDB >= 1, and
C             LDB >= MAX(1,N), if M > 0.
C
C     C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C             On entry, the leading P-by-N part of this array must
C             contain the state/output matrix C of the system.
C             On exit, this matrix does not contain useful information.
C
C     LDC     INTEGER
C             The leading dimension of the array C.  LDC >= MAX(1,P).
C
C     D       (input) DOUBLE PRECISION array, dimension (LDD,M)
C             The leading P-by-M part of this array must contain the
C             direct transmission matrix D of the system.
C
C     LDD     INTEGER
C             The leading dimension of the array D.  LDD >= MAX(1,P).
C
C     NFZ     (output) INTEGER
C             The number of finite zeros.
C
C     NRANK   (output) INTEGER
C             The normal rank of the system pencil.
C
C     NIZ     (output) INTEGER
C             The number of infinite zeros.
C
C     DINFZ   (output) INTEGER
C             The maximal multiplicity of infinite Smith zeros.
C
C     NKROR   (output) INTEGER
C             The number of right Kronecker indices.
C
C     NINFE   (output) INTEGER
C             The number of elementary infinite blocks.
C
C     NKROL   (output) INTEGER
C             The number of left Kronecker indices.
C
C     INFZ    (output) INTEGER array, dimension (N+1)
C             The leading DINFZ elements of INFZ contain information
C             on the infinite elementary divisors as follows:
C             the system has INFZ(i) infinite elementary divisors in
C             the Smith form of degree i, where i = 1,2,...,DINFZ.
C
C     KRONR   (output) INTEGER array, dimension (N+1)
C             The leading NKROR elements of this array contain the
C             right Kronecker (column) indices.
C
C     INFE    (output) INTEGER array, dimension (N+1)
C             The leading NINFE elements of INFE contain the
C             multiplicities of infinite eigenvalues.
C
C     KRONL   (output) INTEGER array, dimension (N+1)
C             The leading NKROL elements of this array contain the
C             left Kronecker (row) indices.
C
C     E       (output) DOUBLE PRECISION array, dimension (LDE,N)
C             The leading NFZ-by-NFZ part of this array contains the
C             matrix Ef of the reduced pencil.
C
C     LDE     INTEGER
C             The leading dimension of the array E.  LDE >= MAX(1,N).
C
C     Tolerances
C
C     TOL     DOUBLE PRECISION
C             A tolerance used in rank decisions to determine the
C             effective rank, which is defined as the order of the
C             largest leading (or trailing) triangular submatrix in the
C             QR (or RQ) factorization with column (or row) pivoting
C             whose estimated condition number is less than 1/TOL.
C             If the user sets TOL <= 0, then an implicitly computed,
C             default tolerance  TOLDEF = MAX(N+P,N+M)**2*EPS,  is used
C             instead, where EPS is the machine precision (see LAPACK
C             Library routine DLAMCH).  TOL < 1.
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (MAX(M,P))
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) returns the optimal value
C             of LDWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             LDWORK >= 1, if MAX(N,M,P) = 0; otherwise,
C             LDWORK >= MAX( MIN(P,M) + M + MAX(2*M,N) - 1,
C                            MIN(P,N) + MAX(N + MAX(P,M), 3*P - 1 ) ) +
C                            MAX(P+N,M+N)*MAX(P+N,M+N).
C
C             If LDWORK = -1, then a workspace query is assumed;
C             the routine only calculates the optimal size of the
C             DWORK array, returns this value as the first entry of
C             the DWORK array, and no error message related to LDWORK
C             is issued by XERBLA.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     The routine extracts from the system matrix of a state space
C     system, (A-lambda*I,B,C,D), a regular pencil Af-lambda*Ef, which
C     has the finite zeros of the system as generalized eigenvalues.
