SUBROUTINE MB01ND( UPLO, N, ALPHA, X, INCX, Y, INCY, A, LDA )
C
C     PURPOSE
C
C     To perform the skew-symmetric rank 2 operation
C
C          A := alpha*x*y' - alpha*y*x' + A,
C
C     where alpha is a scalar, x and y are vectors of length n and A is
C     an n-by-n skew-symmetric matrix.
C
C     This is a modified version of the vanilla implemented BLAS
C     routine DSYR2 written by Jack Dongarra, Jeremy Du Croz,
C     Sven Hammarling, and Richard Hanson.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     UPLO    CHARACTER*1
C             Specifies whether the upper or lower triangular part of
C             the array A is to be referenced as follows:
C             = 'U':  only the strictly upper triangular part of A is to
C                     be referenced;
C             = 'L':  only the strictly lower triangular part of A is to
C                     be referenced.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrix A.  N >= 0.
C
C     ALPHA   (input) DOUBLE PRECISION
C             The scalar alpha. If alpha is zero X and Y are not
C             referenced.
C
C     X       (input) DOUBLE PRECISION array, dimension
C             ( 1 + ( N - 1 )*abs( INCX ) ).
C             On entry, elements 1, INCX+1, .., ( N - 1 )*INCX + 1 of
C             this array must contain the elements of the vector X.
C
C     INCX    (input) INTEGER
C             The increment for the elements of X. IF INCX < 0 then the
C             elements of X are accessed in reversed order.  INCX <> 0.
C
C     Y       (input) DOUBLE PRECISION array, dimension
C             ( 1 + ( N - 1 )*abs( INCY ) ).
C             On entry, elements 1, INCY+1, .., ( N - 1 )*INCY + 1 of
C             this array must contain the elements of the vector Y.
C
C     INCY    (input) INTEGER
C             The increment for the elements of Y. IF INCY < 0 then the
C             elements of Y are accessed in reversed order.  INCY <> 0.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry with UPLO = 'U', the leading N-by-N part of this
C             array must contain the strictly upper triangular part of
C             the matrix A. The lower triangular part of this array is
C             not referenced.
C             On entry with UPLO = 'L', the leading N-by-N part of this
C             array must contain the strictly lower triangular part of
C             the matrix A. The upper triangular part of this array is
C             not referenced.
C             On exit with UPLO = 'U', the leading N-by-N part of this
C             array contains the strictly upper triangular part of the
C             updated matrix A.
C             On exit with UPLO = 'L', the leading N-by-N part of this
C             array contains the strictly lower triangular part of the
C             updated matrix A.
C
C     LDA     INTEGER
C             The leading dimension of the array A.  LDA >= MAX(1,N)
C
C     NUMERICAL ASPECTS
C
C     Though being almost identical with the vanilla implementation
C     of the BLAS routine DSYR2 the performance of this routine could
C     be significantly lower in the case of vendor supplied, highly
C     optimized BLAS.
C
C     CONTRIBUTORS
C
C     D. Kressner, Technical Univ. Berlin, Germany, and
C     P. Benner, Technical Univ. Chemnitz, Germany, December 2003.
C
C     REVISIONS
C
C     V. Sima, May 2008 (SLICOT version of the HAPACK routine DSKR2).
C
C     KEYWORDS
C
C     Elementary matrix operations.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION   ZERO
      PARAMETER          ( ZERO = 0.0D+0 )
C     .. Scalar Arguments ..
      DOUBLE PRECISION   ALPHA
      INTEGER            INCX, INCY, LDA, N
      CHARACTER          UPLO
C     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), X( * ), Y( * )
C     .. Local Scalars ..
      DOUBLE PRECISION   TEMP1, TEMP2
      INTEGER            I, INFO, IX, IY, J, JX, JY, KX, KY
C     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
C     .. External Subroutines ..
      EXTERNAL           XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC          MAX
C
C     .. Executable Statements ..
