control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
      SUBROUTINE MB04XD( JOBU, JOBV, M, N, RANK, THETA, A, LDA, U, LDU,
     $                   V, LDV, Q, INUL, TOL, RELTOL, DWORK, LDWORK,
     $                   IWARN, INFO )
C
C     PURPOSE
C
C     To compute a basis for the left and/or right singular subspace of
C     an M-by-N matrix A corresponding to its smallest singular values.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     JOBU    CHARACTER*1
C             Specifies whether to compute the left singular subspace
C             as follows:
C             = 'N':  Do not compute the left singular subspace;
C             = 'A':  Return the (M - RANK) base vectors of the desired
C                     left singular subspace in U;
C             = 'S':  Return the first (min(M,N) - RANK) base vectors
C                     of the desired left singular subspace in U.
C
C     JOBV    CHARACTER*1
C             Specifies whether to compute the right singular subspace
C             as follows:
C             = 'N':  Do not compute the right singular subspace;
C             = 'A':  Return the (N - RANK) base vectors of the desired
C                     right singular subspace in V;
C             = 'S':  Return the first (min(M,N) - RANK) base vectors
C                     of the desired right singular subspace in V.
C
C     Input/Output Parameters
C
C     M       (input) INTEGER
C             The number of rows in matrix A.  M >= 0.
C
C     N       (input) INTEGER
C             The number of columns in matrix A.  N >= 0.
C
C     RANK    (input/output) INTEGER
C             On entry, if RANK < 0, then the rank of matrix A is
C             computed by the routine as the number of singular values
C             greater than THETA.
C             Otherwise, RANK must specify the rank of matrix A.
C             RANK <= min(M,N).
C             On exit, if RANK < 0 on entry, then RANK contains the
C             computed rank of matrix A. That is, the number of singular
C             values of A greater than THETA.
C             Otherwise, the user-supplied value of RANK may be changed
C             by the routine on exit if the RANK-th and the (RANK+1)-th
C             singular values of A are considered to be equal.
C             See also the description of parameter TOL below.
C
C     THETA   (input/output) DOUBLE PRECISION
C             On entry, if RANK < 0, then THETA must specify an upper
C             bound on the smallest singular values of A corresponding
C             to the singular subspace to be computed.  THETA >= 0.0.
C             Otherwise, THETA must specify an initial estimate (t say)
C             for computing an upper bound on the (min(M,N) - RANK)
C             smallest singular values of A. If THETA < 0.0, then t is
C             computed by the routine.
C             On exit, if RANK >= 0 on entry, then THETA contains the
C             computed upper bound such that precisely RANK singular
C             values of A are greater than THETA + TOL.
C             Otherwise, THETA is unchanged.
C
C     A       (input) DOUBLE PRECISION array, dimension (LDA,N)
C             The leading M-by-N part of this array must contain the
C             matrix A from which the basis of a desired singular
C             subspace is to be computed.
C             NOTE that this array is destroyed.
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= max(1,M).
C
C     U       (output) DOUBLE PRECISION array, dimension (LDU,*)
C             If JOBU = 'A', then the leading M-by-M part of this array
C             contains the (M - RANK) M-dimensional base vectors of the
C             desired left singular subspace of A corresponding to its
C             singular values less than or equal to THETA. These vectors
C             are stored in the i-th column(s) of U for which
C             INUL(i) = .TRUE., where i = 1,2,...,M.
C
C             If JOBU = 'S', then the leading M-by-min(M,N) part of this
C             array contains the first (min(M,N) - RANK) M-dimensional
C             base vectors of the desired left singular subspace of A
C             corresponding to its singular values less than or equal to
C             THETA. These vectors are stored in the i-th column(s) of U
C             for which INUL(i) = .TRUE., where i = 1,2,..., min(M,N).
C
C             Otherwise, U is not referenced (since JOBU = 'N') and can
C             be supplied as a dummy array (i.e. set parameter LDU = 1
C             and declare this array to be U(1,1) in the calling
C             program).
C
C     LDU     INTEGER
C             The leading dimension of array U.
C             LDU >= max(1,M) if JOBU = 'A' or JOBU = 'S',
C             LDU >= 1        if JOBU = 'N'.
