control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
      SUBROUTINE AB13HD( DICO, JOBE, EQUIL, JOBD, CKPROP, REDUCE, POLES,
     $                   N, M, P, RANKE, FPEAK, A, LDA, E, LDE, B, LDB,
     $                   C, LDC, D, LDD, NR, GPEAK, TOL, IWORK, DWORK,
     $                   LDWORK, ZWORK, LZWORK, BWORK, IWARN, INFO )
C
C     PURPOSE
C
C     To compute the L-infinity norm of a proper continuous-time or
C     causal discrete-time system, either standard or in the descriptor
C     form,
C
C                                     -1
C        G(lambda) = C*( lambda*E - A ) *B + D .
C
C     The norm is finite if and only if the matrix pair (A,E) has no
C     finite eigenvalue on the boundary of the stability domain, i.e.,
C     the imaginary axis, or the unit circle, respectively.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     DICO    CHARACTER*1
C             Specifies the type of the system, as follows:
C             = 'C':  continuous-time system;
C             = 'D':  discrete-time system.
C
C     JOBE    CHARACTER*1
C             Specifies whether E is an identity matrix, a general
C             square matrix, or a matrix in compressed form, as follows:
C             = 'I':  E is the identity matrix;
C             = 'G':  E is a general matrix;
C             = 'C':  E is in compressed form, i.e., E = [ T  0 ],
C                                                        [ 0  0 ]
C                     with a square full-rank matrix T.
C
C     EQUIL   CHARACTER*1
C             Specifies whether the user wishes to preliminarily
C             equilibrate the system (A,E,B,C) or (A,B,C), as follows:
C             = 'S':  perform equilibration (scaling);
C             = 'N':  do not perform equilibration.
C
C     JOBD    CHARACTER*1
C             Specifies whether or not a non-zero matrix D appears in
C             the given state space model:
C             = 'D':  D is present;
C             = 'Z':  D is assumed a zero matrix;
C             = 'F':  D is known to be well-conditioned (hence, to have
C                     full rank), for DICO = 'C' and JOBE = 'I'.
C             The options JOBD = 'D' and JOBD = 'F' produce the same
C             results, but much less memory is needed for JOBD = 'F'.
C
C     CKPROP  CHARACTER*1
C             If DICO = 'C' and JOBE <> 'I', specifies whether the user
C             wishes to check the properness of the transfer function of
C             the descriptor system, as follows:
C             = 'C':  check the properness;
C             = 'N':  do not check the properness.
C             If the test is requested and the system is found improper
C             then GPEAK and FPEAK are both set to infinity, i.e., their
C             second component is zero; in addition, IWARN is set to 2.
C             If the test is not requested, but the system is improper,
C             the resulted GPEAK and FPEAK may be wrong.
C             If DICO = 'D' or JOBE = 'I', this option is ineffective.
C
C     REDUCE  CHARACTER*1
C             If CKPROP = 'C', specifies whether the user wishes to
C             reduce the system order, by removing all uncontrollable
C             and unobservable poles before computing the norm, as
C             follows:
C             = 'R': reduce the system order;
C             = 'N': compute the norm without reducing the order.
C             If CKPROP = 'N', this option is ineffective.
C
C     POLES   CHARACTER*1
C             Specifies whether the user wishes to use all or part of
C             the poles to compute the test frequencies (in the non-
C             iterative part of the algorithm), or all or part of the
C             midpoints (in the iterative part of the algorithm), as
C             follows:
C             = 'A': use all poles with non-negative imaginary parts
C                    and all midpoints;
C             = 'P': use part of the poles and midpoints.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the system.  N >= 0.
C
C     M       (input) INTEGER
C             The column size of the matrix B.  M >= 0.
C
C     P       (input) INTEGER
C             The row size of the matrix C.  P >= 0.
C
C     RANKE   (input) INTEGER
C             If JOBE = 'C', RANKE denotes the rank of the descriptor
C             matrix E or the size of the full-rank block T.
C             0 <= RANKE <= N.
C
C     FPEAK   (input/output) DOUBLE PRECISION array, dimension (2)
C             On entry, this parameter must contain an estimate of the
C             frequency where the gain of the frequency response would
C             achieve its peak value. Setting FPEAK(2) = 0 indicates an
C             infinite frequency. An accurate estimate could reduce the
C             number of iterations of the iterative algorithm. If no
C             estimate is available, set FPEAK(1) = 0, and FPEAK(2) = 1.
C             FPEAK(1) >= 0, FPEAK(2) >= 0.
C             On exit, if INFO = 0, this array contains the frequency
C             OMEGA, where the gain of the frequency response achieves
C             its peak value GPEAK, i.e.,
C
C                 || G ( j*OMEGA ) || = GPEAK ,  if DICO = 'C', or
C
C                         j*OMEGA
C                 || G ( e       ) || = GPEAK ,  if DICO = 'D',
C
C             where OMEGA = FPEAK(1), if FPEAK(2) > 0, and OMEGA is
C             infinite, if FPEAK(2) = 0. (If nonzero, FPEAK(2) = 1.)
C             For discrete-time systems, it is assumed that the sampling
C             period is Ts = 1. If Ts <> 1, the frequency corresponding
C             to the peak gain is OMEGA/Ts.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading N-by-N part of this array must
C             contain the state dynamics matrix A.
C             On exit, if EQUIL = 'S' and CKPROP = 'N', the leading
C             N-by-N part of this array contains the state dynamics
C             matrix of an equivalent, scaled system.
C             On exit, if CKPROP = 'C', DICO = 'C', and JOBE <> 'I', the
C             leading NR-by-NR part of this array contains the state
C             dynamics matrix of an equivalent reduced, possibly scaled
C             (if EQUIL = 'S') system, used to check the properness.
C             Otherwise, the array A is unchanged.
C
C     LDA     INTEGER
C             The leading dimension of the array A.  LDA >= max(1,N).
C
C     E       (input/output) DOUBLE PRECISION array, dimension (LDE,K),
C             where K is N, RANKE, or 0, if JOBE = 'G', 'C', or 'I',
C             respectively.
C             On entry, if JOBE = 'G', the leading N-by-N part of this
C             array must contain the descriptor matrix E of the system.
C             If JOBE = 'C', the leading RANKE-by-RANKE part of this
C             array must contain the full-rank block T of the descriptor
C             matrix E.
C             If JOBE = 'I', then E is assumed to be the identity matrix
C             and is not referenced.
C             On exit, if EQUIL = 'S' and CKPROP = 'N', the leading
C             K-by-K part of this array contains the descriptor matrix
C             of an equivalent, scaled system.
C             On exit, if CKPROP = 'C', DICO = 'C', and JOBE <> 'I', the
C             leading MIN(K,NR)-by-MIN(K,NR) part of this array contains
C             the descriptor matrix of an equivalent reduced, possibly
C             scaled (if EQUIL = 'S') system, used to check the
C             properness.
C             Otherwise, the array E is unchanged.
C
C     LDE     INTEGER
C             The leading dimension of the array E.
C             LDE >= MAX(1,N),     if JOBE = 'G';
C             LDE >= MAX(1,RANKE), if JOBE = 'C';
C             LDE >= 1,            if JOBE = 'I'.
C
C     B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C             On entry, the leading N-by-M part of this array must
C             contain the system input matrix B.
C             On exit, if EQUIL = 'S' and CKPROP = 'N', the leading
C             NR-by-M part of this array contains the system input
C             matrix of an equivalent, scaled system.
C             On exit, if CKPROP = 'C', DICO = 'C', and JOBE <> 'I', the
C             leading NR-by-M part of this array contains the system
C             input matrix of an equivalent reduced, possibly scaled (if
C             EQUIL = 'S') system, used to check the properness.
C             Otherwise, the array B is unchanged.
C
C     LDB     INTEGER
C             The leading dimension of the array B.  LDB >= max(1,N).
C
C     C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C             On entry, the leading P-by-N part of this array must
C             contain the system output matrix C.
C             On exit, if EQUIL = 'S' and CKPROP = 'N', the leading
C             P-by-NR part of this array contains the system output
C             matrix of an equivalent, scaled system.
C             On exit, if CKPROP = 'C', DICO = 'C', and JOBE <> 'I', the
C             leading P-by-NR part of this array contains the system
C             output matrix of an equivalent reduced, possibly scaled
C             (if EQUIL = 'S') system, used to check the properness.
C             Otherwise, the array C is unchanged.
C
C     LDC     INTEGER
C             The leading dimension of the array C.  LDC >= max(1,P).
C
C     D       (input) DOUBLE PRECISION array, dimension (LDD,M)
C             If JOBD = 'D' or JOBD = 'F', the leading P-by-M part of
C             this array must contain the direct transmission matrix D.
C             The array D is not referenced if JOBD = 'Z'.
C
C     LDD     INTEGER
C             The leading dimension of array D.
C             LDD >= MAX(1,P), if JOBD = 'D' or JOBD = 'F';
C             LDD >= 1,        if JOBD = 'Z'.
C
C     NR      (output) INTEGER
C             If CKPROP = 'C', DICO = 'C', and JOBE <> 'I', the order of
C             the reduced system. Otherwise, NR = N.
C
C     GPEAK   (output) DOUBLE PRECISION array, dimension (2)
C             The L-infinity norm of the system, i.e., the peak gain
C             of the frequency response (as measured by the largest
C             singular value in the MIMO case), coded in the same way
C             as FPEAK.
C
C     Tolerances
C
C     TOL     DOUBLE PRECISION array, dimension K, where K = 2, if
C             CKPROP = 'N' or DICO = 'D' or JOBE = 'I', and K = 4,
C             otherwise.
C             TOL(1) is the tolerance used to set the accuracy in
C             determining the norm.  0 <= TOL(1) < 1.
C             TOL(2) is the threshold value for magnitude of the matrix
C             elements, if EQUIL = 'S': elements with magnitude less
C             than or equal to TOL(2) are ignored for scaling. If the
C             user sets TOL(2) >= 0, then the given value of TOL(2) is
C             used. If the user sets TOL(2) < 0, then an implicitly
C             computed, default threshold, THRESH, is used instead,
C             defined by THRESH = 0.1, if MN/MX < EPS, and otherwise,
C             THRESH = MIN( 100*(MN/(EPS**0.25*MX))**0.5, 0.1 ), where
C             MX and MN are the maximum and the minimum nonzero absolute
C             value, respectively, of the elements of A and E, and EPS
C             is the machine precision (see LAPACK Library routine
C             DLAMCH). TOL(2) = 0 is not always a good choice.
C             TOL(2) < 1. TOL(2) is not used if EQUIL = 'N'.
C             TOL(3) is the tolerance to be used in rank determinations
C             when transforming (lambda*E-A,B,C), if CKPROP = 'C'. If
C             the user sets TOL(3) > 0, then the given value of TOL(3)
C             is used as a lower bound for reciprocal condition numbers
C             in rank determinations; a (sub)matrix whose estimated
C             condition number is less than 1/TOL(3) is considered to be
C             of full rank.  If the user sets TOL(3) <= 0, then an
C             implicitly computed, default tolerance, defined by
C             TOLDEF1 = N*N*EPS, is used instead.  TOL(3) < 1.
C             TOL(4) is the tolerance to be used for checking the
C             singularity of the matrices A and E when CKPROP = 'C'.
C             If the user sets TOL(4) > 0, then the given value of
C             TOL(4) is used.  If the user sets TOL(4) <= 0, then an
C             implicitly computed, default tolerance, defined by
C             TOLDEF2 = N*EPS, is used instead. The 1-norms of A and E
C             are also taken into account.  TOL(4) < 1.
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (LIWORK)
C             LIWORK >= 1, if MIN(N,P,M) = 0, or B = 0, or C = 0; else
C             LIWORK >= MAX(1,N), if DICO = 'C', JOBE = 'I', and
C                       JOBD <> 'D';
C             LIWORK >= 2*N + M + P + R + 12, otherwise, where
C                       R = 0, if M + P is even,
C                       R = 1, if M + P is odd.
C             On exit, if INFO = 0, IWORK(1) returns the number of
C             iterations performed by the iterative algorithm
C             (possibly 0).
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) contains the optimal value
C             of LDWORK.
C             On exit, if  INFO = -28,  DWORK(1)  returns the minimum
C             value of LDWORK. These values are also set when LDWORK = 0
C             on entry, but no error message related to LDWORK is issued
C             by XERBLA.
C
C     LDWORK  INTEGER
C             The dimension of the array DWORK.
C             LDWORK >= 1, if MIN(M,P) = 0 or ( JOBD = 'Z' and
C                                         ( N = 0 or B = 0 or C = 0 ) );
C             LDWORK >= P*M + x, if ( ( N = 0 and MIN(M,P) > 0 )
C                          or ( B = 0 or C = 0 ) ) and JOBD <> 'Z',
C                       where
C                       x = MAX( 4*MIN(M,P) + MAX(M,P), 6*MIN(M,P) ),
C                                       if DICO = 'C',
C                       x = 6*MIN(M,P), if DICO = 'D';
C             LDWORK >= MAX( 1, N*(N+M+P+2) + MAX( N*(N+M+2) + P*M + x,
C                                                  4*N*N + 9*N ) ),
C                       if DICO = 'C', JOBE = 'I' and JOBD = 'Z'.
C             LDWORK >= MAX( 1, (N+M)*(M+P) + P*P + x,
C                            2*N*(N+M+P+1) + N + MIN(P,M) +
C                            MAX( M*(N+P) + N + x, N*N +
C                                 MAX( N*(P+M) + MAX(M,P),
C                                      2*N*N + 8*N ) ) ),
C                       if DICO = 'C', JOBE = 'I' and JOBD = 'F'.
C             The formulas for other cases, e.g., for JOBE <> 'I' or
C             CKPROP = 'C', contain additional and/or other terms.
C             The minimum value of LDWORK for all cases can be obtained
C             in DWORK(1) when LDWORK is set to 0 on entry.
C             For good performance, LDWORK must generally be larger.
C
C             If LDWORK = -1, then a workspace query is assumed;
C             the routine only calculates the optimal size of the
C             DWORK array, returns this value as the first entry of
C             the DWORK array, and no error message related to LDWORK
C             is issued by XERBLA.
C
C     ZWORK   COMPLEX*16 array, dimension (LZWORK)
C             On exit, if INFO = 0, ZWORK(1) contains the optimal
C             LZWORK.
C             On exit, if  INFO = -30,  ZWORK(1)  returns the minimum
C             value of LZWORK. These values are also set when LZWORK = 0
C             on entry, but no error message related to LZWORK is issued
C             by XERBLA.
C             If LDWORK = 0 and LZWORK = 0 are both set on entry, then
C             on exit, INFO = -30, but both DWORK(1) and ZWORK(1) are
C             set the minimum values of LDWORK and LZWORK, respectively.
C
C     LZWORK  INTEGER
C             The dimension of the array ZWORK.
C             LZWORK >= 1,  if MIN(N,M,P) = 0, or B = 0, or C = 0;
C             LZWORK >= MAX(1, (N+M)*(N+P) + 2*MIN(M,P) + MAX(M,P)),
C                           otherwise.
C             For good performance, LZWORK must generally be larger.
C
C             If LZWORK = -1, then a workspace query is assumed;
C             the routine only calculates the optimal size of the
C             ZWORK array, returns this value as the first entry of
C             the ZWORK array, and no error message related to LZWORK
C             is issued by XERBLA.
C
C     BWORK   LOGICAL array, dimension (N)
C
C     Warning Indicator
C
C     IWARN   INTEGER
C             = 0:  no warning;
C             = 1:  the descriptor system is singular. GPEAK(1) and
C                   GPEAK(2) are set to 0. FPEAK(1) and FPEAK(2) are
C                   set to 0 and 1, respectively;
C             = 2:  the descriptor system is improper. GPEAK(1) and
C                   GPEAK(2) are set to 1 and 0, respectively,
C                   corresponding to infinity. FPEAK(1) and FPEAK(2) are
C                   set similarly. This warning can only appear if
C                   CKPROP = 'C'.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = 1:  a matrix is (numerically) singular or the Sylvester
C                   equation is very ill-conditioned, when computing the
C                   largest singular value of G(infinity) (for
C                   DICO = 'C'); the descriptor system is nearly
C                   singular; the L-infinity norm could be infinite;
C             = 2:  the (periodic) QR (or QZ) algorithm for computing
C                   eigenvalues did not converge;
C             = 3:  the SVD algorithm for computing singular values did
C                   not converge;
C             = 4:  the tolerance is too small and the algorithm did
C                   not converge; this is a warning; 
C             = 5:  other computations than QZ iteration, or reordering
C                   of eigenvalues, failed in the LAPACK Library
C                   routines DHGEQZ or DTGSEN, respectively;
C             = 6:  the numbers of "finite" eigenvalues before and after
C                   reordering differ; the threshold used might be
C                   unsuitable.
C
C     METHOD
C
C     The routine implements the method presented in [2], which is an
C     extension of the method in [1] for descriptor systems. There are
C     several improvements and refinements [3-5] to increase numerical
C     robustness, accuracy and efficiency, such as the usage of
C     structure-preserving eigenvalue computations for skew-Hamiltonian/
C     Hamiltonian eigenvalue problems in the iterative method in [2].
C
C     REFERENCES
C
C     [1] Bruinsma, N.A. and Steinbuch, M.
C         A fast algorithm to compute the H-infinity-norm of a transfer
C         function matrix.
C         Systems & Control Letters, vol. 14, pp. 287-293, 1990.
C
C     [2] Voigt, M.
C         L-infinity-Norm Computation for Descriptor Systems.
C         Diploma Thesis, Fakultaet fuer Mathematik, TU Chemnitz,
C         http://nbn-resolving.de/urn:nbn:de:bsz:ch1-201001050.
C
C     [3] Benner, P., Sima, V. and Voigt, M.
C         L-infinity-norm computation for continuous-time descriptor
C         systems using structured matrix pencils.
C         IEEE Trans. Auto. Contr., AC-57, pp.233-238, 2012.
C
C     [4] Benner, P., Sima, V. and Voigt, M.
C         Robust and efficient algorithms for L-infinity-norm
C         computations for descriptor systems.