C     The procedure has the following main computational steps:
C
C        (a) construct the (N+P)-by-(M+N) system pencil
C
C             S(lambda) = (B  A)-lambda*( 0  I );
C                         (D  C)        ( 0  0 )
C
C        (b) reduce S(lambda) to S1(lambda) with the same finite zeros
C            and right Kronecker structure, but with D of full row rank;
C
C        (c) reduce the pencil S1(lambda) to S2(lambda) with the same
C            finite zeros and with D square invertible;
C
C        (d) perform a unitary transformation on the columns of
C            S2(lambda) = (A-lambda*I   B), in order to reduce it to
C                         (     C       D)
C
C            (Af-lambda*Ef   X), with Y and Ef square invertible;
C            (     0         Y)
C
C        (e) compute the right and left Kronecker indices of the system
C            matrix, which, together with the multiplicities of the
C            finite and infinite eigenvalues, constitute the complete
C            set of structural invariants under strict equivalence
C            transformations of a linear system.
C
C     REFERENCES
C
C     [1] Svaricek, F.
C         Computation of the Structural Invariants of Linear
C         Multivariable Systems with an Extended Version of the
C         Program ZEROS.
C         System & Control Letters, 6, pp. 261-266, 1985.
C
C     [2] Emami-Naeini, A. and Van Dooren, P.
C         Computation of Zeros of Linear Multivariable Systems.
C         Automatica, 18, pp. 415-430, 1982.
C
C     NUMERICAL ASPECTS
C
C     The algorithm is backward stable (see [2] and [1]).
C
C     FURTHER COMMENTS
C
C     In order to compute the finite Smith zeros of the system
C     explicitly, a call to this routine may be followed by a call to
C     the LAPACK Library routine DGGEV.
C
C     CONTRIBUTOR
C
C     A. Varga, German Aerospace Center, DLR Oberpfaffenhofen.
C     V. Sima, Katholieke Univ. Leuven, Belgium, May 1999.
C
C     REVISIONS
C
C     A. Varga, May 2003, German Aerospace Center, DLR Oberpfaffenhofen.
C     V. Sima, Dec. 2016, Jan. 2017, Apr. 2017.
C
C     KEYWORDS
C
C     Generalized eigenvalue problem, Kronecker indices, multivariable
C     system, orthogonal transformation, structural invariant.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ONE, ZERO
      PARAMETER         ( ONE = 1.0D0, ZERO = 0.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         EQUIL
      INTEGER           DINFZ, INFO, LDA, LDB, LDC, LDD, LDE, LDWORK,
     $                  M, N, NFZ, NINFE, NIZ, NKROL, NKROR, NRANK, P
      DOUBLE PRECISION  TOL
C     .. Array Arguments ..
      INTEGER           INFE(*),  INFZ(*),  IWORK(*), KRONL(*), KRONR(*)
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*),
     $                  DWORK(*), E(LDE,*)
C     .. Local Scalars ..
      LOGICAL           LEQUIL, LQUERY, QRET
      INTEGER           I, I0, I1, II, ITAU, J, JWORK, KABCD, LABCD2,
     $                  LDABCD, MM, MPM, MPN, MU, NN, NSINFE, NU, NU1,
     $                  PP, WRKOPT
      DOUBLE PRECISION  MAXRED, SVLMAX, TOLER
C     .. External Functions ..
      LOGICAL           LSAME
      DOUBLE PRECISION  DLAMCH, DLANGE
      EXTERNAL          DLAMCH, DLANGE, LSAME
C     .. External Subroutines ..
      EXTERNAL          AB08NY, DLACPY, DLASET, DORMRZ, DTZRZF, MA02BD,
     $                  TB01ID, TB01XD, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         DBLE, INT, MAX, MIN
C     .. Executable Statements ..
C
      INFO   = 0
      LDABCD = N + MAX( P, M )
      LABCD2 = LDABCD*LDABCD
      LEQUIL = LSAME( EQUIL, 'S' )
C
C     Test the input scalar arguments.