C
C     V       (output) DOUBLE PRECISION array, dimension (LDV,*)
C             If JOBV = 'A', then the leading N-by-N part of this array
C             contains the (N - RANK) N-dimensional base vectors of the
C             desired right singular subspace of A corresponding to its
C             singular values less than or equal to THETA. These vectors
C             are stored in the i-th column(s) of V for which
C             INUL(i) = .TRUE., where i = 1,2,...,N.
C
C             If JOBV = 'S', then the leading N-by-min(M,N) part of this
C             array contains the first (min(M,N) - RANK) N-dimensional
C             base vectors of the desired right singular subspace of A
C             corresponding to its singular values less than or equal to
C             THETA. These vectors are stored in the i-th column(s) of V
C             for which INUL(i) = .TRUE., where i = 1,2,...,MIN( M,N).
C
C             Otherwise, V is not referenced (since JOBV = 'N') and can
C             be supplied as a dummy array (i.e. set parameter LDV = 1
C             and declare this array to be V(1,1) in the calling
C             program).
C
C     LDV     INTEGER
C             The leading dimension of array V.
C             LDV >= max(1,N) if JOBV = 'A' or JOBV = 'S',
C             LDV >= 1        if JOBV = 'N'.
C
C     Q       (output) DOUBLE PRECISION array, dimension (2*min(M,N)-1)
C             This array contains the partially diagonalized bidiagonal
C             matrix J computed from A, at the moment that the desired
C             singular subspace has been found. Specifically, the
C             leading p = min(M,N) entries of Q contain the diagonal
C             elements q(1),q(2),...,q(p) and the entries Q(p+1),
C             Q(p+2),...,Q(2*p-1) contain the superdiagonal elements
C             e(1),e(2),...,e(p-1) of J.
C
C     INUL    (output) LOGICAL array, dimension (max(M,N))
C             If JOBU <> 'N' or JOBV <> 'N', then the indices of the
C             elements of this array with value .TRUE. indicate the
C             columns in U and/or V containing the base vectors of the
C             desired left and/or right singular subspace of A. They
C             also equal the indices of the diagonal elements of the
C             bidiagonal submatrices in the array Q, which correspond
C             to the computed singular subspaces.
C
C     Tolerances
C
C     TOL     DOUBLE PRECISION
C             This parameter defines the multiplicity of singular values
C             by considering all singular values within an interval of
C             length TOL as coinciding. TOL is used in checking how many
C             singular values are less than or equal to THETA. Also in
C             computing an appropriate upper bound THETA by a bisection
C             method, TOL is used as a stopping criterion defining the
C             minimum (absolute) subinterval width. TOL is also taken
C             as an absolute tolerance for negligible elements in the
C             QR/QL iterations. If the user sets TOL to be less than or
C             equal to 0, then the tolerance is taken as specified in
C             SLICOT Library routine MB04YD document.
C
C     RELTOL  DOUBLE PRECISION
C             This parameter specifies the minimum relative width of an
C             interval. When an interval is narrower than TOL, or than
C             RELTOL times the larger (in magnitude) endpoint, then it
C             is considered to be sufficiently small and bisection has
C             converged. If the user sets RELTOL to be less than
C             BASE * EPS, where BASE is machine radix and EPS is machine
C             precision (see LAPACK Library routine DLAMCH), then the
C             tolerance is taken as BASE * EPS.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) returns the optimal value
C             of LDWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             LDWORK = max(1, LDW + max(2*P + max(M,N), LDY)), where
C                  P = min(M,N);
C                LDW = max(2*N, N*(N+1)/2), if JOBU <> 'N' and M large
C                                                        enough than N;
C                LDW = 0,                   otherwise;
C                LDY = 8*P - 5, if JOBU <> 'N' or  JOBV <> 'N';
C                LDY = 6*P - 3, if JOBU =  'N' and JOBV =  'N'.
C             For optimum performance LDWORK should be larger.
C
C             If LDWORK = -1, then a workspace query is assumed;
C             the routine only calculates the optimal size of the
C             DWORK array, returns this value as the first entry of
C             the DWORK array, and no error message related to LDWORK
C             is issued by XERBLA.