C         7th IFAC Symposium on Robust Control Design (ROCOND'12),
C         pp. 189-194, 2012.
C
C     [5] Benner, P., Sima, V. and Voigt, M.
C         Algorithm 961: Fortran 77 subroutines for the solution of
C         skew-Hamiltonian/Hamiltonian eigenproblems.
C         ACM Trans. Math. Softw, 42, pp. 1-26, 2016.
C
C     NUMERICAL ASPECTS
C
C     If the algorithm does not converge in MAXIT = 30 iterations
C     (INFO = 4), the tolerance must be increased, or the system is
C     improper.
C
C     FURTHER COMMENTS
C
C     Setting POLES = 'P' usually saves some computational effort. The
C     number of poles used is defined by the parameters BM, BNEICD,
C     BNEICM, BNEICX, BNEIR and SWNEIC.
C     Both real and complex optimal workspace sizes are computed if
C     either LDWORK = -1 or LZWORK = -1.
C
C     CONTRIBUTORS
C
C     M. Voigt, Max Planck Institute for Dynamics of Complex Technical
C     Systems, March 2011.
C     V. Sima, Research Institute for Informatics, Bucharest, Dec. 2011.
C     Partly based on the SLICOT Library routine AB13DD by D. Sima and
C     V. Sima.
C
C     REVISIONS
C
C     V. Sima, Mar. 2012, Apr. 2012, May 2012, June 2012, June-Nov.
C     2022, Jan. 2023, Mar.-Aug. 2023, Oct. 2023 - Jan. 2024.
C     M. Voigt, Apr. 2017, Sep. 2017.
C
C     KEYWORDS
C
C     H-infinity optimal control, robust control, system norm.
C
C     ******************************************************************
C
C     .. Parameters ..
C     BM specifies the maximum number of midpoints to be used in the
C     iterative part of the algorithm if POLES = 'P'; similarly,
C     BNEICD, BNEICM, and BNEICX specify the number of complex poles
C     (with positive imaginary part) to be used as test frequencies,
C     and BNEIR has the same purpose for real poles;
C     MAXIT is the maximum number of iterations;
C     SWNEIC is the system order when the number of complex poles to be
C     used is increased.
C                        
      INTEGER            BM, BNEICD, BNEICM, BNEICX, BNEIR, MAXIT,
     $                   SWNEIC
      PARAMETER          ( BM = 2, BNEICD = 10, BNEICM = 45,
     $                     BNEICX = 60, BNEIR = 3, MAXIT = 30,
     $                     SWNEIC = 300 )
      DOUBLE PRECISION   ZERO, P1, P25, ONE, TWO, FOUR, TEN, HUNDRD,
     $                   THOUSD
      PARAMETER          ( ZERO = 0.0D+0, P1  = 0.1D+0, P25  = 0.25D+0,
     $                     ONE  = 1.0D+0, TWO = 2.0D+0, FOUR = 4.0D+0,
     $                     TEN  = 1.0D+1, HUNDRD = 1.0D+2,
     $                     THOUSD = 1.0D+3 )
      COMPLEX*16         CONE
      PARAMETER          ( CONE  = ( 1.0D+0, 0.0D+0 ) )
C     ..
C     .. Scalar Arguments ..
      CHARACTER          CKPROP, DICO, EQUIL, JOBD, JOBE, POLES, REDUCE
      INTEGER            INFO, IWARN, LDA, LDB, LDC, LDD, LDE, LDWORK,
     $                   LZWORK, M, N, NR, P, RANKE
C     ..
C     .. Array Arguments ..
      COMPLEX*16         ZWORK(  * )
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), C( LDC, * ),
     $                   D( LDD, * ), DWORK(  * ), E( LDE, * ),
     $                   FPEAK(  2 ), GPEAK(  2 ), TOL( * )
      INTEGER            IWORK(  * )
      LOGICAL            BWORK(  * )
C     ..
C     .. Local Scalars ..
      CHARACTER          EIGENV, JBDX, JOB, JOBEIG, JOBSYS, NCSING,
     $                   NEQUIL, NOVECT, NTRAN, QZVECT, RESTOR, SVEC,
     $                   TRANS, UPDATE, VECT
      LOGICAL            ALLPOL, CASE0, CASE1, CASE2, CASE3, CMPRE,
     $                   DISCR, FULLRD, GENE, ILASCL, ILESCL, IND1,
     $                   ISPROP, LEQUIL, LINF, LQUERY, NCMPRE, NODYN,
     $                   NSRT, REALW, UNITE, USEPEN, WCKPRP, WITHD,
     $                   WITHE, WNRMD, WREDUC, ZEROD
      INTEGER            I, I0, I1, I2, IA, IAS, IB, IBS, IBT, IBV, IC,
     $                   ICI, ICU, ICW, ID, IE, IERR, IES, IH, IH12,
     $                   IH22, IHC, IHI, II, IJ, IJ12, ILFT, ILO, IM,
     $                   IMIN, IQ, IR, IRHT, IRLW, IS, ISB, ISC, ISL,
     $                   IT, IT12, ITAU, ITER, IU, IV, IWRK, IZ, J, K,
     $                   L, LIW, LW, M0, MAXCWK, MAXPM, MAXWRK, MINCWK,
     $                   MINPM, MINWRK, MNW13X, MNWSVD, N1, N2, NBLK,
     $                   NBLK2, NC, NE, NEI, NEIC, NEIR, NINF, NK, NN,
     $                   NR2, NWS, ODW13X, ODWSVD, P0, PM, PMQ, Q, QP,
     $                   R, RNKE, SDIM, SDIM1, TN, TNR, WR13ID
      DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNORM, BOUND, CND, CNORM,
     $                   DIF, ENRM, ENRMTO, EPS, FPEAKI, FPEAKS, GAMMA,
     $                   GAMMAL, GAMMAS, MAXRED, OMEGA, OZ, PI, RAT,
     $                   RCOND, SAFMAX, SAFMIN, SCL, SMLNUM, STOL, SV1,
     $                   SVP, TD, TEPS, THRESH, TM, TMP, TMR, TOL1,
     $                   TOL2, TOLDEF, TOLER, TOLN, TOLP, TZER, WMAX,
     $                   WRMIN
C     ..
C     .. Local Arrays ..
      INTEGER            IDUM( 1 )
      DOUBLE PRECISION   DUM(  3 ), GAM( 1 ), MGAM( 1 ), ONES( 1 ),
     $                   TOLI( 3 )
C     ..
C     .. External Functions ..
      LOGICAL            AB13ID, LSAME
      DOUBLE PRECISION   AB13DX, DLAMCH, DLANGE, DLANHS, DLANTR, DLAPY2,
     $                   MA02SD
      EXTERNAL           AB13DX, AB13ID, DLAMCH, DLANGE, DLANHS, DLANTR,
     $                   DLAPY2, LSAME,  MA02SD
C     ..
C     .. External Subroutines ..
      EXTERNAL           DAXPY,  DCOPY,  DGEBAL, DGECON, DGEHRD, DGEMM,
     $                   DGEQRF, DGESVD, DGETRF, DGETRS, DGGBAK, DGGBAL,
     $                   DHGEQZ, DHSEQR, DLABAD, DLACPY, DLADIV, DLASCL,
     $                   DLASET, DLASRT, DORMHR, DORMQR, DSCAL,  DSWAP,
     $                   DSYRK,  DTGSEN, DTRCON, DTRSM, MA02AD,  MB01SD,
     $                   MB02RD, MB02SD, MB02TD, MB03XD, MB04BP, SB04OD,
     $                   TB01ID, TG01AD, TG01BD, XERBLA, ZGESVD
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC          ABS, ATAN, ATAN2, COS, DBLE, INT, LOG, MAX,
     $                   MIN, MOD, SIN, SQRT
C     ..
C     .. Executable Statements ..
C
C     Test the input scalar parameters.
C
      NN     = N*N
      MINPM  = MIN( P, M )
      MAXPM  = MAX( P, M )
      IWARN  = 0
      INFO   = 0
      DISCR  = LSAME( DICO,   'D' )
      UNITE  = LSAME( JOBE,   'I' )
      GENE   = LSAME( JOBE,   'G' )
      CMPRE  = LSAME( JOBE,   'C' )
      LEQUIL = LSAME( EQUIL,  'S' )
      WITHD  = LSAME( JOBD,   'D' )
      FULLRD = LSAME( JOBD,   'F' )
      ZEROD  = LSAME( JOBD,   'Z' )
      WCKPRP = LSAME( CKPROP, 'C' )
      WREDUC = LSAME( REDUCE, 'R' )
      ALLPOL = LSAME( POLES,  'A' )
      WITHE  = GENE .OR. CMPRE
      LQUERY = LDWORK.EQ.-1 .OR. LZWORK.EQ.-1
C
      IF( .NOT. ( DISCR .OR. LSAME( DICO, 'C' ) ) ) THEN
         INFO = -1
      ELSE IF( .NOT. ( WITHE  .OR. UNITE ) ) THEN
         INFO = -2
      ELSE IF( .NOT. ( LEQUIL .OR. LSAME( EQUIL,  'N' ) ) ) THEN
         INFO = -3
      ELSE IF( .NOT. ( WITHD  .OR. FULLRD .OR. ZEROD ) ) THEN
         INFO = -4
      ELSE IF( .NOT. ( WCKPRP .OR. LSAME( CKPROP, 'N' ) ) ) THEN
         IF( .NOT.( DISCR .OR. UNITE ) )
     $      INFO = -5
      ELSE IF( .NOT. ( WREDUC .OR. LSAME( REDUCE, 'N' ) ) ) THEN
         IF( WCKPRP )
     $      INFO = -6
      ELSE IF( .NOT. ( ALLPOL .OR. LSAME( POLES, 'P' ) ) ) THEN
         INFO = -7
      ELSE IF( N.LT.0 ) THEN
         INFO = -8
      ELSE IF( M.LT.0 ) THEN
         INFO = -9
      ELSE IF( P.LT.0 ) THEN
         INFO = -10
      ELSE IF( CMPRE .AND. ( RANKE.LT.0 .OR. RANKE.GT.N ) ) THEN
         INFO = -11
      ELSE IF( MIN( FPEAK( 1 ), FPEAK( 2 ) ).LT.ZERO ) THEN
         INFO = -12
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -14
      ELSE IF( LDE.LT.1 .OR. ( GENE  .AND. LDE.LT.N ) .OR.
     $                       ( CMPRE .AND. LDE.LT.RANKE ) ) THEN
         INFO = -16
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -18
      ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
         INFO = -20
      ELSE IF( LDD.LT.1 .OR. ( .NOT.ZEROD .AND. LDD.LT.P ) ) THEN
         INFO = -22
      ELSE IF( TOL( 1 ).LT.ZERO .OR. TOL( 1 ).GE.ONE ) THEN
         INFO = -25
      ELSE IF( .NOT.LEQUIL .AND. TOL( 2 ).GE.ONE ) THEN
         INFO = -25
      ELSE IF( .NOT.DISCR .AND. WITHE .AND. WCKPRP .AND.
     $         ( TOL( 3 ).GE.ONE .OR. TOL( 4 ).GE.ONE ) ) THEN
         INFO = -25
      ELSE
         NODYN = N.EQ.0
         IF( .NOT.NODYN ) THEN
            BNORM = DLANGE( '1-norm', N, M, B, LDB, DWORK )
            CNORM = DLANGE( '1-norm', P, N, C, LDC, DWORK )
            NODYN = MIN( BNORM, CNORM ).EQ.ZERO
         END IF
C
C        Option FULLRD is useless for discrete-time systems.
C
         IF( DISCR .AND. FULLRD )
     $      FULLRD = .FALSE.
         WITHD = WITHD .OR. FULLRD
C
C        Compute workspace.
C
C        Note: The workspace requirement is dominated by the solution of
C              the generalized skew-Hamiltonian/Hamiltonian eigenvalue
C              problem, when needed.
C
         MINCWK = 1
         MAXCWK = 1
         IF( MINPM.EQ.0 .OR. ( NODYN .AND. ZEROD ) ) THEN
            MINWRK = 1
            MAXWRK = 1
         ELSE
            USEPEN = WITHE .OR. DISCR
            EIGENV = 'E'
            NTRAN  = 'N'
            NOVECT = 'N'
            SVEC   = NOVECT
            TRANS  = 'T'
C
            IF( CMPRE ) THEN
               CMPRE  = RANKE.LT.N
               NCMPRE = .NOT.CMPRE
            ELSE
               NCMPRE = .FALSE.
               RANKE  = N
            END IF
C
            IF( DISCR .OR. UNITE ) THEN
               WCKPRP = .FALSE.
               WREDUC = .FALSE.
            END IF
C
C           Optimal and minimum local workspace for DGESVD/ZGESVD and
C           AB13DX.
C
            IF( LQUERY ) THEN
               CALL DGESVD( NOVECT, NOVECT, P, M, DWORK, P, DWORK,
     $                      DWORK, P, DWORK, M, DWORK, -1, IERR )
               ODWSVD = INT( DWORK( 1 ) )
               ODW13X = MINPM + ODWSVD
            END IF
C
            IU = 0
            IF( NODYN ) THEN
               IF( WITHD ) THEN
                  MNWSVD = MAX( 3*MINPM + MAXPM, 5*MINPM )
                  MINWRK = P*M + MINPM + MNWSVD
                  IF( LQUERY )
     $               MAXWRK = MAX( MINWRK, P*M + MINPM + ODWSVD )
               ELSE
                  MAXWRK = 1
               END IF
            ELSE
               I0 = ( N + M )*( N + P )
               IE = 0
               PM = P + M
               IF( LQUERY ) THEN
                  CALL ZGESVD( NOVECT, NOVECT, P, M, ZWORK, P, DWORK,
     $                         ZWORK, P, ZWORK, M, ZWORK, -1, DWORK,
     $                         IERR )
                  MAXCWK = I0 + INT( ZWORK( 1 ) )
               END IF
C
               MINCWK = I0 + 2*MINPM + MAXPM
               MNWSVD = 5*MINPM
               IF( DISCR ) THEN
                  MINWRK = 0
                  MAXWRK = 0
               ELSE
                  MNWSVD = MAX( MNWSVD, 3*MINPM + MAXPM )
                  IF( WITHD ) THEN
C
C                    Workspace for finding maximum singular value of D.
C
                     IF( UNITE ) THEN
                        IU   = N*PM + MINPM
                        IE   = IU
                        IWRK = IU + P*P + PM*M
                        SVEC = 'AllVec'
                        IF( LQUERY ) THEN
                           CALL DGESVD( SVEC, SVEC, P, M, DWORK, P,
     $                                  DWORK, DWORK, P, DWORK, M,
     $                                  DWORK, -1, IERR )
                           MAXWRK = IWRK + INT( DWORK( 1 ) )
                        END IF
                     ELSE
                        IWRK   = MINPM + P*M
                        MAXWRK = 0
                     END IF
                     MINWRK = IWRK + MNWSVD
                  ELSE
                     MINWRK = 0
                     MAXWRK = 0
                  END IF
               END IF
               MNW13X = MINPM + MNWSVD
C
               TN  = 2*N
               IB  = IE + NN
               IR  = IB + N*PM
               IBT = IR + TN
C
               IF( WITHE ) THEN
                  NSRT = CMPRE .OR. DISCR
                  IB   = IB  + NN
                  IR   = IR  + NN
                  IBT  = IBT + NN
                  IF( WCKPRP ) THEN
                     NEQUIL = 'NoEquil'
                     NCSING = 'NCkSing'
                     RESTOR = 'No'
                     IF( CMPRE ) THEN
                        JOBSYS = 'NotRed'
                     ELSE
                        JOBSYS = 'Reduce'
                     END IF
C
C                    Workspace for checking properness.
C
                     I0 = NN + 4*N
                     I1 = N  + MAXPM
                     IF( P.EQ.M ) THEN
                        I2 = IR
                     ELSE
                        I2 = IB + TN*MAXPM
                     END IF
C
                     IF( WREDUC ) THEN
C
C                       A reduced-order system is used for finding norm.
C
                        JOBEIG = 'Allnmn'
                        UPDATE = 'Upd'
                        I0     = I0 + 4
                        IF( CMPRE ) THEN
                           WR13ID = MAX( I0, I1 )
                        ELSE
                           WR13ID = MAX( I0, 2*( I1 - 1 ) )
                        END IF
                     ELSE
C
C                       Original system is used for finding norm.
C
                        JOBEIG = 'Infnmn'
                        UPDATE = 'NoUpd'
                        IF( CMPRE ) THEN
                           WR13ID = 4*N + 4
                        ELSE
                           WR13ID = MAX( I0, 2*( I1 - 1 ), 8 )
                        END IF
                     END IF
                     MINWRK = MAX( MINWRK, I2 + WR13ID )
                     IF( LQUERY ) THEN
                        DUM( 1 ) = ZERO
                        DUM( 2 ) = ZERO
                        DUM( 3 ) = ZERO
                        ISPROP = AB13ID( JOBSYS, JOBEIG, NEQUIL, NCSING,
     $                                   RESTOR, UPDATE, N, M, P, DWORK,
     $                                   N, DWORK, N, DWORK, N, DWORK,
     $                                   MAXPM, N, RNKE, DUM, IWORK,
     $                                   DWORK, -1, IWARN, IERR )
                        MAXWRK = MAX( MAXWRK, I2 + INT( DWORK( 1 ) ) )
                     END IF
                  END IF
C
                  IF( .NOT.DISCR ) THEN
                     I1 = ( N + P )*M
                     IF( CMPRE ) THEN
C
C                       Workspace for finding the largest singular value
C                       of G(infinity).
C
                        MINWRK = MAX( MINWRK, IR + MAX( N*( N + M + 4 ),
     $                                                  I1 + MNW13X ) )
                     END IF
                     IF( LQUERY )
     $                  MAXWRK = MAX( MAXWRK, I1 + ODW13X, MINWRK )
                  END IF
C
C                 Workspace for computing Hessenberg-triangular form.