C
      IF( .NOT.LEQUIL .AND. .NOT.LSAME( EQUIL, 'N' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( M.LT.0 ) THEN
         INFO = -3
      ELSE IF( P.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -6
      ELSE IF( LDB.LT.1 .OR. ( M.GT.0 .AND. LDB.LT.N ) ) THEN
         INFO = -8
      ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
         INFO = -10
      ELSE IF( LDD.LT.MAX( 1, P ) ) THEN
         INFO = -12
      ELSE IF( LDE.LT.MAX( 1, N ) ) THEN
         INFO = -25
      ELSE IF( TOL.GE.ONE ) THEN
         INFO = -26
      ELSE
         MPN  = MIN( P, N )
         MPM  = MIN( P, M )
         QRET = MAX( N, M, P ).EQ.0
         LQUERY = ( LDWORK.EQ.-1 )
         IF( QRET ) THEN
            JWORK = 1
         ELSE
            JWORK = MAX( MPM + M + MAX( 2*M, N ) - 1,
     $                   MPN + MAX( LDABCD, 3*P  - 1 ) ) + LABCD2
         END IF
         IF( LQUERY ) THEN
            IF( QRET ) THEN
               WRKOPT = 1
            ELSE
               SVLMAX = ZERO
               NIZ    = 0
               CALL AB08NY( .TRUE., N, M, P, SVLMAX, DWORK, LDABCD, NIZ,
     $                      NU, MU, DINFZ, NKROL, INFZ, KRONL, TOL,
     $                      IWORK, DWORK, -1, INFO )
               WRKOPT = MAX( JWORK, LABCD2 + INT( DWORK(1) ) )
               CALL AB08NY( .FALSE., N, M, M, SVLMAX, DWORK, LDABCD,
     $                      NIZ, NU, MU, I1, NKROR, IWORK, KRONR, TOL,
     $                      IWORK, DWORK, -1, INFO )
               WRKOPT = MAX( WRKOPT, LABCD2 + INT( DWORK(1) ) )
               CALL DTZRZF( MPM, N+MPM, DWORK, LDABCD, DWORK, DWORK, -1,
     $                      INFO )
               WRKOPT = MAX( WRKOPT, LABCD2 + MPM + INT( DWORK(1) ) )
               CALL DORMRZ( 'Right', 'Transpose', N, N+MPM, MPM, N,
     $                      DWORK, LDABCD, DWORK, DWORK, LDABCD, DWORK,
     $                      -1, INFO )
               WRKOPT = MAX( WRKOPT, LABCD2 + MPM + INT( DWORK(1) ) )
            END IF
         ELSE IF( LDWORK.LT.JWORK ) THEN
            INFO = -29
         END IF
      END IF
C
      IF( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'AB08NW', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         DWORK(1) = WRKOPT
         RETURN
      END IF
C
      NIZ   = 0
      NKROL = 0
      NKROR = 0
      NINFE = 0
C
C     Quick return if possible.
C
      IF( QRET ) THEN
         DINFZ = 0
         NFZ   = 0
         NRANK = 0
         DWORK(1) = ONE
         RETURN
      END IF
C
C     (Note: Comments in the code beginning "Workspace:" describe the
C     minimal amount of real workspace needed at that point in the
C     code, as well as the preferred amount for good performance.)
C
      WRKOPT = 1
      KABCD  = 1
      JWORK  = KABCD + LABCD2
C
C     If required, balance the system pencil.
C     Workspace: need   N.
C
      IF( LEQUIL ) THEN
         MAXRED = ZERO
         CALL TB01ID( 'A', N, M, P, MAXRED, A, LDA, B, LDB, C, LDC,
     $                DWORK, INFO )
         WRKOPT = N
      END IF
C
C     Construct the system pencil
C
C                      ( B A-lambda*I )
C         S(lambda) =  (              )
C                      ( D     C      )
C
C     of dimension (N+P)-by-(M+N).