C
C     Warning Indicator
C
C     IWARN   INTEGER
C             = 0:  no warning;
C             = 1:  if the rank of matrix A (as specified by the user)
C                   has been lowered because a singular value of
C                   multiplicity greater than 1 was found.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = 1:  if the maximum number of QR/QL iteration steps
C                   (30*MIN(M,N)) has been exceeded.
C
C     METHOD
C
C     The method used is the Partial Singular Value Decomposition (PSVD)
C     approach proposed by Van Huffel, Vandewalle and Haegemans, which
C     is an efficient technique (see [1]) for computing the singular
C     subspace of a matrix corresponding to its smallest singular
C     values. It differs from the classical SVD algorithm [3] at three
C     points, which results in high efficiency. Firstly, the Householder
C     transformations of the bidiagonalization need only to be applied
C     on the base vectors of the desired singular subspaces; secondly,
C     the bidiagonal matrix need only be partially diagonalized; and
C     thirdly, the convergence rate of the iterative diagonalization can
C     be improved by an appropriate choice between QL and QR iterations.
C     (Note, however, that LAPACK Library routine DGESVD, for computing
C     SVD, also uses either QL and QR iterations.) Depending on the gap,
C     the desired numerical accuracy and the dimension of the desired
C     singular subspace, the PSVD can be up to three times faster than
C     the classical SVD algorithm.
C
C     The PSVD algorithm [1-2] for an M-by-N matrix A proceeds as
C     follows:
C
C     Step 1: Bidiagonalization phase
C             -----------------------
C      (a) If M is large enough than N, transform A into upper
C          triangular form R.
C
C      (b) Transform A (or R) into bidiagonal form:
C
C                |q(1) e(1)  0   ...  0   |
C           (0)  | 0   q(2) e(2)      .   |
C          J   = | .                  .   |
C                | .                e(N-1)|
C                | 0            ...  q(N) |
C
C     if M >= N, or
C
C                |q(1)  0    0   ...  0     0   |
C           (0)  |e(1) q(2)  0        .     .   |
C          J   = | .                  .     .   |
C                | .                 q(M-1) .   |
C                | 0             ... e(M-1) q(M)|
C
C     if M < N, using Householder transformations.
C     In the second case, transform the matrix to the upper bidiagonal
C     form by applying Givens rotations.
C
C      (c) If U is requested, initialize U with the identity matrix.
C          If V is requested, initialize V with the identity matrix.
C
C     Step 2: Partial diagonalization phase
C             -----------------------------
C     If the upper bound THETA is not given, then compute THETA such
C     that precisely (min(M,N) - RANK) singular values of the bidiagonal
C     matrix are less than or equal to THETA, using a bisection method
C     [4]. Diagonalize the given bidiagonal matrix J partially, using
C     either QR iterations (if the upper left diagonal element of the
C     considered bidiagonal submatrix is larger than the lower right
C     diagonal element) or QL iterations, such that J is split into
C     unreduced bidiagonal submatrices whose singular values are either
C     all larger than THETA or all less than or equal to THETA.
C     Accumulate the Givens rotations in U and/or V (if desired).
C
C     Step 3: Back transformation phase
C             -------------------------
C      (a) Apply the Householder transformations of Step 1(b) onto the
C          columns of U and/or V associated with the bidiagonal
C          submatrices with all singular values less than or equal to
C          THETA (if U and/or V is desired).
C
C      (b) If M is large enough than N, and U is desired, then apply the
C          Householder transformations of Step 1(a) onto each computed
C          column of U in Step 3(a).
C
C     REFERENCES
C
C     [1] Van Huffel, S., Vandewalle, J. and Haegemans, A.
C         An efficient and reliable algorithm for computing the singular
C         subspace of a matrix associated with its smallest singular
C         values.
C         J. Comput. and Appl. Math., 19, pp. 313-330, 1987.
C
C     [2] Van Huffel, S.
C         Analysis of the total least squares problem and its use in
C         parameter estimation.
C         Doctoral dissertation, Dept. of Electr. Eng., Katholieke
C         Universiteit Leuven, Belgium, June 1987.
C
C     [3] Chan, T.F.
C         An improved algorithm for computing the singular value
C         decomposition.
C         ACM TOMS, 8, pp. 72-83, 1982.