C
                  I1 = IBT + N
                  IF( NSRT ) THEN
                     MINWRK = MAX( MINWRK, I1 + MAX( M, 2*NN + N ) )
                  ELSE
                     I1     = I1 + 2*NN + TN
                     MINWRK = MAX( MINWRK, I1 + TN )
                  END IF
                  IF( LQUERY ) THEN
                     CALL DGEQRF( N, N, A, LDA, DWORK, DWORK, -1, IERR )
                     CALL DORMQR( 'Left', TRANS, N, N, N, DWORK, N,
     $                            DWORK, DWORK, N, DUM, -1, IERR )
                     IF( NSRT ) THEN
                        CALL DORMQR( 'Left', TRANS, N, M, N, DWORK, N,
     $                               DWORK, DWORK, N, DUM( 2 ), -1,
     $                               IERR )
                     ELSE
                        CALL DORMQR( 'Right', NTRAN, N, N, N, DWORK, N,
     $                               DWORK, DWORK, N, DUM( 2 ), -1,
     $                               IERR )
                     END IF
                     MAXWRK = MAX( I1 + MAX( INT( DWORK( 1 ) ),
     $                                       INT( DUM( 1 ) ),
     $                                       INT( DUM( 2 ) ) ), MAXWRK )
                  END IF
C
                  IF( .NOT.NSRT ) THEN
C
C                    Workspace for moving finite eigenvalues to the top.
C
                     MINWRK = MAX( MINWRK, I1 + MAX( 4*N + 16,
     $                                               N*MAXPM ) )
C
C                    Workspace for finding the largest singular value of
C                    G(infinity).
C
                     I1     = IBT + N + P*M
                     I2     = I1  + ( N - 1 )*PM
                     MINWRK = MAX( MINWRK,
     $                             I2 + ( N - 1 )*( N + M + 2 ) )
                     IF( LQUERY ) THEN
                        CALL SB04OD( 'NoReduction', NTRAN, 'Fro', N, N,
     $                               DWORK, N, DWORK, N, DWORK, N,
     $                               DWORK, N, DWORK, N, DWORK, N, SCL,
     $                               DIF, DWORK, 1, DWORK, 1, DWORK, 1,
     $                               DWORK, 1, IWORK, DWORK, -1, IERR )
                        MAXWRK = MAX( MAXWRK, I2 + N*( N + 1 ) / 2 +
     $                                        INT( DWORK( 1 ) ) )
                     END IF
                     IF( WITHD ) THEN
                        MINWRK = MAX( MINWRK, I1 + MNW13X )
                        IF( LQUERY )
     $                     MAXWRK = MAX( MAXWRK, I1 + ODW13X )
                     END IF
                  END IF
C
               ELSE
                  II = IR + N
                  IF( LQUERY ) THEN
                     CALL DGEHRD( N, 1, N, DWORK, N, DWORK, DWORK, -1,
     $                            IERR )
                     CALL DORMHR( 'Left', TRANS, N, M, 1, N, DWORK, N,
     $                            DWORK, DWORK, N, DUM, -1, IERR )
                     CALL DORMHR( 'Right', NTRAN, P, N, 1, N, DWORK, N,
     $                            DWORK, DWORK, P, DUM( 2 ), -1, IERR )
                     CALL DHSEQR( EIGENV, NOVECT, N, 1, N, DWORK, N,
     $                            DWORK, DWORK, DWORK, 1, DUM( 3 ), -1,
     $                            IERR )
                     MAXWRK = MAX( II  + MAX( INT( DWORK( 1 ) ),
     $                                        INT( DUM( 1 ) ),
     $                                        INT( DUM( 2 ) ) ),
     $                             IBT + NN + INT( DUM( 3 ) ), MAXWRK )
                  END IF
               END IF
C
C              Workspace for finding eigenvalues on the boundary of
C              stability domain and the maximum singular value of G on
C              test frequencies.
C
               IWRK = IBT + N
               IF( WITHE )
     $            IWRK = IWRK + N
               IF( .NOT.DISCR )
     $            IWRK = IWRK + NN + M*( N + P )
               MINWRK = MAX( MINWRK, IWRK + MNW13X )
               IF( LQUERY )
     $            MAXWRK = MAX( MAXWRK, IWRK + ODW13X )
C
C              Workspace for the modified gamma iteration.
C
               IF( UNITE .AND. .NOT.DISCR .AND. ( ZEROD .OR. FULLRD ) )
     $               THEN
                  I0 = 2*NN + N
                  I1 = I0 + 7*N
                  I2 = IBT + I0
                  IF( LQUERY ) THEN
                     CALL MB03XD( 'Both', EIGENV, NOVECT, NOVECT, N,
     $                            DWORK, N, DWORK, N, DWORK, N, DUM, 1,
     $                            DUM, 1, DUM, 1, DUM, 1, DWORK, DWORK,
     $                            1, DWORK, DWORK, -1, IERR )
                     MAXWRK = MAX( MAXWRK, I2 + NN + N +
     $                             INT( DWORK( 1 ) ), II + ODW13X )
                  END IF
                  IF( ZEROD ) THEN
                     I2 = I2 + I1
                  ELSE
                     I2 = I2 + MAX( MAXPM + N*PM, I1 )
                  END IF
                  MINWRK = MAX( MINWRK, I2 )
               ELSE
                  R     = MOD( PM, 2 )
                  NBLK  = N + ( PM + R ) / 2
                  NBLK2 = NBLK*NBLK
                  I0    = IR + 7*NBLK2 + 5*NBLK
                  L     = 8*NBLK
                  IF( MOD( NBLK, 2 ).EQ.0 )
     $               L = L + 4
                  MINWRK = MAX( MINWRK, I0 + 4*NBLK2 + MAX( L, 36 ) )
               END IF
C
               IF( LQUERY ) THEN
                  MAXWRK = MAX( MINWRK, MAXWRK )
                  MAXCWK = MAX( MINCWK, MAXCWK )
               END IF
            END IF
         END IF
C
         IF( LQUERY ) THEN
            DWORK( 1 ) = MAXWRK
            ZWORK( 1 ) = MAXCWK
            RETURN
         ELSE
            IF( LDWORK.LT.MINWRK ) THEN
               INFO = -28
               DWORK( 1 ) = MINWRK
            END IF
            IF( LZWORK.LT.MINCWK ) THEN
               INFO = -30
               ZWORK( 1 ) = MINCWK
            END IF
         END IF
C
      END IF
C
      IF( INFO.NE.0 ) THEN
         IF( LDWORK.NE.0 .AND. LZWORK.NE.0 )
     $      CALL XERBLA( 'AB13HD', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      ITER = 0
C
      IF( MINPM.EQ.0 ) THEN
         GPEAK( 1 ) = ZERO
         GPEAK( 2 ) = ONE
         FPEAK( 1 ) = ZERO
         FPEAK( 2 ) = ONE
         DWORK( 1 ) = ONE
         ZWORK( 1 ) = CONE
         IWORK( 1 ) = ITER
         RETURN
      END IF
C
C     Determine the maximum singular value of G(infinity) = D,
C     if JOBD <> 'Z' and (N = 0, or B = 0, or C = 0, or
C     (DICO = 'C' and (JOBE = 'I' or (JOBE = 'C' and RANKE = N))) ).
C
C     If DICO = 'C' and JOBE = 'I', the full SVD of D, D = U*S*V', is
C     computed; then B and C are updated in the workspace and saved for
C     later use.
C
C     (Note: Comments in the code beginning "Workspace:" describe the
C     minimal amount of real workspace needed at that point in the
C     code, as well as the preferred amount for good performance.
C     NB refers to the optimal block size for the immediately
C     following subroutine, as returned by ILAENV.)
C
      IF( WITHD ) THEN
         OZ    = ONE
         WNRMD = NODYN .OR. ( ( UNITE .OR. NCMPRE ) .AND. .NOT.DISCR )
         IF( WNRMD ) THEN
            IU = IU + 1
            IF( .NOT.NODYN .AND. UNITE ) THEN
               IBV = 1
               ICU = IBV + N*M
               IS  = ICU + P*N
               IV  = IU  + P*P
               ID  = IV  + M*M
            ELSE
               IS  = 1
               IV  = 1
               ID  = 1 + MINPM
            END IF
            IWRK = ID + P*M
C
C           Workspace: need   P*M + MIN(P,M) + V +
C                             MAX( 3*MIN(P,M) + MAX(P,M), 5*MIN(P,M) ),
C                             where V = N*(M+P) + P*P + M*M, if
C                                       DICO = 'C', JOBE = 'I',
C                                       JOBD <> 'Z', B <> 0, and C <> 0,
C                                   V = 0, if (DICO = 'C', JOBE = 'C',
C                                       RANKE = N, JOBD <> 'Z'), or
C                                       B = 0, or C = 0;
C                      prefer larger.
C
            CALL DLACPY( 'Full', P, M, D, LDD, DWORK( ID ), P )
            CALL DGESVD( SVEC, SVEC, P, M, DWORK( ID ), P, DWORK( IS ),
     $                   DWORK( IU ), P, DWORK( IV ), M, DWORK( IWRK ),
     $                   LDWORK-IWRK+1, IERR )
            IF( IERR.GT.0 ) THEN
               INFO = 3
               RETURN
            END IF
            GAMMAL = DWORK( IS )
            MAXWRK = INT( DWORK( IWRK ) ) + IWRK - 1
C
            IF( .NOT.NODYN .AND. UNITE ) THEN
C
C              Standard continuous-time case, D <> 0: Compute B*V and
C              C'*U in the workspace.
C
               CALL DGEMM( NTRAN, TRANS, N, M, M, ONE, B, LDB,
     $                     DWORK( IV ), M, ZERO, DWORK( IBV ), N )
               CALL DGEMM( TRANS, NTRAN, N, P, P, ONE, C, LDC,
     $                     DWORK( IU ), P, ZERO, DWORK( ICU ), N )
C
C              U, V, and D copy are no longer needed: free their
C              memory space.
C              Total workspace here: need   N*(M+P) + MIN(P,M).
C
C              Save extremal singular values.
C
               SV1 = GAMMAL
               SVP = DWORK( IS+MINPM-1 )
            END IF
         ELSE
            GAMMAL = ZERO
            MAXWRK = 1
         END IF
      ELSE
         WNRMD  = WITHD
         OZ     = ZERO
         GAMMAL = ZERO
         MAXWRK = 1
      END IF
C
C     Quick return if possible.
C
      IF( NODYN ) THEN
         GPEAK( 1 ) = GAMMAL
         GPEAK( 2 ) = ONE
         FPEAK( 1 ) = ZERO
         FPEAK( 2 ) = ONE
         DWORK( 1 ) = MAXWRK
         ZWORK( 1 ) = CONE
         IWORK( 1 ) = ITER
         RETURN
      END IF
C
C     Get machine constants.
C
      EPS    = DLAMCH( 'Precision' )
      SAFMIN = DLAMCH( 'Safe minimum' )
      SAFMAX = ONE / SAFMIN
      CALL DLABAD( SAFMIN, SAFMAX )
      SMLNUM = SQRT( SAFMIN ) / EPS
      BIGNUM = ONE / SMLNUM
      TOLER  = SQRT( EPS )
      STOL   = SQRT( TOLER )
C
C     Initiate the transformation of the system to an equivalent one,
C     to be used for eigenvalue computations.
C
C     Additional workspace: need   N*N + N*d + 2*N, if JOBE = 'I';
C     (from IE)                  2*N*N + N*d + 2*N, otherwise,
C                           where  d = M + P.
C
      IE  = IE  + 1
      IB  = IB  + 1
      IR  = IR  + 1
      IBT = IBT + 1
      IF( WITHE ) THEN
         IA = IE + NN
      ELSE
         IA = IE
      END IF
      IC = IB + N*M
      II = IR + N
C
C     Scale A if maximum element is outside the range [SMLNUM,BIGNUM].
C
      ANRM   = DLANGE( 'Max', N, N, A, LDA, DWORK )
      ILASCL = .FALSE.
      IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
         ANRMTO = SMLNUM
         ILASCL = .TRUE.
      ELSE IF( ANRM.GT.BIGNUM ) THEN
         ANRMTO = BIGNUM
         ILASCL = .TRUE.
      END IF
      IF( ILASCL )
     $   CALL DLASCL( 'General', 0, 0, ANRM, ANRMTO, N, N, A, N, IERR )
C
      NR  = N
      NR2 = NN
      N1  = RANKE
C
      IF( WITHE ) THEN
C
C        Descriptor system.
C
C        Scale E if maximum element is outside the range
C        [SMLNUM,BIGNUM].
C
         ENRM   = DLANGE( 'Max', N1, N1, E, LDE, DWORK )
         ILESCL = .FALSE.
         IF( ENRM.GT.ZERO .AND. ENRM.LT.SMLNUM ) THEN
            ENRMTO = SMLNUM
            ILESCL = .TRUE.
         ELSE IF( ENRM.GT.BIGNUM ) THEN
            ENRMTO = BIGNUM
            ILESCL = .TRUE.
         END IF
         IF( ILESCL )
     $      CALL DLASCL( 'General', 0, 0, ENRM, ENRMTO, N1, N1, E, LDE,
     $                   IERR )
         CALL DLACPY( 'Full', N1, N1, E, LDE, DWORK( IE ), N )
C
         IF( CMPRE ) THEN
            CALL DLASET( 'Full', N-N1, N1, ZERO, ZERO, DWORK( IE+N1 ),
     $                   N )
            CALL DLASET( 'Full', N, N-N1, ZERO, ZERO, DWORK( IE+N*N1 ),
     $                   N )
         END IF
C
C        Set the tolerances.
C
         IF( LEQUIL ) THEN
            THRESH = TOL( 2 )
            IF( THRESH.LT.ZERO ) THEN
               TM  = MAX( ANRM, ENRM )
               TMP = MIN( MA02SD( N,  N,  A, LDA ),
     $                    MA02SD( N1, N1, E, LDE ) )
               IF( ( TMP / TM ).LT.EPS ) THEN
                  THRESH = P1
               ELSE
                  THRESH = MIN( HUNDRD*SQRT( TMP ) / SQRT( TM*STOL ), P1
     $                        )
               END IF
            END IF
            TOLI( 3 ) = THRESH
         END IF
         IF( WCKPRP ) THEN
            TOLDEF = TOL( 3 )
            IF( TOLDEF.LE.ZERO )
     $          TOLDEF = NN*EPS
            TZER = TOL( 4 )
            IF( TZER.LE.ZERO )
     $          TZER = N*EPS
            TOLI( 1 ) = TOLDEF
            TOLI( 2 ) = TZER
         END IF
C
C        Equilibrate the system, if required.
C
C        Additional workspace: need   8*N (from IA).
C
         IF( LEQUIL ) THEN
            IWRK = IA + TN
            IF( CMPRE ) THEN
               CALL TG01AD( 'All', N, N, M, P, THRESH, A, LDA,
     $                      DWORK( IE ), N, B, LDB, C, LDC, DWORK( IA ),
     $                      DWORK( IA+N ), DWORK( IWRK ), IERR )
               CALL DLACPY( 'Full', N1, N1, DWORK( IE ), N, E, LDE )
            ELSE
               CALL TG01AD( 'All', N, N, M, P, THRESH, A, LDA, E, LDE,
     $                      B, LDB, C, LDC, DWORK( IA ), DWORK( IA+N ),
     $                      DWORK( IWRK ), IERR )
               CALL DLACPY( 'Full', N1, N1, E, LDE, DWORK( IE ), N )
            END IF
         END IF
C
         IF( WCKPRP ) THEN
C
C           Check properness on the transformed system.
C
C           Additional workspace: need  (from IB)
C                  MAX(N*N+4*N+4,2*(MAX(M,P)+N-1)) + y,
C                                 if JOBSYS = 'R' and REDUCE = 'R',
C                  MAX(4*N+4,2*(MAX(M,P)+N-1),N*N+4*N) + y,
C                                 if JOBSYS = 'R' and REDUCE = 'N',
C                  MAX(N*N+4*N+4,MAX(M,P)+N) + y,
C                                 if JOBSYS = 'N' and REDUCE = 'R',
C                  4*N + 4 + y,   if JOBSYS = 'N' and REDUCE = 'N';
C                  where y = N*(M+P),      if M =  P,
C                        y = 2*N*MAX(M,P), if M <> P;
C                                 prefer larger.
C
C           Integer workspace: need  2*N+MAX(M,P)+7, if JOBSYS = 'R';
C                                    N,              if JOBSYS = 'N'.
C
C           Saving and restoring is not used.