C
      NN = N
      MM = M
      PP = P
C
      CALL DLACPY( 'Full', N, M, B, LDB, DWORK(KABCD),          LDABCD )
      CALL DLACPY( 'Full', P, M, D, LDD, DWORK(KABCD+N),        LDABCD )
      CALL DLACPY( 'Full', N, N, A, LDA, DWORK(KABCD+LDABCD*M), LDABCD )
      CALL DLACPY( 'Full', P, N, C, LDC, DWORK(KABCD+LDABCD*M+N),
     $              LDABCD )
C
C     If required, set tolerance.
C
      TOLER = TOL
      IF( TOLER.LE.ZERO ) THEN
         TOLER = DBLE( LABCD2 ) * DLAMCH( 'Precision' )
      END IF
      SVLMAX = DLANGE( 'Frobenius', NN+PP, NN+MM, DWORK(KABCD), LDABCD,
     $                 DWORK(JWORK) )
C
C     Extract the reduced pencil S1(lambda)
C
C             ( Bc  Ac-lambda*I ),
C             ( Dc      Cc      )
C
C     having the same finite Smith zeros as the system pencil S(lambda),
C     but with Dc, a MU-by-MM full row rank left upper-trapezoidal
C     matrix, with the first MU columns in an upper triangular form.
C
C     Workspace: need   MAX( MIN(P,M) + M + MAX(2*M,N) - 1,
C                            MIN(P,N) + MAX(N + MAX(P,M), 3*P - 1 ) ).
C                prefer larger.
C     Int.work.  need   MAX(M,P).
C
      CALL AB08NY( .TRUE., NN, MM, PP, SVLMAX, DWORK(KABCD), LDABCD,
     $             NIZ, NU, MU, DINFZ, NKROL, INFZ, KRONL, TOLER, IWORK,
     $             DWORK(JWORK), LDWORK-JWORK+1, INFO )
C
      WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) ) + JWORK - 1 )
C
C     Set the number of simple (non-dynamic) infinite eigenvalues, and
C     the normal rank of the system pencil.
C
      NSINFE = MU
      NRANK  = NN + MU
C
C     Pertranspose the system.
C
      CALL TB01XD( 'D', NU, MM, MM, MAX( 0, NU-1 ), MAX( 0, NU-1 ),
     $              DWORK(KABCD+LDABCD*MM),    LDABCD,
     $              DWORK(KABCD),              LDABCD,
     $              DWORK(KABCD+LDABCD*MM+NU), LDABCD,
     $              DWORK(KABCD+NU),           LDABCD, INFO )
      CALL MA02BD( 'Right', NU+MM, MM, DWORK(KABCD),    LDABCD )
      CALL MA02BD( 'Left',  MM, NU+MM, DWORK(KABCD+NU), LDABCD )
C
      IF( MU.NE.MM ) THEN
         NN = NU
         PP = MM
         MM = MU
         KABCD = KABCD + ( PP - MM )*LDABCD
C
C        Extract the reduced pencil S2(lambda) to
C
C             ( Br  Ar-lambda*I ),
C             ( Dr      Cr      )
C
C        having the same finite Smith zeros as the pencil S(lambda),
C        but with Dr, a MU-by-MU invertible upper-triangular matrix.
C
C        Workspace: need  MAX( MIN(P,M) + M + MAX(2*M,N) - 1,
C                              MIN(P,N) + MAX(N + MAX(P,M), 3*P-1 ) ).
C                   prefer larger.
C
         CALL AB08NY( .FALSE., NN, MM, PP, SVLMAX, DWORK(KABCD), LDABCD,
     $                I0, NU, MU, I1, NKROR, IWORK, KRONR, TOLER,
     $                IWORK, DWORK(JWORK), LDWORK-JWORK+1, INFO )
C
         WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) ) + JWORK - 1 )
      END IF
C
      IF( MIN( NU, MU ).NE.0 ) THEN
C
C        Perform a unitary transformation on the columns of
C                     ( Br Ar-lambda*I  ),
C                     ( Dr     Cr       )
C        in order to reduce it to
C                     ( Af-lambda*Ef  * ),
C                     (      0        Y )
C        with Y and Ef square invertible.