C
C     [4] Van Huffel, S. and Vandewalle, J.
C         The partial total least squares algorithm.
C         J. Comput. and Appl. Math., 21, pp. 333-341, 1988.
C
C     NUMERICAL ASPECTS
C
C     Using the PSVD a large reduction in computation time can be
C     gained in total least squares applications (cf [2 - 4]), in the
C     computation of the null space of a matrix and in solving
C     (non)homogeneous linear equations.
C
C     CONTRIBUTOR
C
C     Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, June 1997.
C     Supersedes Release 2.0 routine MB04PD by S. Van Huffel, Katholieke
C     University Leuven, Belgium.
C
C     REVISIONS
C
C     V. Sima, July 10, 1997, Aug. 2011.
C
C     KEYWORDS
C
C     Bidiagonalization, singular subspace, singular value
C     decomposition, singular values.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         JOBU, JOBV
      INTEGER           INFO, IWARN, LDA, LDU, LDV, LDWORK, M, N, RANK
      DOUBLE PRECISION  RELTOL, THETA, TOL
C     .. Array Arguments ..
      LOGICAL           INUL(*)
      DOUBLE PRECISION  A(LDA,*), DWORK(*), Q(*), U(LDU,*), V(LDV,*)
C     .. Local Scalars ..
      CHARACTER*1       JOBUY, JOBVY
      LOGICAL           ALL, LJOBUA, LJOBUS, LJOBVA, LJOBVS, LQUERY, QR,
     $                  WANTU, WANTV
      INTEGER           I, IHOUSH, IJ, ITAU, ITAUP, ITAUQ, J, JU, JV,
     $                  JWORK, K, LDW, LDY, MA, MINWRK, P, PP1, WRKOPT
      DOUBLE PRECISION  CS, SN, TEMP
C     .. External Functions ..
      LOGICAL           LSAME
      INTEGER           ILAENV
      EXTERNAL          ILAENV, LSAME
C     .. External Subroutines ..
      EXTERNAL          DCOPY, DGEBRD, DGEQRF, DLARTG, DLASET, DLASR,
     $                  MB04XY, MB04YD, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         INT, MAX, MIN
C     .. Executable Statements ..
C
      IWARN = 0
      INFO  = 0
      P = MIN( M, N )
      K = MAX( M, N )
C
C     Determine whether U and/or V are/is to be computed.
C
      LJOBUA = LSAME( JOBU, 'A' )
      LJOBUS = LSAME( JOBU, 'S' )
      LJOBVA = LSAME( JOBV, 'A' )
      LJOBVS = LSAME( JOBV, 'S' )
      WANTU  = LJOBUA.OR.LJOBUS
      WANTV  = LJOBVA.OR.LJOBVS
      LQUERY = LDWORK.EQ.-1
C
C     Test the input scalar arguments.
C
      IF( .NOT.WANTU .AND. .NOT.LSAME( JOBU, 'N' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.WANTV .AND. .NOT.LSAME( JOBV, 'N' ) ) THEN
         INFO = -2
      ELSE IF( M.LT.0 ) THEN
         INFO = -3
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( RANK.GT.P ) THEN
         INFO = -5
      ELSE IF( RANK.LT.0 .AND. THETA.LT.ZERO ) THEN
         INFO = -6
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -8
      ELSE IF( ( .NOT.WANTU .AND. LDU.LT.1 )             .OR.
     $         (      WANTU .AND. LDU.LT.MAX( 1, M ) ) ) THEN
         INFO = -10
      ELSE IF( ( .NOT.WANTV .AND. LDV.LT.1 )             .OR.
     $         (      WANTV .AND. LDV.LT.MAX( 1, N ) ) ) THEN
         INFO = -12
      ELSE
C
C        Compute workspace.