C
            ICW = IB + N*MAXPM
            IF( P.EQ.M ) THEN
               IWRK = IR
            ELSE
               IWRK = ICW + MAXPM*N
            END IF
C
            IF( WREDUC ) THEN
               IF( CMPRE ) THEN
                  IF( P.EQ.M ) THEN
                     ISPROP = AB13ID( JOBSYS, JOBEIG, NEQUIL, NCSING,
     $                                RESTOR, UPDATE, N, M, P, A, LDA,
     $                                DWORK( IE ), N, B, LDB, C, LDC,
     $                                NR, RNKE, TOLI, IWORK,
     $                                DWORK( IWRK ), LDWORK-IWRK+1,
     $                                IWARN, INFO )
                     CALL DLACPY( 'Full', NR, M, B, LDB, DWORK( IB ),
     $                            N )
                     CALL DLACPY( 'Full', P, NR, C, LDC, DWORK( IC ),
     $                            P )
                  ELSE IF( P.LT.M ) THEN
                     CALL DLACPY( 'Full', P, N, C, LDC, DWORK( ICW ),
     $                            MAXPM )
                     ISPROP = AB13ID( JOBSYS, JOBEIG, NEQUIL, NCSING,
     $                                RESTOR, UPDATE, N, M, P, A, LDA,
     $                                DWORK( IE ), N, B, LDB,
     $                                DWORK( ICW ), MAXPM, NR, RNKE,
     $                                TOLI, IWORK, DWORK( IWRK ),
     $                                LDWORK-IWRK+1, IWARN, INFO )
                     CALL DLACPY( 'Full', NR, M, B, LDB, DWORK( IB ),
     $                            N )
                     CALL DLACPY( 'Full', P, NR, DWORK( ICW ), MAXPM, C,
     $                            LDC )
                     CALL DLACPY( 'Full', P, NR, C, LDC, DWORK( IC ),
     $                            P )
                  ELSE
                     CALL DLACPY( 'Full', N, M, B, LDB, DWORK( IB ), N )
                     ISPROP = AB13ID( JOBSYS, JOBEIG, NEQUIL, NCSING,
     $                                RESTOR, UPDATE, N, M, P, A, LDA,
     $                                DWORK( IE ), N, DWORK( IB ), N, C,
     $                                LDC, NR, RNKE, TOLI, IWORK,
     $                                DWORK( IWRK ), LDWORK-IWRK+1,
     $                                IWARN, INFO )
                     CALL DLACPY( 'Full', NR, M, DWORK( IB ), N, B,
     $                            LDB )
                     CALL DLACPY( 'Full', P, NR, C, LDC, DWORK( IC ),
     $                            P )
                  END IF
                  N1 = MIN( NR, N1 )
                  CALL DLACPY( 'Full', N1, N1, DWORK( IE ), N, E, LDE )
               ELSE
                  IF( P.EQ.M ) THEN
                     ISPROP = AB13ID( JOBSYS, JOBEIG, NEQUIL, NCSING,
     $                                RESTOR, UPDATE, N, M, P, A, LDA,
     $                                E, LDE, B, LDB, C, LDC, NR, RNKE,
     $                                TOLI, IWORK, DWORK( IWRK ),
     $                                LDWORK-IWRK+1, IWARN, INFO )
                     CALL DLACPY( 'Full', NR, M, B, LDB, DWORK( IB ),
     $                            N )
                     CALL DLACPY( 'Full', P, NR, C, LDC, DWORK( IC ),
     $                            P )
                  ELSE IF( P.LT.M ) THEN
                     CALL DLACPY( 'Full', P, N, C, LDC, DWORK( ICW ),
     $                            MAXPM )
                     ISPROP = AB13ID( JOBSYS, JOBEIG, NEQUIL, NCSING,
     $                                RESTOR, UPDATE, N, M, P, A, LDA,
     $                                E, LDE, B, LDB, DWORK( ICW ),
     $                                MAXPM, NR, RNKE, TOLI, IWORK,
     $                                DWORK( IWRK ), LDWORK-IWRK+1,
     $                                IWARN, INFO )
                     CALL DLACPY( 'Full', NR, M, B, LDB, DWORK( IB ),
     $                            N )
                     CALL DLACPY( 'Full', P, NR, DWORK( ICW ), MAXPM, C,
     $                            LDC )
                     CALL DLACPY( 'Full', P, NR, C, LDC, DWORK( IC ),
     $                            P )
                  ELSE
                     CALL DLACPY( 'Full', N, M, B, LDB, DWORK( IB ), N )
                     ISPROP = AB13ID( JOBSYS, JOBEIG, NEQUIL, NCSING,
     $                                RESTOR, UPDATE, N, M, P, A, LDA,
     $                                E, LDE, DWORK( IB ), N, C, LDC,
     $                                NR, RNKE, TOLI, IWORK,
     $                                DWORK( IWRK ), LDWORK-IWRK+1,
     $                                IWARN, INFO )
                     CALL DLACPY( 'Full', NR, M, DWORK( IB ), N, B,
     $                            LDB )
                     CALL DLACPY( 'Full', P, NR, C, LDC, DWORK( IC ),
     $                            P )
                  END IF
                  CALL DLACPY( 'Full', RNKE, RNKE, E, LDE, DWORK( IE ),
     $                         N )
                  CALL DLASET( 'Full', NR-RNKE, RNKE, ZERO, ZERO,
     $                         DWORK( IE+NR ), N )
                  CALL DLASET( 'Full', RNKE, NR-RNKE, ZERO, ZERO,
     $                         DWORK( IE+N*RNKE+1 ), N )
                  NR2 = NR*NR
               END IF
C
               CALL DLACPY( 'Full', NR, NR, A, LDA, DWORK( IA ), N )
C
            ELSE
C
               CALL DLACPY( 'Full', N, N, A, LDA, DWORK( IA ), N )
               CALL DLACPY( 'Full', N, M, B, LDB, DWORK( IB ), N )
               CALL DLACPY( 'Full', P, N, C, LDC, DWORK( ICW ), MAXPM )
               ISPROP = AB13ID( JOBSYS, JOBEIG, NEQUIL, NCSING, RESTOR,
     $                          UPDATE, N, M, P, DWORK( IA ), N,
     $                          DWORK( IE ), N, DWORK( IB ), N,
     $                          DWORK( ICW ), MAXPM, NR, RNKE, TOLI,
     $                          IWORK, DWORK( IWRK ), LDWORK-IWRK+1,
     $                          IWARN, INFO )
               CALL DLACPY( 'Full',  N,  N, A, LDA, DWORK( IA ), N )
               CALL DLACPY( 'Full', N1, N1, E, LDE, DWORK( IE ), N )
               CALL DLACPY( 'Full',  N,  M, B, LDB, DWORK( IB ), N )
               CALL DLACPY( 'Full',  P,  N, C, LDC, DWORK( IC ), P )
               NR = N
C
            END IF
C
            IF( .NOT.ISPROP ) THEN
               IWARN = 2
               GPEAK( 1 ) = ONE
               GPEAK( 2 ) = ZERO
               FPEAK( 1 ) = ONE
               FPEAK( 2 ) = ZERO
               GO TO 440
            ELSE IF( IWARN.EQ.1 ) THEN
               IWARN = 0
            END IF
            MAXWRK = MAX( MAXWRK, INT( DWORK( IWRK ) ) + IWRK - 1 )
C
         ELSE
            CALL DLACPY( 'Full', N, N, A, LDA, DWORK( IA ), N )
            CALL DLACPY( 'Full', N, M, B, LDB, DWORK( IB ), N )
            CALL DLACPY( 'Full', P, N, C, LDC, DWORK( IC ), P )
         END IF
C
         TEPS = TEN*EPS
         NINF = N - RANKE
         IF( CMPRE .AND. .NOT.DISCR ) THEN
C
C           Determine the largest singular value of G(infinity).
C           First, compute G(infinity) =
C              D-C(1:P,RANKE+1:N)*inv(A(RANKE+1:N,RANKE+1:N))*
C                B(RANKE+1:N,1:M).
C
C           Additional workspace:  NINF*(M + NINF + 4)  (from IR),
C                                  NINF = N-RANKE.
C           Integer    workspace:  NINF.
C
            IBS  = IR
            IAS  = IBS + NINF*M
            IWRK = IAS + NINF*NINF
            CALL DLACPY( 'Full', NINF, M, DWORK( IB+RANKE ), N,
     $                   DWORK( IBS ), NINF )
            CALL DLACPY( 'Full', NINF, NINF, DWORK( IA+RANKE*(N+1) ), N,
     $                   DWORK( IAS ), NINF )
            IF( ILASCL )
     $         CALL DLASCL( 'General', 0, 0, ANRMTO, ANRM, NINF, NINF,
     $                      DWORK( IAS ), NINF, IERR )
            TMP = DLANGE( '1-norm', NINF, NINF, DWORK( IAS ), NINF,
     $                    DWORK )
            CALL DGETRF( NINF, NINF, DWORK( IAS ), NINF, IWORK, IERR )
            IF( IERR.GT.0 ) THEN
C
C              The matrix A(RANKE+1:N,RANKE+1:N) is singular.
C              No safe computation of G(infinity) is possible.
C
               INFO = 1
               RETURN
            END IF
            CALL DGECON( '1-norm', NINF, DWORK( IAS ), NINF, TMP, RCOND,
     $                   DWORK( IWRK ), IWORK(NINF+1), IERR )
            IF( RCOND.LE.DBLE( NINF )*TEPS ) THEN
C
C              The matrix A(RANKE+1:N,RANKE+1:N) is numerically
C              singular, so the descriptor system is almost singular.
C              No safe computation of G(infinity) is possible.
C
               INFO = 1
               RETURN
            END IF
C
            CALL DGETRS( NTRAN, NINF, M, DWORK( IAS ), NINF, IWORK,
     $                   DWORK( IBS ), NINF, IERR )
C
C           Additional workspace:  NINF*M + P*M  (from IR).
C
            ID = IAS
            IS = ID + P*M
            IF( WITHD )
     $         CALL DLACPY( 'Full', P, M, D, LDD, DWORK( ID ), P )
            CALL DGEMM( NTRAN, NTRAN, P, M, NINF, -ONE,
     $                  DWORK( IC+RANKE*P ), P, DWORK( IBS ), NINF,
     $                  OZ, DWORK( ID ), P )
C
C           Compute the maximum singular value of G(infinity).
C
C           Additional workspace: need   MAX( 4*MIN(P,M) + MAX(P,M),
C           (from IS)                         6*MIN(P,M) );
C                                 prefer larger.
C
            IWRK = IS + MINPM
            CALL DGESVD( NOVECT, NOVECT, P, M, DWORK( ID ), P,
     $                   DWORK( IS ), DWORK, 1, DWORK, 1, DWORK( IWRK ),
     $                   LDWORK-IWRK+1, IERR )
            IF( IERR.GT.0 ) THEN
C
C              The SVD algorithm did not converge, no computation of the
C              largest singular value of G(infinity) is possible.
C
               INFO = 3
               RETURN
            END IF
            MAXWRK = MAX( INT( DWORK( IWRK ) ) + IWRK - 1, MAXWRK )
            GAMMAL = DWORK( IS )
         END IF
C
         IES = IBT + N
         IAS = IES + NR2
         IQ  = IES
         IZ  = IAS
C
C        For efficiency of later calculations, the system (A,E,B,C),
C        saved in workspace, is reduced to an equivalent one with the
C        state matrix A in Hessenberg form, and E upper triangular.
C        First, permute (A,E) to make it more nearly triangular.
C
C        Additional workspace: need   0,           if NSRT = .TRUE.;
C        (from IBT)                   2*N*N + 3*N, otherwise.
C        One additional location needed by DGGBAL is counted at TG01BD
C        call below.
C
         IF( NSRT ) THEN
            ILFT = IR
            IRHT = II
         ELSE
            ILFT = IZ   + NR2
            IRHT = ILFT + N
         END IF
         IWRK = IRHT + N
C
         CALL DGGBAL( 'Permute', NR, DWORK( IA ), N, DWORK( IE ), N,
     $                ILO, IHI, DWORK( ILFT ), DWORK( IRHT ),
     $                DWORK( IWRK ), IERR )
C
         IF( NSRT ) THEN
C
C           Apply the permutations to (the copies of) B and C.
C
            DO 10 I = NR - 1, IHI, -1
               K = DWORK( IR+I ) - 1
               IF( K.NE.I )
     $            CALL DSWAP( M, DWORK( IB+I ), N, DWORK( IB+K ), N )
               K = DWORK( II+I ) - 1
               IF( K.NE.I )
     $            CALL DSWAP( P, DWORK( IC+I*P ), 1, DWORK( IC+K*P ),
     $                        1 )
   10       CONTINUE
C
            DO 20 I = 0, ILO - 2
               K = DWORK( IR+I ) - 1
               IF( K.NE.I )
     $            CALL DSWAP( M, DWORK( IB+I ), N, DWORK( IB+K ), N )
               K = DWORK( II+I ) - 1
               IF( K.NE.I )
     $            CALL DSWAP( P, DWORK( IC+I*P ), 1, DWORK( IC+K*P ),
     $                        1 )
   20       CONTINUE
C
            VECT = 'N'
            M0   = M
            P0   = P
         ELSE
            VECT = 'I'
            M0   = 0
            P0   = 0
         END IF
C
C        Reduce (A,E) to generalized Hessenberg form. Apply the
C        transformations to B and C, if NSRT = .TRUE., i.e., (JOBE = 'C'
C        and RANKE < N) or DICO = 'D'.
C
C        Additional workspace: need   N + MAX(N,M0);
C                              prefer N + MAX(N,M0)*NB.
C
         CALL TG01BD( 'General', VECT, VECT, NR, M0, P0, ILO, IHI,
     $                DWORK( IA ), N, DWORK( IE ), N, DWORK( IB ), N,
     $                DWORK( IC ), P, DWORK( IQ ), NR, DWORK( IZ ), NR,
     $                DWORK( IWRK ), LDWORK-IWRK+1, IERR )
C
C        Perform QZ algorithm, computing eigenvalues.
C
C        Additional workspace: need   2*N*N + 2*N, if NSRT = .TRUE.;
C        (from IBT)                   2*N*N + 4*N, otherwise.
C                              prefer larger.
C
         IF( NSRT ) THEN
            IWRK = IAS + NR2
C
C           The generalized Hessenberg form will be used.
C
            CALL DLACPY( 'Full', NR, NR, DWORK( IA ), N, DWORK( IAS ),
     $                   NR )
            CALL DLACPY( 'Full', NR, NR, DWORK( IE ), N, DWORK( IES ),
     $                   NR )
            CALL DHGEQZ( EIGENV, VECT, VECT, NR, ILO, IHI, DWORK( IAS ),
     $                   NR, DWORK( IES ), NR, DWORK( IR ), DWORK( II ),
     $                   DWORK( IBT ), DWORK, NR, DWORK, NR,
     $                   DWORK( IWRK ), LDWORK-IWRK+1, IERR )
         ELSE
C
C           The generalized Schur form will be used.
C
            QZVECT = 'V'
            CALL DHGEQZ( 'Schur', QZVECT, QZVECT, NR, ILO, IHI,
     $                   DWORK( IA ), N, DWORK( IE ), N, DWORK( IR ),
     $                   DWORK( II ), DWORK( IBT ), DWORK( IQ ), NR,
     $                   DWORK( IZ ), NR, DWORK( IWRK ), LDWORK-IWRK+1,
     $                   IERR )
         END IF
C
         IF( IERR.GE.NR+1 ) THEN
            INFO = 5
            RETURN
         ELSE IF( IERR.NE.0 ) THEN
            INFO = 2
            RETURN
         END IF
         MAXWRK = MAX( INT( DWORK( IWRK ) ) + IWRK - 1, MAXWRK )
C
         IF( .NOT.NSRT ) THEN
C
C           Reorder finite eigenvalues to the top and infinite
C           eigenvalues to the bottom and update B and C.
C
C           Undo scaling on eigenvalues before selecting them.
C
            IF( ILASCL ) THEN
               CALL DLASCL( 'Hessenberg', 0, 0, ANRMTO, ANRM, N, N,
     $                      DWORK( IA ), N, IERR )
               CALL DLASCL( 'General', 0, 0, ANRMTO, ANRM, N, 1,
     $                      DWORK( IR ), N, IERR )
               CALL DLASCL( 'General', 0, 0, ANRMTO, ANRM, N, 1,
     $                      DWORK( II ), N, IERR )
            END IF
            IF( ILESCL ) THEN
               CALL DLASCL( 'Upper', 0, 0, ENRMTO, ENRM, N, N,
     $                      DWORK( IE ), N, IERR )
               CALL DLASCL( 'General', 0, 0, ENRMTO, ENRM, N, 1,
     $                      DWORK( IBT ), N, IERR )
            END IF
C
C           Select eigenvalues.
C
            SDIM1 = 0
            WMAX  = ZERO
            WRMIN = SAFMAX
C
            DO 30 I = 0, NR - 1
               IF( DWORK( II+I ).LT.ZERO ) THEN
                  SDIM1 = SDIM1 + 1
               ELSE
                  TM  = ABS( DWORK( IR+I ) )
                  TMP = ABS( DWORK( II+I ) )
                  BWORK( I+1 ) = DWORK( IBT+I ).NE.ZERO
                  IF( BWORK( I+1 ) ) THEN
                     IF( MIN( TM, TMP ).EQ.ZERO ) THEN
                        TMP = MAX( TM, TMP )
                     ELSE
                        TMP = DLAPY2( TM, TMP )
                     END IF
                     IF( DWORK( IBT+I ).GE.ONE .OR.
     $                 ( DWORK( IBT+I ).LT.ONE .AND.
     $                   TMP.LT.DWORK( IBT+I )*SAFMAX ) ) THEN
                        SDIM1 = SDIM1 + 1
                        TMP   = TMP /  DWORK( IBT+I )
                        WMAX  = MAX( WMAX,  TMP )
                        WRMIN = MIN( WRMIN, TMP )
                     ELSE
                        BWORK( I+1 ) = .FALSE.
                     END IF
                  ELSE
                     IF( MAX( TM, TMP ).EQ.ZERO )
     $                  GO TO 420
                  END IF
               END IF
   30       CONTINUE
C
            IF( WRMIN.GT.ONE ) THEN
               RAT = WMAX / WRMIN
            ELSE IF( WMAX.LT.WRMIN*SAFMAX ) THEN
               RAT = WMAX / WRMIN
            ELSE
               RAT = SAFMAX
            END IF
C
            IF( WREDUC .AND. ( DBLE( NR )*TEPS )*RAT.GT.ONE ) THEN
C
C              Set GPEAK to infinity, FPEAK = 0.
C
               GPEAK( 1 ) = ONE
               GPEAK( 2 ) = ZERO
               FPEAK( 1 ) = ZERO
               FPEAK( 2 ) = ONE
               GO TO 440
            END IF
C
            IF( SDIM1.LT.NR ) THEN
C
C              Reorder eigenvalues.
C
C              Additional workspace: need   4*N+16;
C                                    prefer larger.
C
               CALL DTGSEN( 0, .TRUE., .TRUE., BWORK, NR, DWORK( IA ),
     $                      N, DWORK( IE ), N, DWORK( IR ), DWORK( II ),
     $                      DWORK( IBT ), DWORK( IQ ), NR, DWORK( IZ ),
     $                      NR, SDIM, CND, CND, DUM, DWORK( IWRK ),
     $                      LDWORK-IWRK+1, IDUM, 1, IERR )
               IF( IERR.EQ.1 ) THEN
C
C                 The eigenvalue computation succeeded, but the reordering
C                 failed.