C
C     Test the input parameters.
C
      INFO = 0
      IF     ( .NOT.LSAME( UPLO, 'U' ).AND.
     $         .NOT.LSAME( UPLO, 'L' )      )THEN
         INFO = 1
      ELSE IF ( N.LT.0 )THEN
         INFO = 2
      ELSE IF ( INCX.EQ.0 )THEN
         INFO = 5
      ELSE IF ( INCY.EQ.0 )THEN
         INFO = 7
      ELSE IF ( LDA.LT.MAX( 1, N ) )THEN
         INFO = 9
      END IF
C
      IF ( INFO.NE.0 )THEN
         CALL XERBLA( 'MB01ND', INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF ( ( N.EQ.0 ).OR.( ALPHA.EQ.ZERO ) )
     $   RETURN
C
C     Set up the start points in X and Y if the increments are not both
C     unity.
C
      IF ( ( INCX.NE.1 ).OR.( INCY.NE.1 ) )THEN
         IF ( INCX.GT.0 )THEN
            KX = 1
         ELSE
            KX = 1 - ( N - 1 )*INCX
         END IF
         IF ( INCY.GT.0 )THEN
            KY = 1
         ELSE
            KY = 1 - ( N - 1 )*INCY
         END IF
         JX = KX
         JY = KY
      END IF
C
C     Start the operations. In this version the elements of A are
C     accessed sequentially with one pass through the triangular part
C     of A.
C
      IF ( LSAME( UPLO, 'U' ) )THEN
C
C        Form A when A is stored in the upper triangle.
C
         IF ( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
            DO 20 J = 2, N
               IF ( ( X(J).NE.ZERO ).OR.( Y(J).NE.ZERO ) )THEN
                  TEMP1 = ALPHA*Y(J)
                  TEMP2 = ALPHA*X(J)
                  DO 10 I = 1, J-1
                     A(I,J) = A(I,J) + X(I)*TEMP1 - Y(I)*TEMP2
   10             CONTINUE
               END IF
   20       CONTINUE
         ELSE
            DO 40 J = 2, N
               IF ( ( X(JX).NE.ZERO ).OR.( Y(JY).NE.ZERO ) )THEN
                  TEMP1 = ALPHA*Y(JY)
                  TEMP2 = ALPHA*X(JX)
                  IX    = KX
                  IY    = KY
                  DO 30 I = 1, J-1
                     A(I,J) = A(I,J) + X(IX)*TEMP1 - Y(IY)*TEMP2
                     IX = IX + INCX
                     IY = IY + INCY
   30             CONTINUE
               END IF
               JX = JX + INCX
               JY = JY + INCY
   40       CONTINUE
         END IF
      ELSE
C
C        Form A when A is stored in the lower triangle.
C
         IF ( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
            DO 60 J = 1, N-1
               IF ( ( X(J).NE.ZERO ).OR.( Y(J).NE.ZERO ) )THEN
                  TEMP1 = ALPHA*Y(J)
                  TEMP2 = ALPHA*X(J)
                  DO 50 I = J+1, N
                     A(I,J) = A(I,J) + X(I)*TEMP1 - Y(I)*TEMP2
   50             CONTINUE
               END IF
   60       CONTINUE
         ELSE
            DO 80 J = 1, N-1
               IF ( ( X(JX).NE.ZERO ).OR.( Y(JY).NE.ZERO ) )THEN
                  TEMP1 = ALPHA*Y(JY)
                  TEMP2 = ALPHA*X(JX)
                  IX    = JX
                  IY    = JY
                  DO 70 I = J+1, N
                     A(I,J) = A(I,J) + X(IX)*TEMP1 - Y(IY)*TEMP2
                     IX = IX + INCX
                     IY = IY + INCY
   70             CONTINUE
               END IF
               JX = JX + INCX
               JY = JY + INCY
   80       CONTINUE
         END IF
      END IF
      RETURN
C *** Last line of MB01ND ***
      END