C
         QR = M.GE.ILAENV( 6, 'DGESVD', 'N' // 'N', M, N, 0, 0 )
         IF ( QR.AND.WANTU ) THEN
            LDW = MAX( 2*N, N*( N + 1 )/2 )
         ELSE
            LDW = 0
         END IF
         IF ( WANTU.OR.WANTV ) THEN
            LDY = 8*P - 5
         ELSE
            LDY = 6*P - 3
         END IF
         MINWRK = MAX( 1, LDW + MAX( 2*P + K, LDY ) )
         IF( LDWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
            INFO = -18
         ELSE IF( LQUERY ) THEN
            IF ( QR ) THEN
               CALL DGEQRF( M, N, A, LDA, DWORK, DWORK, -1, INFO )
               WRKOPT = MAX( MINWRK, N + INT( DWORK(1) ) )
               MA = N
            ELSE
               WRKOPT = MINWRK
               MA = M
            END IF
            CALL DGEBRD( MA, N, A, LDA, Q, Q, DWORK, DWORK, DWORK, -1,
     $                   INFO )
            WRKOPT = MAX( WRKOPT, LDW + 2*P + INT( DWORK(1) ) )
         END IF
      END IF
C
      IF ( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'MB04XD', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         DWORK(1) = WRKOPT
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF ( P.EQ.0 ) THEN
         IF ( RANK.GE.0 )
     $      THETA = ZERO
         RANK = 0
         RETURN
      END IF
C
C     Initializations.
C
      PP1 = P + 1
      ALL = ( LJOBUA .AND. M.GT.N ) .OR. ( LJOBVA .AND. M.LT.N )
C
      IF ( ALL .AND. ( .NOT.QR ) ) THEN
C
         DO 20 I = 1, P
            INUL(I) = .FALSE.
   20    CONTINUE
C
         DO 40 I = PP1, K
            INUL(I) = .TRUE.
   40    CONTINUE
C
      ELSE
C
         DO 60 I = 1, K
            INUL(I) = .FALSE.
   60    CONTINUE
C
      END IF
C
C     Step 1: Bidiagonalization phase
C             -----------------------
C     (Note: Comments in the code beginning "Workspace:" describe the
C     minimal amount of real workspace needed at that point in the
C     code, as well as the preferred amount for good performance.
C     NB refers to the optimal block size for the immediately
C     following subroutine, as returned by ILAENV.)
C
      IF ( QR ) THEN
C
C        1.a.: M is large enough than N; transform A into upper
C              triangular form R by Householder transformations.
C
C        Workspace: need 2*N;  prefer N + N*NB.
C
         ITAU = 1
         JWORK = ITAU + N
         CALL DGEQRF( M, N, A, LDA, DWORK(ITAU), DWORK(JWORK),
     $                LDWORK-JWORK+1, INFO )
         WRKOPT = INT( DWORK(JWORK) )+JWORK-1
C
C        If (WANTU), store information on the Householder
C        transformations performed on the columns of A in N*(N+1)/2
C        extra storage locations DWORK(K), for K = 1,2,...,N*(N+1)/2.
C        (The first N locations store the scalar factors of Householder
C        transformations.)
C
C        Workspace: LDW = max(2*N, N*(N+1)/2).
C
         IF ( WANTU ) THEN
            IHOUSH = JWORK
            K = IHOUSH
            I = N
         ELSE
            K = 1
         END IF
C
         DO 100 J = 1, N - 1
            IF ( WANTU ) THEN
               I = I - 1
               CALL DCOPY( I, A(J+1,J), 1, DWORK(K), 1 )
               K = K + I
            END IF
C
            DO 80 IJ = J + 1, N
               A(IJ,J) = ZERO
   80       CONTINUE
C
  100    CONTINUE
C
         MA = N
         WRKOPT = MAX( WRKOPT, K )
      ELSE
C
C        Workspace: LDW = 0.
C
         K  = 1
         MA = M
         WRKOPT = 1
      END IF
C
C     1.b.: Transform A (or R) into bidiagonal form Q using Householder
C           transformations.
C
C     Workspace: need   LDW + 2*min(M,N) + max(M,N);
C                prefer LDW + 2*min(M,N) + (M+N)*NB.
C
      ITAUQ = K
      ITAUP = ITAUQ + P
      JWORK = ITAUP + P
      CALL DGEBRD( MA, N, A, LDA, Q, Q(PP1), DWORK(ITAUQ),
     $             DWORK(ITAUP), DWORK(JWORK), LDWORK-JWORK+1, INFO )
      WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
C
C     1.c.: Initialize U (if WANTU) and V (if WANTV) with the identity
C           matrix.