C
                  INFO = 5
                  RETURN
               END IF
C
               IF( SDIM.NE.SDIM1 ) THEN
                  INFO = 6
                  RETURN
               END IF
               MAXWRK = MAX( INT( DWORK( IWRK ) ) + IWRK - 1, MAXWRK )
C
C              Annihilate the last NR-SDIM elements of DWORK(IBT:IBT+NR-1).
C
               DUM( 1 ) = ZERO
               CALL DCOPY( NR-SDIM, DUM( 1 ), 0, DWORK( IBT+SDIM ), 1 )
            ELSE
               SDIM = NR
            END IF
C
C           Apply back-permutation to Q and Z.
C
            CALL DGGBAK( 'Permute', 'Left',  NR, ILO, IHI,
     $                   DWORK( ILFT ), DWORK( IRHT ), NR, DWORK( IQ ),
     $                   NR, IERR )
C
            CALL DGGBAK( 'Permute', 'Right', NR, ILO, IHI,
     $                   DWORK( ILFT ), DWORK( IRHT ), NR, DWORK( IZ ),
     $                   NR, IERR )
C
C           Update B and C.
C
C           Additional workspace: need   N*MAX(M,P) (from IWRK).
C
            CALL DGEMM( TRANS, NTRAN, NR, M, NR, ONE, DWORK( IQ ), NR,
     $                  DWORK( IB ), N, ZERO, DWORK( IWRK ), NR )
            CALL DLACPY( 'Full', NR, M, DWORK( IWRK ), NR, DWORK( IB ),
     $                   N )
C
            CALL DGEMM( NTRAN, NTRAN, P, NR, NR, ONE, DWORK( IC ), P,
     $                  DWORK( IZ ), NR, ZERO, DWORK( IWRK ), P )
            CALL DLACPY( 'Full', P, NR, DWORK( IWRK ), P, DWORK( IC ),
     $                   P )
C
C           Determine the largest singular value of G(infinity).
C
C           Additional workspace: need   P*M (from IBT+N).
C
            ID   = IES
            IS   = ID + P*M
            NINF = NR - SDIM
C
            IF( NINF.NE.0 ) THEN
               SDIM1 = MAX( 1, SDIM )
               IBS   = IS  + P*NINF
               IES   = IBS + M*NINF
C
C              Save E(1:SDIM,SDIM+1:NR) and use the 1-norms of
C              E(SDIM+1:NR,SDIM+1:NR) and A(SDIM+1:NR,SDIM+1:NR) to
C              decide if the algebraic index of the system is 1 or not.
C
C              Additional workspace: need   SDIM*NINF
C              (from IES = IBT + N + P*M + ( P + M )*NINF).
C
               CALL DLACPY( 'Full', SDIM, NINF, DWORK( IE+SDIM*N ), N,
     $                      DWORK( IES ), SDIM1 )
               TM   = DLANTR( '1-norm', 'Upper', 'NonUnit', NINF, NINF,
     $                        DWORK( IE+SDIM*( N+1 ) ), N, DWORK )
               TMP  = DLANHS( '1-norm', NINF, DWORK( IA+SDIM*( N+1 ) ),
     $                        N, DWORK )
               IND1 = TM.LT.DBLE( MAX( SDIM, NINF ) )*EPS*TMP
C
               IF( MAX( TM, TMP ).EQ.ZERO ) THEN
                   GO TO 420
C
               ELSE IF( IND1 ) THEN
C
C                 The system has algebraic index one.
C                 Solve NINF linear systems of equations
C                    E(1:SDIM,1:SDIM)*Y = -E(1:SDIM,SDIM+1:NR).
C                 Check first whether E(1:SDIM,1:SDIM) is nonsingular.
C
C                 Additional workspace: SDIM*NINF + 3*SDIM (from IES).
C                 Integer    workspace: SDIM.
C
                  IWRK = IES + SDIM*NINF
                  CALL DTRCON( '1-norm', 'Upper', 'NonUnit', SDIM,
     $                         DWORK( IE ), N, RCOND, DWORK( IWRK ),
     $                         IWORK, IERR )
                  IF( RCOND.LE.DBLE( SDIM )*TEPS ) THEN
C
C                    The matrix E(1:SDIM,1:SDIM) is numerically singular,
C                    no safe computation of G(infinity) is possible.
C                    This will not happen if the system is proper.
C
                     INFO = 1
                     RETURN
                  END IF
                  CALL DTRSM( 'Left', 'Upper', NTRAN, 'NonUnit', SDIM,
     $                        NINF, -ONE, DWORK( IE ), N, DWORK( IES ),
     $                        SDIM1 )
               ELSE
C
C                 The system has higher algebraic index.
C                 Solve the generalized Sylvester equation
C
C                    A(1:SDIM,1:SDIM)*Y + Z*A(SDIM+1:NR,SDIM+1:NR) +
C                       A(1:SDIM,SDIM+1:NR) = 0,
C                    E(1:SDIM,1:SDIM)*Y + Z*E(SDIM+1:NR,SDIM+1:NR) +
C                       E(1:SDIM,SDIM+1:NR) = 0,
C
C                 in order to decouple the system into its slow and fast
C                 parts.
C
C                 Additional workspace: need   4*SDIM*NINF (from IES);
C                                       prefer larger.
C                 Integer    workspace: need   NR+6.
C
                  IAS  = IES + SDIM*NINF
                  IWRK = IAS + SDIM*NINF
                  CALL DLACPY( 'Full', SDIM, NINF, DWORK( IA+SDIM*N ),
     $                         N, DWORK( IAS ), SDIM1 )
                  CALL DSCAL( 2*SDIM*NINF, -ONE, DWORK( IES ), 1 )
C
C                 Solve the generalized Sylvester equation.
C
                  CALL SB04OD( 'NoReduction', NTRAN, 'Fro', SDIM, NINF,
     $                         DWORK( IE ), N, DWORK( IE+SDIM*( N+1 ) ),
     $                         N, DWORK( IES ), SDIM1, DWORK( IA ), N,
     $                         DWORK( IA+SDIM*( N+1 ) ), N,
     $                         DWORK( IAS ), SDIM1, SCL, DIF, DWORK, 1,
     $                         DWORK, 1, DWORK, 1, DWORK, 1, IWORK,
     $                         DWORK( IWRK ), LDWORK-IWRK+1, IERR )
                  BOUND = EPS*THOUSD
                  IF( IERR.GT.0 .OR. DIF.GT.ONE / BOUND ) THEN
C
C                    The generalized Sylvester equation is very
C                    ill-conditioned, no safe computation of G(infinity)
C                    is possible.
C
                     INFO = 1
                     RETURN
                  END IF
                  MAXWRK = MAX( INT( DWORK( IWRK ) ) + IWRK - 1,
     $                          MAXWRK )
C
C                 Estimate the condition of the transformation matrix.
C
                  CND = DLANGE( '1-norm', SDIM, NINF, DWORK( IES ),
     $                          SDIM1, DWORK )
                  IF( CND.GT.ONE / TOLER ) THEN
C
C                    The (right) transformation matrix is very
C                    ill-conditioned, no safe computation of G(infinity)
C                    is possible.
C
                     INFO = 1
                     RETURN
                  END IF
               END IF
C
C              Update C in DWORK(IS).
C
               CALL DLACPY( 'Full', P, NINF, DWORK( IC+P*SDIM ), P,
     $                      DWORK( IS ), P )
               CALL DGEMM( NTRAN, NTRAN, P, NINF, SDIM, ONE,
     $                     DWORK( IC ), P, DWORK( IES ), SDIM1, ONE,
     $                     DWORK( IS ), P )
C
C              Compute G(infinity) =
C                 D-C(1:P,SDIM+1:NR)*inv(A(SDIM+1:NR,SDIM+1:NR))*
C                   B(SDIM+1:NR,1:M).
C
C              Additional workspace: need  NINF*( NINF+M+3 ) (from IES).
C              Integer    workspace: need  2*NINF.
C
               IAS  = IES + NINF*M
               IWRK = IAS + NINF*NINF
               CALL DLACPY( 'Full', NINF, M, DWORK( IB+SDIM ), N,
     $                      DWORK( IBS ), NINF )
               CALL DLACPY( 'Upper', NINF, NINF,
     $                      DWORK( IA+SDIM*( N+1 ) ), N, DWORK( IAS ),
     $                      NINF )
               CALL DCOPY(  NINF-1, DWORK( IA+SDIM*( N+1 )+1 ), N+1,
     $                      DWORK( IAS+1 ), NINF+1 )
               TMP = DLANHS( '1-norm', NINF, DWORK( IAS ), NINF, DWORK )
               CALL MB02SD( NINF, DWORK( IAS ), NINF, IWORK, INFO )
               CALL MB02TD( '1-norm', NINF, TMP, DWORK( IAS ), NINF,
     $                      IWORK, RCOND, IWORK(NINF+1), DWORK( IWRK ),
     $                      INFO )
               IF( RCOND.LE.DBLE( NINF )*TEPS ) THEN
C
C                 The matrix A(SDIM+1:NR,SDIM+1:NR) is numerically
C                 singular.
C
                  INFO = 1
                  RETURN
               END IF
               CALL MB02RD( NTRAN, NINF, M, DWORK( IAS ), NINF, IWORK,
     $                      DWORK( IBS ), NINF, IERR )
C
               IF( WITHD )
     $            CALL DLACPY( 'Full', P, M, D, LDD, DWORK( ID ), P )
               CALL DGEMM( NTRAN, NTRAN, P, M, NINF, -ONE, DWORK( IS ),
     $                     P, DWORK( IBS ), NINF, OZ, DWORK( ID ), P )
C
            ELSE IF( WITHD ) THEN
               CALL DLACPY( 'Full', P, M, D, LDD, DWORK( ID ), P )
            END IF
C
            IF( NINF.NE.0 .OR. WITHD ) THEN
C
C              Compute the maximum singular value of G(infinity).
C
C              Additional workspace: need   MAX( 3*MIN(P,M) + MAX(P,M),
C              (from IWRK)                       5*MIN(P,M) );
C                                    prefer larger.
C
               IWRK = IS + MINPM
               CALL DGESVD( NOVECT, NOVECT, P, M, DWORK( ID ), P,
     $                      DWORK( IS ), DWORK, 1, DWORK, 1,
     $                      DWORK( IWRK ), LDWORK-IWRK+1, IERR )
               IF( IERR.GT.0 ) THEN
C
C                 The SVD algorithm did not converge, computation of the
C                 largest singular value of G(infinity) is not possible.
C
                  INFO = 3
                  RETURN
               END IF
               MAXWRK = MAX( INT( DWORK( IWRK ) ) + IWRK - 1, MAXWRK )
               GAMMAL = DWORK( IS )
            END IF
C
         ELSE
            SDIM = NR
         END IF
C
C        Check if unscaling would cause over/underflow; if so, rescale
C        eigenvalues (DWORK( IR+I-1 ),DWORK( II+I-1 ),DWORK( IBT+I-1 ))
C        so that DWORK( IBT+I-1 ) is on the order of E(I,I) and
C        DWORK( IR+I-1 ) and DWORK( II+I-1 ) are on the order of A(I,I),
C        for I = 1, N.
C
         IF( ILASCL ) THEN
C
            DO 40 I = 0, NR - 1
               IF( DWORK( IR+I ).NE.ZERO ) THEN
                  IF( ( DWORK( IR+I ) / SAFMAX ).GT.( ANRMTO / ANRM )
     $                                                              .OR.
     $                ( SAFMIN / DWORK( IR+I ) ).GT.( ANRM / ANRMTO )
     $              ) THEN
                     TM = ABS( DWORK( IA+I*(N+1) ) / DWORK( IR+I ) )
                     DWORK( IBT+I ) = DWORK( IBT+I )*TM
                     DWORK(  IR+I ) = DWORK(  IR+I )*TM
                     DWORK(  II+I ) = DWORK(  II+I )*TM
                  ELSE IF( ( DWORK( II+I ) / SAFMAX ).GT.
     $                     ( ANRMTO / ANRM ) .OR. DWORK( II+I ).NE.ZERO
     $                                                             .AND.
     $                ( SAFMIN / DWORK( II+I ) ).GT.( ANRM / ANRMTO ) )
     $                     THEN
                     TM = ABS( DWORK( IA+I*(N+1)+N ) / DWORK( II+I ) )
                     DWORK( IBT+I ) = DWORK( IBT+I )*TM
                     DWORK(  IR+I ) = DWORK(  IR+I )*TM
                     DWORK(  II+I ) = DWORK(  II+I )*TM
                  END IF
               END IF
   40       CONTINUE
C
         END IF
C
         IF( ILESCL ) THEN
C
            DO 50 I = 0, NR - 1
               IF( DWORK( IBT+I ).NE.ZERO ) THEN
                  IF( ( DWORK( IBT+I ) / SAFMAX ).GT.( ENRMTO / ENRM )
     $                                                              .OR.
     $                ( SAFMIN / DWORK( IBT+I ) ).GT.( ENRM / ENRMTO )
     $              ) THEN
                     TM = ABS( DWORK( IE+I*(N+1) ) / DWORK( IBT+I ) )
                     DWORK( IBT+I ) = DWORK( IBT+I )*TM
                     DWORK(  IR+I ) = DWORK(  IR+I )*TM
                     DWORK(  II+I ) = DWORK(  II+I )*TM
                  END IF
               END IF
   50       CONTINUE
C
         END IF
C
C        Undo scaling.
C
         IF( NSRT ) THEN 
            IF( ILASCL ) THEN
               CALL DLASCL( 'Hessenberg', 0, 0, ANRMTO, ANRM, N, N,
     $                      DWORK( IA ), N, IERR )
               CALL DLASCL( 'General', 0, 0, ANRMTO, ANRM, N, 1,
     $                      DWORK( IR ), N, IERR )
               CALL DLASCL( 'General', 0, 0, ANRMTO, ANRM, N, 1,
     $                      DWORK( II ), N, IERR )
            END IF
C
            IF( ILESCL ) THEN
               CALL DLASCL( 'Upper', 0, 0, ENRMTO, ENRM, N, N,
     $                      DWORK( IE ), N, IERR )
               CALL DLASCL( 'General', 0, 0, ENRMTO, ENRM, N, 1,
     $                      DWORK( IBT ), N, IERR )
            END IF
         END IF
C
      ELSE
C
C        Standard state-space system.
C
         SDIM = N
         IF( LEQUIL ) THEN
C
C           Equilibrate the system.
C
            MAXRED = HUNDRD
            CALL TB01ID( 'All', N, M, P, MAXRED, A, LDA, B, LDB, C, LDC,
     $                   DWORK( II ), IERR )
            IF( WNRMD ) THEN
C
               DO 60 I = 0, N - 1
                  TMP = DWORK( II+I )
                  IF( TMP.NE.ONE ) THEN
                     CALL DSCAL( M, ONE / TMP, DWORK( IBV+I ), N )
                     CALL DSCAL( P, TMP, DWORK( ICU+I ), N )
                  END IF
   60          CONTINUE
C
            END IF
         END IF
C
C        For efficiency of later calculations, the system (A,B,C) is
C        reduced to a similar one with the state matrix in Hessenberg
C        form.
C
         CALL DLACPY( 'Full', N, N, A, LDA, DWORK( IA ), N )
         CALL DLACPY( 'Full', N, M, B, LDB, DWORK( IB ), N )
         CALL DLACPY( 'Full', P, N, C, LDC, DWORK( IC ), P )
C
C        First, permute the matrix A to make it more nearly triangular
C        and apply the permutations to B and C.
C
         CALL DGEBAL( 'Permute', N, DWORK( IA ), N, ILO, IHI,
     $                DWORK( IR ), IERR )
C
         DO 70 I = N - 1, IHI, -1
            K = DWORK( IR+I ) - 1
            IF( K.NE.I ) THEN
               CALL DSWAP( M, DWORK( IB+I ),   N, DWORK( IB+K ),   N )
               CALL DSWAP( P, DWORK( IC+I*P ), 1, DWORK( IC+K*P ), 1 )
            END IF
   70    CONTINUE
C
         DO 80 I = 0, ILO - 2
            K = DWORK( IR+I ) - 1
            IF( K.NE.I ) THEN
               CALL DSWAP( M, DWORK( IB+I ),   N, DWORK( IB+K ),   N )
               CALL DSWAP( P, DWORK( IC+I*P ), 1, DWORK( IC+K*P ), 1 )
            END IF
   80    CONTINUE
C
C        Reduce A to upper Hessenberg form and apply the transformations
C        to B and C.
C
C        Additional workspace: need   N;   (from II)
C                              prefer N*NB.
C
         ITAU = IR
         IWRK = II
         CALL DGEHRD( N, ILO, IHI, DWORK( IA ), N, DWORK( ITAU ),
     $                DWORK( IWRK ), LDWORK-IWRK+1, IERR )
         MAXWRK = MAX( INT( DWORK( IWRK ) ) + IWRK - 1, MAXWRK )
C
C        Additional workspace: need   M;
C                              prefer M*NB.
C
         CALL DORMHR( 'Left', TRANS, N, M, ILO, IHI, DWORK( IA ), N,
     $                DWORK( ITAU ), DWORK( IB ), N, DWORK( IWRK ),
     $                LDWORK-IWRK+1, IERR )
         MAXWRK = MAX( INT( DWORK( IWRK ) ) + IWRK - 1, MAXWRK )
C
C        Additional workspace: need   P;
C                              prefer P*NB.
C
         CALL DORMHR( 'Right', NTRAN, P, N, ILO, IHI, DWORK( IA ), N,
     $                DWORK( ITAU ), DWORK( IC ), P, DWORK( IWRK ),
     $                LDWORK-IWRK+1, IERR )
         MAXWRK = MAX( INT( DWORK( IWRK ) ) + IWRK - 1, MAXWRK )
C
C        Compute the eigenvalues. The Hessenberg form is preserved for
C        later use.
C
C        Additional workspace:  need   N*N + N;   (from IBT)
C                               prefer larger.