C
         NU1   = NU + KABCD
         I1    = NU + MU
         ITAU  = JWORK
         JWORK = ITAU + MU
C
C        Workspace: need   2*MIN(P,M);
C                   prefer MIN(P,M) + MIN(P,M)*NB.
C
         CALL DTZRZF( MU, I1, DWORK(NU1), LDABCD, DWORK(ITAU),
     $                DWORK(JWORK), LDWORK-JWORK+1, INFO )
         WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) ) + JWORK - 1 )
C
C        Compute and save Af.
C
C        Workspace: need   MIN(P,M) + N;
C                   prefer MIN(P,M) + N*NB.
C
         CALL DORMRZ( 'Right', 'Transpose', NU, I1, MU, NU,
     $                DWORK(NU1), LDABCD, DWORK(ITAU), DWORK(KABCD),
     $                LDABCD, DWORK(JWORK), LDWORK-JWORK+1, INFO )
         WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) ) + JWORK - 1 )
C
         CALL DLACPY( 'Full', NU, NU, DWORK(KABCD+MU*LDABCD), LDABCD, A,
     $                LDA )
C
C        Compute and save Ef.
C
         CALL DLASET( 'Full', NU, MU, ZERO, ZERO, DWORK(KABCD), LDABCD )
         CALL DLASET( 'Full', NU, NU, ZERO, ONE, DWORK(KABCD+MU*LDABCD),
     $                LDABCD )
         CALL DORMRZ( 'Right', 'Transpose', NU, I1, MU, NU,
     $                DWORK(NU1), LDABCD, DWORK(ITAU), DWORK(KABCD),
     $                LDABCD, DWORK(JWORK), LDWORK-JWORK+1, INFO )
         WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) ) + JWORK - 1 )
C
         CALL DLACPY( 'Full', NU, NU, DWORK(KABCD+MU*LDABCD), LDABCD, E,
     $                LDE )
      ELSE
C
C        Save Af and set Ef.
C
         CALL DLACPY( 'Full', NU, NU, DWORK(KABCD+MU*LDABCD), LDABCD, A,
     $                LDA )
         CALL DLASET( 'Full', NU, NU, ZERO, ONE, E, LDE )
      END IF
C
      NFZ = NU
C
C     Set right Kronecker indices (column indices).
C
      DO 30 I = 1, NKROR
         IWORK(I) = KRONR(I)
   30 CONTINUE
C
      J = 0
C
      DO 50 I = 1, NKROR
         DO 40 II = J + 1, J + IWORK(I)
            KRONR(II) = I - 1
   40    CONTINUE
C
         J = J + IWORK(I)
   50 CONTINUE
C
      NKROR = J
C
C     Set left Kronecker indices (row indices).
C
      DO 60 I = 1, NKROL
         IWORK(I) = KRONL(I)
   60 CONTINUE
C
      J = 0
C
      DO 80 I = 1, NKROL
         DO 70 II = J + 1, J + IWORK(I)
            KRONL(II) = I - 1
   70    CONTINUE
C
         J = J + IWORK(I)
   80 CONTINUE
C
      NKROL = J
C
C     Determine the number of simple infinite blocks as the difference
C     between the order of Dr and the number of infinite blocks of order
C     greater than one.
C
      DO 90 I = 1, DINFZ
         NINFE = NINFE + INFZ(I)
   90 CONTINUE
C
      NINFE = NSINFE - NINFE
C
      DO 100 I = 1, NINFE
         INFE(I) = 1
  100 CONTINUE
C
C     Set the structure of infinite eigenvalues.
C
      DO 120 I = 1, DINFZ
C
         DO 110 II = NINFE + 1, NINFE + INFZ(I)
            INFE(II) = I + 1
  110    CONTINUE
C
         NINFE = NINFE + INFZ(I)
  120 CONTINUE
C
      DWORK(1) = WRKOPT
      RETURN
C *** Last line of AB08NW ***
      END