C
      IF ( WANTU ) THEN
         IF ( ALL ) THEN
            JU = M
         ELSE
            JU = P
         END IF
         CALL DLASET( 'Full', M, JU, ZERO, ONE, U, LDU )
         JOBUY = 'U'
      ELSE
         JOBUY = 'N'
      END IF
      IF ( WANTV ) THEN
         IF ( ALL ) THEN
            JV = N
         ELSE
            JV = P
         END IF
         CALL DLASET( 'Full', N, JV, ZERO, ONE, V, LDV )
         JOBVY = 'U'
      ELSE
         JOBVY = 'N'
      END IF
C
C     If the matrix is lower bidiagonal, rotate to be upper bidiagonal
C     by applying Givens rotations on the left.
C
      IF ( M.LT.N ) THEN
C
         DO 120 I = 1, P - 1
            CALL DLARTG( Q(I), Q(P+I), CS, SN, TEMP )
            Q(I)   = TEMP
            Q(P+I) = SN*Q(I+1)
            Q(I+1) = CS*Q(I+1)
            IF ( WANTU ) THEN
C
C              Workspace: LDW + 4*min(M,N) - 2.
C
               DWORK(JWORK+I-1) = CS
               DWORK(JWORK+P+I-2) = SN
            END IF
  120    CONTINUE
C
C        Update left singular vectors if desired.
C
         IF( WANTU )
     $      CALL DLASR( 'Right', 'Variable pivot', 'Forward', M, JU,
     $                  DWORK(JWORK), DWORK(JWORK+P-1), U, LDU )
C
      END IF
C
C     Step 2: Partial diagonalization phase.
C             -----------------------------
C             Diagonalize the bidiagonal Q partially until convergence
C             to  the desired left and/or right singular subspace.
C
C              Workspace: LDW + 8*min(M,N) - 5, if WANTU or WANTV;
C              Workspace: LDW + 6*min(M,N) - 3, if JOBU = JOBV = 'N'.
C
      CALL MB04YD( JOBUY, JOBVY, M, N, RANK, THETA, Q, Q(PP1), U, LDU,
     $             V, LDV, INUL, TOL, RELTOL, DWORK(JWORK),
     $             LDWORK-JWORK+1, IWARN, INFO )
      IF ( WANTU.OR.WANTV ) THEN
         WRKOPT = MAX( WRKOPT, JWORK - 6 + 8*P )
      ELSE
         WRKOPT = MAX( WRKOPT, JWORK - 4 + 6*P )
      END IF
      IF ( INFO.GT.0 )
     $   RETURN
C
C     Step 3: Back transformation phase.
C             -------------------------
C     3.a.: Apply the Householder transformations of the bidiagonaliza-
C           tion onto the base vectors associated with the desired
C           bidiagonal submatrices.
C
C           Workspace: LDW + 2*min(M,N).
C
      CALL MB04XY( JOBU, JOBV, MA, N, A, LDA, DWORK(ITAUQ),
     $             DWORK(ITAUP), U, LDU, V, LDV, INUL, INFO )
C
C     3.b.: If A was reduced to upper triangular form R and JOBU = 'A'
C           or JOBU = 'S' apply the Householder transformations of the
C           triangularization of A onto the desired base vectors.
C
      IF ( QR.AND.WANTU ) THEN
         IF ( ALL ) THEN
C
            DO 140 I = PP1, M
               INUL(I) = .TRUE.
  140       CONTINUE
C
         END IF
         K = IHOUSH
         I = N
C
         DO 160 J = 1, N - 1
            I = I - 1
            CALL DCOPY( I, DWORK(K), 1, A(J+1,J), 1 )
            K = K + I
  160    CONTINUE
C
C        Workspace: MIN(M,N) + 1.
C
         JWORK = PP1
         CALL MB04XY( JOBU, 'No V', M, N, A, LDA, DWORK(ITAU),
     $                DWORK(ITAU), U, LDU, DWORK(JWORK), 1, INUL, INFO )
         WRKOPT = MAX( WRKOPT, PP1 )
      END IF
C
C     Set the optimal workspace.
C
      DWORK(1) = WRKOPT
      RETURN
C *** Last line of MB04XD ***
      END