C
         IAS  = IBT
         IWRK = IAS + NN
         CALL DLACPY( 'Full', N, N, DWORK( IA ), N, DWORK( IAS ), N )
         CALL DHSEQR( EIGENV, NOVECT, N, ILO, IHI, DWORK( IAS ), N,
     $                DWORK( IR ), DWORK( II ), DWORK, 1, DWORK( IWRK ),
     $                LDWORK-IWRK+1, IERR )
         IF( IERR.GT.0 ) THEN
            INFO = 2
            RETURN
         END IF
         MAXWRK = MAX( INT( DWORK( IWRK ) ) + IWRK - 1, MAXWRK )
C
C        Annihilate the lower part of the Hessenberg matrix.
C
         IF( N.GT.2 )
     $      CALL DLASET( 'Lower', N-2, N-2, ZERO, ZERO, DWORK( IA+2 ),
     $                   N )
C
         IF( ILASCL ) THEN
C
C           Undo scaling for the Hessenberg form of A and eigenvalues.
C
            CALL DLASCL( 'Hessenberg', 0, 0, ANRMTO, ANRM, N, N,
     $                   DWORK( IA ), N, IERR )
            CALL DLASCL( 'General', 0, 0, ANRMTO, ANRM, N, 1,
     $                   DWORK( IR ), N, IERR )
            CALL DLASCL( 'General', 0, 0, ANRMTO, ANRM, N, 1,
     $                   DWORK( II ), N, IERR )
         END IF
C
      END IF
C
C     Look for (generalized) eigenvalues on the boundary of the
C     stability domain. (Their existence implies an infinite norm.)
C
C     Additional workspace:  need   N.   (from IM)
C
      IM = IBT
      IF( WITHE )
     $   IM = IM + N
      IAS   = IM + N
      IMIN  = II
      WRMIN = SAFMAX
C
C     NEI defines the number of finite eigenvalues (with moduli at most
C     pi, in the discrete-time case). The eigenvalues with negative
C     imaginary parts are not counted. BWORK(J) is set to .TRUE. if the
C     eigenvalue J is real. At the end of each of the four loops below,
C     DWORK(IM:IM+NEI-1) contains the additional test frequencies OMEGA.
C
      NEI  = 0
      NEIC = 0
      NEIR = 0
      LINF = .FALSE.
C
      IF( DISCR ) THEN
C
C        For discrete-time case, compute the logarithms of the non-zero
C        eigenvalues with magnitude at most pi, as well as their moduli
C        and real parts. This transformation maps the unit circle to the
C        imaginary axis of the complex plane. Also, find the minimum
C        distance of the original eigenvalues to the unit circle; a zero
C        value of this minimum implies an infinite L-infinity norm.
C
         PI = FOUR*ATAN( ONE )
C
         IF( WITHE ) THEN
C
            DO 90 I = 0, NR - 1
               TMR = DWORK( IR+I )
               TMP = DWORK( II+I )
               IF( TMP.GE.ZERO ) THEN
                  REALW = TMP.EQ.ZERO
                  IF( REALW ) THEN
                     TM = ABS( TMR )
                  ELSE
                     TM = DLAPY2( TMR, TMP )
                  END IF
                  IF( DWORK( IBT+I ).GE.ONE .OR.
     $                DWORK( IBT+I ).GE.TM / PI ) THEN
C
C                    Finite eigenvalues with moduli less than pi.
C
                     TM = TM / DWORK( IBT+I )
                     IF( TM.NE.ZERO .AND. TM.LT.PI ) THEN
                        IF( REALW ) THEN
                           IF( TMR.GT.ZERO) THEN
                              TMP = ZERO
                           ELSE
                              TMP = PI
                           END IF
                           NEIR = NEIR + 1
                        ELSE
                           TMP  = ATAN2( TMP, TMR )
                           NEIC = NEIC + 1
                        END IF
                        TMR = LOG( TM )
                        TD  = ABS( ONE - TM )
                        TM  = DLAPY2( TMR, TMP )
                        IF( TD.EQ.ZERO ) THEN
                           LINF = .TRUE.
                           IMIN = II + NEI
                           DWORK( IMIN ) = TMP
                           GO TO 130
                        END IF
                        RAT = ONE - TWO*( TMR / TM )**2
                        IF( RAT.LE.P25 ) THEN
                           DWORK( IM+NEI ) = TM / TWO
                        ELSE
                           DWORK( IM+NEI ) = TM*SQRT( MAX( P25, RAT ) )
                        END IF
                        BWORK( NEI+1 ) = REALW
                        NEI = NEI + 1
                     END IF
                  END IF
               END IF
   90       CONTINUE
C
         ELSE
C
            DO 100 I = 0, NR - 1
              TMR = DWORK( IR+I )
              TMP = DWORK( II+I )
              IF( TMP.GE.ZERO ) THEN
                  REALW = TMP.EQ.ZERO
                  IF( REALW ) THEN
                     TM = ABS( TMR )
                  ELSE
                     TM = DLAPY2( TMR, TMP )
                  END IF
                  IF( TM.NE.ZERO .AND. TM.LT.PI ) THEN
                     IF( REALW ) THEN
                        IF( TMR.GT.ZERO) THEN
                           TMP = ZERO
                        ELSE
                           TMP = PI
                        END IF
                        NEIR = NEIR + 1
                     ELSE
                        TMP  = ATAN2( TMP, TMR )
                        NEIC = NEIC + 1
                     END IF
                     TMR = LOG( TM )
                     TD  = ABS( ONE - TM )
                     TM  = DLAPY2( TMR, TMP )
                     IF( TD.EQ.ZERO ) THEN
                        LINF = .TRUE.
                        IMIN = II + NEI
                        DWORK( IMIN ) = TMP
                        GO TO 130
                     END IF
                     RAT = ONE - TWO*( TMR / TM )**2
                     IF( RAT.LE.P25 ) THEN
                        DWORK( IM+NEI ) = TM / TWO
                     ELSE
                        DWORK( IM+NEI ) = TM*SQRT( MAX( P25, RAT ) )
                     END IF
                     BWORK( NEI+1 ) = REALW
                     NEI = NEI + 1
                  END IF
               END IF
  100       CONTINUE
C
         END IF
C
      ELSE
C
C        For continuous-time case, compute moduli and absolute real
C        parts of finite eigenvalues and find the minimum absolute real
C        part; a zero value of this minimum implies an infinite
C        L-infinity norm.
C
         IF( WITHE ) THEN
C
            DO 110 I = 0, NR - 1
               TMR = ABS( DWORK( IR+I ) )
               TMP =      DWORK( II+I )
               IF( TMP.GE.ZERO ) THEN
                  REALW = TMP.EQ.ZERO
                  IF( REALW ) THEN
                     IF( TMR.EQ.ZERO ) THEN
                        IF( DWORK( IBT+I ).EQ.ZERO )
     $                     GO TO 420
                     END IF
                     TM = TMR
                  ELSE
                     TM = DLAPY2( TMR, TMP )
                  END IF
                  IF( TMR.EQ.ZERO ) THEN
                     LINF = .TRUE.
                     IMIN = II + I
                     GO TO 130
                  ELSE IF( DWORK( IBT+I ).GE.ONE .OR.
     $                   ( DWORK( IBT+I ).LT.ONE .AND.
     $                     TM.LT.DWORK( IBT+I )*SAFMAX ) ) THEN
                     TMR = TMR / DWORK( IBT+I )
                     TM  = TM / DWORK( IBT+I )
                     IF( REALW ) THEN
                        DWORK( IM+NEI ) = TM / TWO
                        NEIR = NEIR + 1
                     ELSE
                        RAT = ONE - TWO*( TMR / TM )**2
                        DWORK( IM+NEI ) = TM*SQRT( MAX( P25, RAT ) )
                        NEIC = NEIC + 1
                     END IF
                     BWORK( NEI+1 ) = REALW
                     NEI = NEI + 1
                  END IF
               END IF
  110       CONTINUE
C
         ELSE
C
            DO 120 I = 0, NR - 1
               TMR = ABS( DWORK( IR+I ) )
               TMP =      DWORK( II+I )
               IF( TMP.GE.ZERO ) THEN
                  IF( TMR.EQ.ZERO ) THEN
                     LINF = .TRUE.
                     IMIN = II + I
                     GO TO 130
                  END IF
                  REALW = TMP.EQ.ZERO
                  IF( REALW ) THEN
                     DWORK( IM+NEI ) = TMR / TWO
                     NEIR = NEIR + 1
                  ELSE
                     TM  = DLAPY2( TMR, TMP )
                     RAT = ONE - TWO*( TMR / TM )**2
                     DWORK( IM+NEI ) = TM*SQRT( MAX( P25, RAT ) )
                     NEIC = NEIC + 1
                  END IF
                  BWORK( NEI+1 ) = REALW
                  NEI = NEI + 1
               END IF
  120       CONTINUE
C
         END IF
C
      END IF
C
  130 CONTINUE
C
      IF( LINF ) THEN
C
C        The L-infinity norm was found as infinite.
C
         GPEAK( 1 ) = ONE
         GPEAK( 2 ) = ZERO
         TM = DWORK( IMIN )
         IF( WITHE .AND. .NOT.DISCR )
     $      TM = TM / DWORK( IBT+IMIN-II )
         FPEAK( 1 ) = TM
         FPEAK( 2 ) = ONE
C
         GO TO 440
      END IF
C
C     Determine the maximum singular value of
C        G(lambda) = C*inv(lambda*E - A)*B + D,
C     over a selected set of frequencies. Besides the frequencies w = 0,
C     w = pi (if DICO = 'D'), and the given value FPEAK, this test set
C     contains the peak frequency for each mode (or an approximation
C     of it for non-resonant modes). The (generalized) Hessenberg form
C     of the system is used. If POLES = 'P', only part of the modes
C     are used.
C
C     First, determine the maximum singular value of G(0) and set FPEAK
C     accordingly.
C
C     Additional workspace:
C           complex: need   1, if DICO = 'C' and OMEGA = 0;
C                           (N+M)*(N+P)+2*MIN(P,M)+MAX(P,M), otherwise;
C                    prefer larger;
C           real:    need   LDW1+LDW2+N (from IAS), where
C                           LDW1 = N*N+N*M+P*M, if DICO = 'C';
C                           LDW1 = 0,           if DICO = 'D';
C                           LDW2 = MAX(4*MIN(P,M)+MAX(P,M), 6*MIN(P,M)),
C                                               if DICO = 'C';
C                           LDW2 = 6*MIN(P,M),  if DICO = 'D'.
C                    prefer larger.
C     Integer    workspace: need   N.
C
      IF( WITHE ) THEN
         JOB = 'G'
      ELSE
         JOB = 'I'
      END IF
      OMEGA = ZERO
C
      IF( DISCR ) THEN
         JBDX = JOBD
         IWRK = IAS
         GAMMA = AB13DX( DICO, JOB, JBDX, NR, M, P, OMEGA, DWORK( IA ),
     $                   N, DWORK( IE ), N, DWORK( IB ), N, DWORK( IC ),
     $                   P, D, LDD, IWORK, DWORK( IWRK ), LDWORK-IWRK+1,
     $                   ZWORK, LZWORK, IERR )
         MAXCWK = MAX( INT( ZWORK( 1 ) ), MAXCWK )
      ELSE
         IBS = IAS + NR*NR
         ID  = IBS + NR*M
         CALL DLACPY( 'Upper', NR, NR, DWORK( IA ), N, DWORK( IAS ),
     $                NR )
         CALL DCOPY(  NR-1, DWORK( IA+1 ), N+1, DWORK( IAS+1 ), NR+1 )
         CALL DLACPY( 'Full', NR, M, DWORK( IB ), N, DWORK( IBS ), NR )
         IF( WITHD ) THEN
            CALL DLACPY( 'Full', P, M, D, LDD, DWORK( ID ), P )
            JBDX = 'D'
            IWRK = ID + P*M
         ELSE
            JBDX = 'Z'
            IWRK = ID
         END IF
C
         GAMMA = AB13DX( DICO, JOB, JBDX, NR, M, P, OMEGA, DWORK( IAS ),
     $                   NR, DWORK( IE ), N, DWORK( IBS ), NR,
     $                   DWORK( IC ), P, DWORK( ID ), P, IWORK,
     $                   DWORK( IWRK ), LDWORK-IWRK+1, ZWORK, LZWORK,
     $                   IERR )
      END IF
C
      IF( IERR.GT.0 )
     $   GO TO 430
      MAXWRK = MAX( INT( DWORK( IWRK ) ) + IWRK - 1, MAXWRK )
C
      FPEAKI = FPEAK( 2 )
      IF( FPEAKI.EQ.ZERO ) THEN
         FPEAKS = SAFMAX
      ELSE
         FPEAKS = FPEAK( 1 ) / FPEAKI
      END IF
      IF( GAMMAL.GT.GAMMA ) THEN
         IF( ABS( ONE - GAMMA / GAMMAL ).LE.EPS ) THEN
            FPEAK( 1 ) = ZERO
            FPEAK( 2 ) = ONE
         ELSE IF( .NOT.DISCR ) THEN
            FPEAK( 1 ) = ONE
            FPEAK( 2 ) = ZERO
         END IF
      ELSE
         GAMMAL     = GAMMA
         FPEAK( 1 ) = ZERO
         FPEAK( 2 ) = ONE
      END IF
C
      IF( DISCR ) THEN
         OMEGA = PI
C
C        Try the frequency w = pi.
C
         GAMMA = AB13DX( DICO, JOB, JBDX, NR, M, P, OMEGA, DWORK( IA ),
     $                   N, DWORK( IE ), N, DWORK( IB ), N, DWORK( IC ),
     $                   P, D, LDD, IWORK, DWORK( IWRK ), LDWORK-IWRK+1,
     $                   ZWORK, LZWORK, IERR )
         IF( IERR.GT.0 )
     $      GO TO 430
C
         IF( GAMMAL.LT.GAMMA ) THEN
            GAMMAL     = GAMMA
            FPEAK( 1 ) = OMEGA
            FPEAK( 2 ) = ONE
         END IF
C
      ELSE
         IWRK = IAS
      END IF
C
C     Build the remaining set of frequencies.
C     Complex workspace:  need   (N+M)*(N+P)+2*MIN(P,M)+MAX(P,M);
C                         prefer larger.
C     Real workspace:     need   LDW2 = 6*MIN(P,M) (from IWRK);
C                         prefer larger.
C
      IF( FPEAKS.NE.ZERO .OR. ( DISCR .AND. FPEAKS.NE.PI ) ) THEN
C
C        Compute also the norm at the given (finite) frequency.
C
         OMEGA = FPEAKS
         GAMMA = AB13DX( DICO, JOB, JBDX, NR, M, P, OMEGA, DWORK( IA ),
     $                   N, DWORK( IE ), N, DWORK( IB ), N, DWORK( IC ),
     $                   P, D, LDD, IWORK, DWORK( IWRK ), LDWORK-IWRK+1,
     $                   ZWORK, LZWORK, IERR )
         IF( DISCR ) THEN
            OMEGA = ABS( ATAN2( SIN( OMEGA ), COS( OMEGA ) ) )
         ELSE
            MAXWRK = MAX( INT( DWORK( IWRK ) ) + IWRK - 1, MAXWRK )
            MAXCWK = MAX( INT( ZWORK( 1 ) ), MAXCWK )
         END IF
C
         IF( IERR.GT.0 )
     $      GO TO 430
C
         IF( GAMMAL.LT.GAMMA ) THEN
            GAMMAL     = GAMMA
            FPEAK( 1 ) = OMEGA
            FPEAK( 2 ) = ONE
         END IF
C
      END IF
C
      IF( ALLPOL .OR. NEIR.EQ.NEI .OR. NEIC.EQ.NEI ) THEN
         CALL DLASRT( 'Increase', NEI, DWORK( IM ), IERR )
C
         IF( .NOT.ALLPOL ) THEN
            IF( NEIR.EQ.NEI ) THEN
               NEI = MIN( NEI, BNEIR )
            ELSE
               IF( DISCR ) THEN
                  NEI = MIN( NEI, BNEICD )
               ELSE
                  IF( NEI.GE.SWNEIC ) THEN
                     NEI = BNEICX
                  ELSE
                     NEI = MIN( NEI, BNEICM )
                  END IF
               END IF
            END IF
         END IF
C
         DO 140 I = 0, NEI - 1
            OMEGA = DWORK( IM+I )
C
            GAMMA = AB13DX( DICO, JOB, JBDX, NR, M, P, OMEGA,
     $                      DWORK( IA ), N, DWORK( IE ), N, DWORK( IB ),
     $                      N, DWORK( IC ), P, D, LDD, IWORK,
     $                      DWORK( IWRK ), LDWORK-IWRK+1, ZWORK, LZWORK,
     $                      IERR )
            IF( IERR.GT.0 )
     $         GO TO 430
C
            IF( GAMMAL.LT.GAMMA ) THEN
               IF( ABS( ONE - GAMMA / GAMMAL ).GT.EPS ) THEN
                  FPEAK( 1 ) = OMEGA
                  FPEAK( 2 ) = ONE
               END IF
               GAMMAL = GAMMA
            END IF
  140    CONTINUE
C
      ELSE
C
C        Prepare for using separately part of real and complex poles.
C
         NEIC = 0
         NEIR = 0
C   
         DO 150 I = 0, NEI - 1
            IF( BWORK( I+1 ) ) THEN
               DWORK( IR+NEIR ) = DWORK( IM+I )
               NEIR = NEIR + 1
            ELSE
               DWORK( IM+NEIC ) = DWORK( IM+I )
               NEIC = NEIC + 1
            END IF
  150    CONTINUE
C
C        Look over real poles.
C
         CALL DLASRT( 'Increase', NEIR, DWORK( IR ), IERR )
C
         I    = 1
         NEIR = MIN( NEIR, BNEIR )
C
C        WHILE ( I <= NEIR ) DO
C
  160    CONTINUE
         IF( I.LE.NEIR ) THEN
            OMEGA = DWORK( IR+I-1 )
C
            GAMMA = AB13DX( DICO, JOB, JBDX, NR, M, P, OMEGA,
     $                      DWORK( IA ), N, DWORK( IE ), N, DWORK( IB ),
     $                      N, DWORK( IC ), P, D, LDD, IWORK,
     $                      DWORK( IWRK ), LDWORK-IWRK+1, ZWORK, LZWORK,
     $                      IERR )
            IF( IERR.GT.0 )
     $         GO TO 430
C
            I = I + 1
            TMP = ABS( ONE - GAMMA / GAMMAL )
            IF( GAMMAL.LT.GAMMA ) THEN
               GAMMAL = GAMMA
               IF( TMP.GT.EPS ) THEN
                  FPEAK( 1 ) = OMEGA
                  FPEAK( 2 ) = ONE
               END IF
            END IF
C
C           END WHILE
C
            GO TO 160
         END IF
C
C        Look over complex poles with positive imaginary parts.
C
         CALL DLASRT( 'Increase', NEIC, DWORK( IM ), IERR )
C
         I = 1
         IF( DISCR ) THEN
            NEIC = MIN( NEIC, BNEICD )
         ELSE
            IF( NEIC.GE.SWNEIC ) THEN
               NEIC = BNEICX
            ELSE
               NEIC = MIN( NEIC, BNEICM )
            END IF
         END IF
C
C        WHILE ( I <= NEIC ) DO
C
  170    CONTINUE
         IF( I.LE.NEIC ) THEN
            OMEGA = DWORK( IM+I-1 )
C
            GAMMA = AB13DX( DICO, JOB, JBDX, NR, M, P, OMEGA,
     $                      DWORK( IA ), N, DWORK( IE ), N, DWORK( IB ),
     $                      N, DWORK( IC ), P, D, LDD, IWORK,
     $                      DWORK( IWRK ), LDWORK-IWRK+1, ZWORK, LZWORK,
     $                      IERR )
C
            IF( IERR.GT.0 )
     $         GO TO 430
C
            I = I + 1
            TMP = ABS( ONE - GAMMA / GAMMAL )
            IF( GAMMAL.LT.GAMMA ) THEN
               GAMMAL = GAMMA
               IF( TMP.GT.EPS ) THEN
                  FPEAK( 1 ) = OMEGA
                  FPEAK( 2 ) = ONE
               END IF
            END IF
C
C           END WHILE
C
            GO TO 170
         END IF
C
      END IF
C
C     Return if the lower bound is zero.
C
      IF( GAMMAL.EQ.ZERO ) THEN
         GPEAK( 1 ) = ZERO
         GPEAK( 2 ) = ONE
         FPEAK( 1 ) = ZERO
         FPEAK( 2 ) = ONE
         GO TO 440
      END IF
C
C     Start the modified gamma iteration for the Bruinsma-Steinbuch
C     algorithm.
C
C     Use the structure-preserving method on a Hamiltonian matrix or a
C     skew-Hamiltonian/Hamiltonian pencil.
C
      TOL1  = HUNDRD*EPS
      TOL2  = TEN*TOLER
      TOLN  = TOL( 1 )
      TOLP  = ONE + P1*TOLN
      GAMMA = ( ONE + TOLN )*GAMMAL
C
      IF( .NOT.USEPEN .AND. WITHD .AND. .NOT.FULLRD ) THEN
C
C        Check whether one can use an explicit Hamiltonian matrix:
C        compute
C        min(rcond(GAMMA**2*Im - S'*S), rcond(GAMMA**2*Ip - S*S')).
C
         IF( MINPM.GT.1 ) THEN
            RCOND = ( ( GAMMA - SV1 ) / ( GAMMA - SVP ) )*
     $              ( ( GAMMA + SV1 ) / ( GAMMA + SVP ) )
         ELSE
            RCOND = ONE
         END IF
C
         USEPEN = RCOND.LT.HUNDRD*TOLER
      END IF
C
      IF( USEPEN ) THEN
C
C        Add at most one auxiliary variable.
C
         K     = ( PM + R ) / 2
         Q     = NR   - K
         NBLK  = NR   + K
         II    = IR   + NBLK
         IBT   = II   + NBLK
         IH    = IBT  + NBLK
         NBLK2 = NBLK * NBLK
         IH12  = IH   + NBLK2
         IJ    = IH12 + NBLK2 + NBLK
         IJ12  = IJ   + NBLK2
         IT    = IJ12 + NBLK2 + NBLK
         IT12  = IT   + NBLK2
         IH22  = IT12 + NBLK2
         IWRK  = IH22 + NBLK2
         LIW   = 2*NBLK + 12
         QP    = Q  + P
         TNR   = 2*NR
         N2    = MIN( NR, K )
         CASE0 = Q.GE.0
         CASE1 = Q.GT.0
         CASE2 = .NOT.CASE0 .AND. QP.GE.0
         CASE3 = QP.LT.0
         IF( CMPRE ) THEN
            NE = MIN( RANKE, K )
         ELSE
            NE = N2
         END IF
         IF( DISCR ) THEN
            IF( CASE0 ) THEN
               NK = K
            ELSE
               NK = N
               IF( CASE3 ) THEN
                  NC = P
               ELSE
                  NC = -Q
               END IF
            END IF
         ELSE
            IF( CASE0 ) THEN
               ICI = 1
               IHC = IH + Q*NBLK + NR
               NC  = P
               PMQ = PM
            ELSE IF( CASE2 ) THEN
               ICI = 1 - Q
               IHC = IH + NR
               NC  = QP
            END IF
         END IF
         IF( .NOT.CASE0 )
     $      PMQ = PM + Q
         ONES( 1 ) = ONE
      ELSE
         IH   = IBT
         IH12 = IH   + NN
         ISL  = IH12 + NN + N
         ISC  = ISL + MAX( M, P )
         ISB  = ISC + P*N
         IWRK = ISL + NN + N
      END IF
C
C     WHILE ( Iteration may continue ) DO
C
  180 CONTINUE
C
         ITER = ITER + 1
C
         IF( .NOT.USEPEN ) THEN
C
C           Primary additional workspace: need   2*N*N+N   (from IBT)
C           (for building the relevant part of the Hamiltonian matrix).
C
            IF( ZEROD ) THEN
C
C              Standard continuous-time case with D = 0.
C              Form the needed part of the Hamiltonian matrix explicitly
C                 H = H11 - H12*inv(H22)*H21/g.
C
               CALL DLACPY( 'Full', N, N, A, LDA, DWORK( IH ), N )
C
C              Compute triangles of -C'*C/GAMMA and B*B'/GAMMA.
C
               CALL DSYRK( 'Lower', TRANS, N, P, -ONE / GAMMA, C, LDC,
     $                     ZERO, DWORK( IH12 ), N )
               CALL DSYRK( 'Upper', NTRAN, N, M,  ONE / GAMMA, B, LDB,
     $                     ZERO, DWORK( IH12+N ), N )
C
            ELSE
C
C              Standard continuous-time case with D <> 0 and the SVD of
C              D can be used. Compute explicitly the needed part of the
C              Hamiltonian matrix:
C
C              H =
C               (A+B1*S'*inv(g^2*Ip-S*S')*C1' g*B1*inv(g^2*Im-S'*S)*B1')
C               (                                                      )
C               (  -g*C1*inv(g^2*Ip-S*S')*C1'            -H11'         )
C
C              where g = GAMMA, B1 = B*V, C1 = C'*U, and H11 is the first
C              block of H.
C
C              Compute C1*sqrt(inv(g^2*Ip-S*S')) .
C
C              Additional workspace: need   MAX(M,P)+N*P (from ISL).
C
               DO 190 I = 0, MINPM - 1
                  DWORK( ISL+I ) = ONE / SQRT( GAMMA - DWORK( IS+I ) )
     $                                 / SQRT( GAMMA + DWORK( IS+I ) )
  190          CONTINUE
C
               IF( M.LT.P ) THEN
                  DWORK( ISL+M ) = ONE / GAMMA
                  CALL DCOPY( P-M-1, DWORK( ISL+M ), 0,
     $                        DWORK( ISL+M+1 ), 1 )
               END IF
               CALL DLACPY( 'Full', N, P, DWORK( ICU ), N, DWORK( ISC ),
     $                      N )
               CALL MB01SD( 'Column', N, P, DWORK( ISC ), N, DWORK,
     $                      DWORK( ISL ) )
C
C              Compute B1*S' .
C
C              Additional workspace: need   N*M (from ISB).
C
               CALL DLACPY( 'Full', N, M, DWORK( IBV ), N, DWORK( ISB ),
     $                      N )
               CALL MB01SD( 'Column', N, MINPM, DWORK( ISB ), N, DWORK,
     $                      DWORK( IS ) )
C
C              Compute B1*S'*sqrt(inv(g^2*Ip-S*S')) .
C
               CALL MB01SD( 'Column', N, MINPM, DWORK( ISB ), N, DWORK,
     $                      DWORK( ISL ) )
C
C              Compute H11 .
C
               CALL DLACPY( 'Full', N, N, A, LDA, DWORK( IH ), N )
               CALL DGEMM( NTRAN, TRANS, N, N, MINPM, ONE, DWORK( ISB ),
     $                     N, DWORK( ISC ), N, ONE, DWORK( IH ), N )
C
C              Compute B1*sqrt(inv(g^2*Im-S'*S)) .
C
               IF( P.LT.M ) THEN
                  DWORK( ISL+P ) = ONE / GAMMA
                  CALL DCOPY( M-P-1, DWORK( ISL+P ), 0,
     $                        DWORK( ISL+P+1 ), 1 )
               END IF
               CALL DLACPY( 'Full', N, M, DWORK( IBV ), N, DWORK( ISB ),
     $                      N )
               CALL MB01SD( 'Column', N, M, DWORK( ISB ), N, DWORK,
     $                      DWORK( ISL ) )
C
C              Compute the lower triangle of H21 and the upper triangle
C              of H12.
C
               CALL DSYRK( 'Lower', NTRAN, N, P, -GAMMA, DWORK( ISC ),
     $                     N, ZERO, DWORK( IH12 ), N )
               CALL DSYRK( 'Upper', NTRAN, N, M, GAMMA, DWORK( ISB ),
     $                     N, ZERO, DWORK( IH12+N ), N )
            END IF
C
C           Compute the eigenvalues of the Hamiltonian matrix by the
C           symplectic URV and the periodic Schur decompositions.
C
C           Additional workspace: need   (N+7)*N   (from IWRK);
C                                 prefer larger.
C
            CALL MB03XD( 'Both', EIGENV, NOVECT, NOVECT, N, DWORK( IH ),
     $                   N, DWORK( IH12 ), N, DWORK( ISL ), N, DUM, 1,
     $                   DUM, 1, DUM, 1, DUM, 1, DWORK( IR ),
     $                   DWORK( II ), ILO, DWORK( IWRK-N ),
     $                   DWORK( IWRK ), LDWORK-IWRK+1, IERR )
            IF( IERR.GT.0 ) THEN
               INFO = 2
               RETURN
            END IF
C
         ELSE
C
C           Use a skew-Hamiltonian/Hamiltonian pencil.
C           Initialize the pencil by zero.
C
            CALL DLASET( 'Full', 4*NBLK2+2*NBLK, 1, ZERO, ZERO,
     $                   DWORK( IH ), 1 )
            GAM( 1 )  =  GAMMA
            MGAM( 1 ) = -GAMMA
C
            IF( DISCR ) THEN
C
C              Set up the needed parts of a skew-Hamiltonian/Hamiltonian
C              pencil, based on the pencil (J,H),
C
C                  ( H11  H12 )         ( J11  J12 )
C              H = (          ),    J = (          ),
C                  ( H21  H22 )         ( J21  J22 )
C
C              with
C
C                    ( -A+E  0  )          (  0   B  )
C              H11 = (          ),   H12 = (         ),
C                    (   0   D' )          ( B' -g*I )
C
C                    ( 0   C' )
C              H21 = (        ),     H22 = -H11',
C                    ( C  g*I )
C
C                    ( A+E  0 )
C              J11 = (        ),     J12 = 0,
C                    (  0   0 )
C
C                    (  0  C' )
C              J21 = (        ),     J22 = J11',
C                    ( -C  0  )
C
C              where B, C, and D are extended such that the number of
C              inputs and outputs are equal (= MAX(P,M)), and g = GAMMA.
C
C              Additional workspace: need  7*NBLK*NBLK+5*NBLK (from IR).
C
C              Construct H11 and J11.
C
               I1 = 0
C
               IF( GENE ) THEN
C
                  DO 200 J = K + 1, N
                     CALL DAXPY( N, -ONE, E( 1, J ), 1, DWORK( IH+I1 ),
     $                           1 )
                     CALL DCOPY( N,  DWORK( IH+I1 ), 1, DWORK( IJ+I1 ),
     $                           1 )
                     CALL DAXPY( N,  ONE, A( 1, J ), 1, DWORK( IH+I1 ),
     $                           1 )
                     CALL DAXPY( N, -ONE, A( 1, J ), 1, DWORK( IJ+I1 ),
     $                           1 )
                     I1 = I1 + NBLK
  200             CONTINUE
C
               ELSE
C
                  DO 210 J = K + 1, N
                     CALL DCOPY( N, A( 1, J ), 1, DWORK( IH+I1 ), 1 )
                     CALL DAXPY( N, -ONE, A( 1, J ), 1, DWORK( IJ+I1 ),
     $                           1 )
                     IF( UNITE ) THEN
                        DWORK( IH+I1+J-1 ) = DWORK( IH+I1+J-1 ) - ONE
                        DWORK( IJ+I1+J-1 ) = DWORK( IJ+I1+J-1 ) - ONE
                     ELSE IF( RANKE.GE.J ) THEN
                        CALL DAXPY( RANKE, -ONE, E( 1, J ), 1,
     $                              DWORK( IH+I1 ), 1 )
                        CALL DAXPY( RANKE, -ONE, E( 1, J ), 1,
     $                              DWORK( IJ+I1 ), 1 )
                     END IF
                     I1 = I1 + NBLK
  210             CONTINUE
C
               END IF
C
C              Construct the rest of H11 and J11.
C
               IF( CASE0 ) THEN
                  CALL MA02AD( 'Full', P, K, C, LDC, DWORK( IH+I1+N ),
     $                         NBLK )
                  CALL DLACPY( 'Full', K, P, DWORK( IH+I1+N ), NBLK,
     $                         DWORK( IJ+I1+N ), NBLK )
                  I1 = QP*NBLK
C
                  DO 220 J = 1, M
                     CALL DAXPY( N, -ONE, B( 1, J ), 1, DWORK( IH+I1 ),
     $                           1 )
                     I1 = I1 + NBLK
  220             CONTINUE
C
               ELSE IF( CASE2 ) THEN
                  IF( QP.GT.0 ) THEN
                     CALL MA02AD( 'Full', QP, N, C( 1-Q, 1 ), LDC,
     $                            DWORK( IH+N ), NBLK )
                     CALL DLACPY( 'Full', N, QP, DWORK( IH+N ), NBLK,
     $                            DWORK( IJ+N ), NBLK )
                     I1 = QP*NBLK
                  END IF
C
                  DO 230 J = 1, M
                     I2 = I1 + TNR
                     CALL DAXPY( N, -ONE, B( 1, J ), 1, DWORK( IH+I1 ),
     $                           1 )
                     IF( WITHD )
     $                  CALL DAXPY( -Q, -ONE, D( 1, J ), 1,
     $                              DWORK( IH+I2 ), 1 )
                     I1 = I1 + NBLK
  230             CONTINUE
C
               ELSE
C
                  DO 240 J = 1 - QP, M
                     I2 = I1 + TNR
                     CALL DAXPY( N, -ONE, B( 1, J ), 1, DWORK( IH+I1 ),
     $                           1 )
                     IF( WITHD )
     $                  CALL DAXPY( P, -ONE, D( 1, J ), 1,
     $                              DWORK( IH+I2 ), 1 )
                     I1 = I1 + NBLK
  240             CONTINUE
C
               END IF
C
C              Construct the lower triangular parts of H21 and J21 and
C              the upper triangular parts of H12 and J12.
C
               IF( .NOT.CASE0 )
     $            CALL DCOPY( PMQ, GAM, 0, DWORK( IH12 ), NBLK+1 )
C
               IF( CASE0 ) THEN
                  CALL DLACPY( 'Full', P, Q, C( 1, K+1 ), LDC,
     $                         DWORK( IH12+Q ), NBLK )
                  I1 = Q*NBLK + Q
                  CALL DCOPY( PM, GAM, 0, DWORK( IH12+I1 ), NBLK+1 )
                  IF( WITHD ) THEN
                     I1 = I1 + P
C
                     DO 250 I = 1, P
                        CALL DAXPY( M, -ONE, D( I, 1 ), LDD,
     $                              DWORK( IH12+I1 ), 1 )
                        I1 = I1 + NBLK
  250                CONTINUE
C
                  END IF
                  I1 = Q
C
                  DO 260 J = K + 1, N
                     CALL DAXPY( P, -ONE, C( 1, J ), 1,
     $                           DWORK( IJ12+I1 ), 1 )
                     I1 = I1 + NBLK
  260             CONTINUE
C
               ELSE IF( CASE2 .AND. WITHD ) THEN
                  I1 = QP
C
                  DO 270 I = 1 - Q, P
                     CALL DAXPY( M, -ONE, D( I, 1 ), LDD,
     $                           DWORK( IH12+I1 ), 1 )
                     I1 = I1 + NBLK
  270             CONTINUE
C
               END IF
C
               I1 = ( N + 1 )*NBLK
               I2 = ( N + P )*NBLK + I1
C
               IF( GENE ) THEN
C
                  DO 280 J = 1, NK
                     CALL DCOPY( N, E( 1, J ), 1, DWORK( IJ12+I1 ), 1 )
                     CALL DAXPY( N, ONE, A( 1, J ), 1,
     $                           DWORK( IJ12+I1 ), 1 )
                     CALL DCOPY( N, E( 1, J ), 1, DWORK( IH12+I1 ), 1 )
                     CALL DAXPY( N, -ONE, A( 1, J ), 1,
     $                           DWORK( IH12+I1 ), 1 )
                     I1 = I1 + NBLK
  280             CONTINUE
C
               ELSE
C
                  DO 290 J = 1, NK
                     CALL DCOPY( N, A( 1, J ), 1, DWORK( IJ12+I1 ), 1 )
                     CALL DAXPY( N, -ONE, A( 1, J ), 1,
     $                           DWORK( IH12+I1 ), 1 )
                     IF( UNITE ) THEN
                        DWORK( IJ12+I1+J-1 ) = DWORK( IJ12+I1+J-1 ) +
     $                                         ONE
                        DWORK( IH12+I1+J-1 ) = DWORK( IH12+I1+J-1 ) +
     $                                         ONE
                     ELSE IF( RANKE.GE.J ) THEN
                        CALL DAXPY( RANKE, ONE, E( 1, J ), 1,
     $                              DWORK( IJ12+I1 ), 1 )
                        CALL DAXPY( RANKE, ONE, E( 1, J ), 1,
     $                              DWORK( IH12+I1 ), 1 )
                     END IF
                     I1 = I1 + NBLK
  290             CONTINUE
C
               END IF
C
               IF( .NOT.CASE0 ) THEN
                  I1 = I1 + N
                  I0 = I1 + N
C
                  DO 300 I = 1, NC
                     CALL DAXPY( N, -ONE, C( I, 1 ), LDC,
     $                           DWORK( IH12+I1 ), 1 )
                     CALL DCOPY( N, DWORK( IH12+I1 ), 1,
     $                           DWORK( IJ12+I1 ), 1 )
                     I1 = I1 + NBLK
  300             CONTINUE
C
                  CALL DCOPY( -Q, MGAM, 0, DWORK( IH12+I0 ), NBLK+1 )
                  IF( CASE3 ) THEN
                     CALL DLACPY( 'Full', N, -QP, B, LDB,
     $                            DWORK( IH12+I2 ), NBLK )
                     IF( WITHD )
     $                  CALL DLACPY( 'Full', P, -QP, D, LDD,
     $                            DWORK( IH12+I2+TN ), NBLK )
                  END IF
C
               END IF
C
               IF( R.GT.0 )
     $            DWORK( IH12+NBLK2-1 ) = ONE
C
            ELSE
C
C              Set up the needed parts of a skew-Hamiltonian/Hamiltonian
C              pencil, based on the pencil (H,J),
C
C                  ( H11  H12 )        ( S11   0  )        (  0   I )
C              H = (          ) ,  S = (          ) ,  J = (        ) ,
C                  ( H21  H22 )        (  0   S22 )        ( -I   0 )
C
C              with
C
C                    ( A  B )            ( 0   0  )            ( E  0 )
C              H11 = (      ),     H12 = (        ),     S11 = (      ),
C                    ( C  D )            ( 0 -g*I )            ( 0  0 )
C
C              H21 = -H12,         H22 = -H11',          S22 = S11',
C
C              where B and D are extended with one zero column if M+P is
C              odd, and g = GAMMA.
C
C              Additional workspace: need  7*NBLK*NBLK+5*NBLK (from IR).
C
C              Construct H11.
C
               IF( CASE1 )
     $            CALL DLACPY( 'Full', NR, Q, A( 1, K+1 ), LDA,
     $                         DWORK( IH ), NBLK )
               IF( QP.GE.0 ) THEN
                  CALL MA02AD( 'Full', NC, N2, C( ICI, 1 ), LDC,
     $                         DWORK( IHC ), NBLK )
C
                  I1 = QP*NBLK
                  I2 = I1 + TNR
C
                  DO 310 I0 = 1, M
                     CALL DAXPY( NR, -ONE, B( 1, I0 ), 1,
     $                           DWORK( IH+I1 ), 1 )
                     I1 = I1 + NBLK
  310             CONTINUE
C
                  IF( .NOT.CASE0 .AND. WITHD )
     $               CALL DLACPY( 'Full', -Q, M, D, LDD, DWORK( IH+I2 ),
     $                            NBLK )
               ELSE
C
                  CALL DLACPY( 'Full', NR, PMQ, B( 1, 1-QP ), LDB,
     $                         DWORK( IH ), NBLK )
C
                  IF( WITHD )
     $               CALL DLACPY( 'Full', P, PMQ, D( 1, 1-QP ), LDD,
     $                            DWORK( IH+TNR ), NBLK )
               END IF
C
C              Construct J11.
C
               IF( CASE1 ) THEN
C
                  IF( GENE ) THEN
                     CALL DLACPY( 'Full', N1, Q, E( 1, K+1 ), LDE,
     $                            DWORK( IJ ), NBLK )
C
                  ELSE IF( CMPRE ) THEN
                     IF( RANKE.GT.K )
     $                  CALL DLACPY( 'Full', N1, RANKE-K, E( 1, K+1 ),
     $                               LDE, DWORK( IJ ), NBLK )
C
                  ELSE
                     CALL DCOPY( Q, ONES, 0, DWORK( IJ ), NBLK+1 )
                  END IF
C
               END IF
C
C              Construct the lower triangular part of H21.
C
               IF( CASE1 ) THEN
                  I1 = Q
C
                  DO 320 I = K + 1, NR
                     CALL DAXPY( P, -ONE, C( 1, I ), 1,
     $                           DWORK( IH12+I1 ), 1 )
                     I1 = I1 + NBLK
  320             CONTINUE
C
               ELSE
                  I1 = 0
               END IF
C
               CALL DCOPY( PMQ, GAM, 0, DWORK( IH12+I1 ), NBLK+1 )
C
               IF( WITHD ) THEN
                  IF( CASE0 ) THEN
                     CALL MA02AD( 'Full', P, M, D, LDD,
     $                            DWORK( IH12+I1+P ), NBLK )
                  ELSE IF( CASE2 ) THEN
                     CALL MA02AD( 'Full', QP, M, D( 1-Q, 1 ), LDD,
     $                            DWORK( IH12+QP ), NBLK )
                  END IF
               END IF
C
               IF( R.EQ.1 )
     $            DWORK( IH12+NBLK2-1 ) = ONE
C
C              Construct the upper triangular parts of H12 and J12.
C
               I1 = ( NR + 1 )*NBLK
               I0 = I1
               CALL DLACPY( 'Full', NR, N2, A, LDA, DWORK( IH12+I1 ),
     $                      NBLK )
C
               I2 = I1 + NR*NBLK
               I1 = I2 + NR
C
               IF( .NOT.CASE0 ) THEN
                  IF( CASE2 ) THEN
C
                     DO 330 I = 1, -Q
                        CALL DAXPY( NR, -ONE, C( I, 1 ), LDC,
     $                              DWORK( IH12+I1 ), 1 )
                        I1 = I1 + NBLK
  330                CONTINUE
C
                  ELSE
                     CALL MA02AD( 'Full', P, NR, C, LDC,
     $                            DWORK( IH12+I1 ), NBLK )
                  END IF
                  CALL DCOPY( -Q, MGAM, 0, DWORK( IH12+I2+TNR ),
     $                         NBLK+1 )
               END IF
C
               IF( CASE3 ) THEN
                  I2 = I2 + P*NBLK
                  CALL DLACPY( 'Full', NR, -QP, B, LDB,
     $                         DWORK( IH12+I2 ), NBLK )
                  IF( WITHD )
     $               CALL DLACPY( 'Full', P, -QP, D, LDD,
     $                            DWORK( IH12+I2+TNR ), NBLK )
               END IF
C
               IF( UNITE ) THEN
                  CALL DCOPY( N2, ONES, 0, DWORK( IJ12+I0 ), NBLK+1 )
               ELSE
                  CALL DLACPY( 'Full', N1, NE, E, LDE, DWORK( IJ12+I0 ),
     $                         NBLK )
               END IF
C
            END IF
C
C           Compute the generalized eigenvalues using the structure-
C           preserving method for skew-Hamiltonian/Hamiltonian pencils.
C
C           Additional workspace: need    4*NBLK*NBLK + MAX(L,36), where
C           (from IWRK)             L = 8*NBLK + 4, if NBLK is even, and
C                                   L = 8*NBLK,     if NBLK is odd;
C                                 prefer larger.
C           Integer    workspace: need   2*NBLK + 12.
C
            IERR = -1
            CALL MB04BP( EIGENV, NOVECT, NOVECT, 2*NBLK, DWORK( IJ ),
     $                   NBLK, DWORK( IJ12 ), NBLK, DWORK( IH ), NBLK,
     $                   DWORK( IH12 ), NBLK, DWORK, 1, DWORK, 1,
     $                   DWORK( IT ), NBLK, DWORK( IT12 ), NBLK,
     $                   DWORK( IH22 ), NBLK, DWORK( IR ), DWORK( II ),
     $                   DWORK( IBT ), IWORK, LIW, DWORK( IWRK ),
     $                   LDWORK-IWRK+1, IERR )
C
            IF( IERR.EQ.1 .OR. IERR.EQ.2 ) THEN
               INFO = 2
               RETURN
            END IF
         END IF
C
         MAXWRK = MAX( INT( DWORK( IWRK ) ) + IWRK - 1, MAXWRK )
C
C        Detect finite eigenvalues on the boundary of the stability.
C        domain. The test is based on a round-off level of eps*rho(H)
C        (after balancing) resulting in worst-case perturbations of
C        order sqrt(eps*rho(H)), on the real part of poles of
C        multiplicity two (typical as GAMMA approaches the infinity
C        norm). Above, rho(H) is the maximum modulus of eigenvalues.
C        This test is valid also in the discrete-time case, since the
C        unit circle has been mapped on the imaginary axis.
C        NEI is the number of detected eigenvalues on the boundary.
C
C        Compute maximum eigenvalue modulus and check the absolute real
C        parts (if DICO = 'C'), or moduli (if DICO = 'D').
C
         WMAX = ZERO
C
         IF( USEPEN ) THEN
            IM = IBT + NBLK
C
            DO 340 I = 0, NBLK - 1
               TM = DWORK( II+I )
               IF( TM.GE.ZERO ) THEN
                  TM = DLAPY2( DWORK( IR+I ), TM )
                  IF( ( DWORK( IBT+I ).GE.ONE ) .OR.
     $                ( DWORK( IBT+I ).LT.ONE  .AND.
     $                  TM.LT.DWORK( IBT+I )*SAFMAX ) ) THEN
                     TM = TM / DWORK( IBT+I )
                     IF( TOL1*TM.LT.STOL ) THEN
                        WMAX = MAX( WMAX, TM )
                        DWORK( IM+I ) = TM
                     ELSE
                        DWORK( IM+I ) = -ONE
                     END IF
                  ELSE
                     DWORK( IM+I ) = -ONE
                  END IF
               ELSE
                  DWORK( IM+I ) = -ONE
               END IF
  340       CONTINUE
C
         ELSE
C
            DO 350 I = 0, NR - 1
               TM   = DLAPY2( DWORK( IR+I ), DWORK( II+I ) )
               WMAX = MAX( WMAX, TM )
               DWORK( IM+I ) = TM
  350       CONTINUE
C
         END IF
C
         NEI = 0
C
         IF( USEPEN ) THEN
C
            DO 360 I = 0, NBLK - 1
               TM = DWORK( IM+I )
               IF( TM.GE.ZERO ) THEN
                  TMR = ABS( DWORK( IR+I ) ) / DWORK( IBT+I )
                  IF( TMR.LT.TOL2*( ONE + TM ) + TOL1*WMAX ) THEN
                     DWORK( II+NEI ) = DWORK( II+I ) / DWORK( IBT+I )
                     NEI = NEI + 1
                  END IF
               END IF
  360       CONTINUE
C
         ELSE
C
            DO 370 I = 0, NR - 1
               TM  = DWORK( IM+I )
               TMR = ABS( DWORK( IR+I ) )
               IF( TMR.LT.TOL2*( ONE + TM ) + TOL1*WMAX ) THEN
                  DWORK( II+NEI ) = DWORK( II+I )
                  NEI = NEI + 1
               END IF
  370       CONTINUE
C
         END IF
C
         IF( NEI.EQ.0 ) THEN
C
C           There is no eigenvalue on the boundary of the stability
C           domain for G = ( 1 + TOLN )*GAMMAL. The norm was found.
C
            GPEAK( 1 ) = GAMMAL
            GPEAK( 2 ) = ONE
            GO TO 440
         END IF
C
C        Compute the NWS frequencies where the gain G is attained and
C        generate new test frequencies.
C
         NWS = 0
         J   = 0
C
         IF( DISCR ) THEN
C
            DO 380 I = 0, NEI - 1
C
C              Back transformation of eigenvalues.
C
               CALL DLADIV( ONE + DWORK( II+I ), ZERO, ONE,
     $                      DWORK( II+I ), TMR, TMP )
               CALL DLADIV( ONE - DWORK( II+I ), ZERO, ONE,
     $                      -DWORK( II+I ), TM, TD )
               DWORK( IR+I ) = TMR*TM - TMP*TD
               CALL DLADIV( TWO*DWORK( II+I ), ZERO, ONE, DWORK( II+I ),
     $                      TMR, TMP )
               CALL DLADIV( ONE, ZERO, ONE, -DWORK( II+I ), TM, TD )
               DWORK( II+I ) = TMR*TM - TMP*TD
C
               TM = ABS( ATAN2( DWORK( II+I ), DWORK( IR+I ) ) )
               IF( TM.LT.PI ) THEN
                  IF( TM.GT.EPS ) THEN
                     DWORK( IR+NWS ) = TM
                     NWS = NWS + 1
                  ELSE IF( TM.EQ.EPS ) THEN
                     IF( J.EQ.0 ) THEN
                        DWORK( IR+NWS ) = EPS
                        NWS = NWS + 1
                     END IF
                     J = J + 1
                  END IF
               END IF
  380       CONTINUE
C
         ELSE
C
            DO 390 I = 0, NEI - 1
               TM = DWORK( II+I )
               IF( TM.GT.EPS ) THEN
                  DWORK( IR+NWS ) = TM
                  NWS = NWS + 1
               ELSE IF( TM.EQ.EPS ) THEN
                  IF( J.EQ.0 ) THEN
                     DWORK( IR+NWS ) = EPS
                     NWS = NWS + 1
                  END IF
                  J = J + 1
               END IF
  390       CONTINUE
C
         END IF
C
         IF( NWS.EQ.0 ) THEN
C
C           There is no eigenvalue on the boundary of the stability
C           domain for G = ( 1 + TOLN )*GAMMAL. The norm was found.
C
            GPEAK( 1 ) = GAMMAL
            GPEAK( 2 ) = ONE
            GO TO 440
         END IF
C
         CALL DLASRT( 'Increase', NWS, DWORK( IR ), IERR )
         LW = 1
C
         DO 400 I = 0, NWS - 1
            IF( DWORK( IR+LW-1 ).NE.DWORK( IR+I ) ) THEN
               DWORK( IR+LW ) = DWORK( IR+I )
               LW = LW + 1
            END IF
  400    CONTINUE
C
         IF( LW.EQ.1 ) THEN
C
C           Duplicate the frequency trying to force iteration.
C
            DWORK( IR+1 ) = DWORK( IR )
            LW = LW + 1
         END IF
C
C        Form the vector of mid-points and compute the gain at new test
C        frequencies. Save the current lower bound.
C
         IF( .NOT.ALLPOL )
     $      LW = MIN( LW, BM )
C
         IRLW   = IR + LW
         GAMMAS = GAMMAL
C
         DO 410 I = 0, LW - 2
            IF( DISCR ) THEN
               OMEGA = ( DWORK( IR+I ) + DWORK( IR+I+1 ) ) / TWO
            ELSE
               OMEGA = SQRT( DWORK( IR+I )*DWORK( IR+I+1 ) )
            END IF
C
C           Additional workspace:  need   LDW2, see above (from IRLW);
C                                  prefer larger.
C
            GAMMA = AB13DX( DICO, JOB, JBDX, NR, M, P, OMEGA,
     $                      DWORK( IA ), N, DWORK( IE ), N, DWORK( IB ),
     $                      N, DWORK( IC ), P, D, LDD, IWORK,
     $                      DWORK( IRLW ), LDWORK-IRLW+1, ZWORK, LZWORK,
     $                      IERR )
            IF( DISCR )
     $         OMEGA = ABS( ATAN2( SIN( OMEGA ), COS( OMEGA ) ) )
            IF( IERR.GT.0 )
     $         GO TO 430
C
            IF( GAMMAL.LT.GAMMA ) THEN
               GAMMAL     = GAMMA
               FPEAK( 1 ) = OMEGA
               FPEAK( 2 ) = ONE
            END IF
  410    CONTINUE
C
C        If the lower bound has not been improved, return. (This is a
C        safeguard against undetected modes of Hamiltonian matrix or
C        skew-Hamiltonian/Hamiltonian matrix pencil on the boundary of
C        the stability domain.)
C
         IF( LW.LE.1 .OR. GAMMAL.LT.GAMMAS*TOLP ) THEN
            GPEAK( 1 ) = GAMMAL
            GPEAK( 2 ) = ONE
            GO TO 440
         END IF
C
C     END WHILE
C
      IF( ITER.LE.MAXIT ) THEN
         GAMMA = ( ONE + TOLN )*GAMMAL
         GO TO 180
      ELSE
         INFO = 4
         GPEAK( 1 ) = GAMMAL
         GPEAK( 2 ) = ONE
         GO TO 440
      END IF
C
  420 CONTINUE
C
C     Singular descriptor system. Set GPEAK = NAN, FPEAK = 0.
C
      IWARN = 1
      GPEAK( 1 ) = ZERO
      GPEAK( 2 ) = ZERO
      FPEAK( 1 ) = ZERO
      FPEAK( 2 ) = ONE
      GO TO 440
C
  430 CONTINUE
      IF( IERR.EQ.NR+1 ) THEN
         INFO = 3
         RETURN
      ELSE IF( IERR.GT.0 ) THEN
         GPEAK( 1 ) = ONE
         GPEAK( 2 ) = ZERO
         FPEAK( 1 ) = OMEGA
         FPEAK( 2 ) = ONE
      END IF
C
  440 CONTINUE
C
      IWORK( 1 ) = ITER
      DWORK( 1 ) = MAXWRK
      ZWORK( 1 ) = MAXCWK
      RETURN
C *** Last line of AB13HD ***
      END