control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
      SUBROUTINE SB10ED( N, M, NP, NCON, NMEAS, A, LDA, B, LDB, C, LDC,
     $                   D, LDD, AK, LDAK, BK, LDBK, CK, LDCK, DK, LDDK,
     $                   RCOND, TOL, IWORK, DWORK, LDWORK, BWORK, INFO )
C
C     PURPOSE
C
C     To compute the matrices of the H2 optimal n-state controller
C
C                           | AK | BK |
C                       K = |----|----|
C                           | CK | DK |
C
C     for the discrete-time system
C
C                   | A  | B1  B2  |   | A | B |
C               P = |----|---------| = |---|---| ,
C                   | C1 |  0  D12 |   | C | D |
C                   | C2 | D21 D22 |
C
C     where B2 has as column size the number of control inputs (NCON)
C     and C2 has as row size the number of measurements (NMEAS) being
C     provided to the controller.
C
C     It is assumed that
C
C     (A1) (A,B2) is stabilizable and (C2,A) is detectable,
C
C     (A2) D12 is full column rank and D21 is full row rank,
C
C               j*Theta
C     (A3) | A-e       *I  B2  | has full column rank for all
C          |    C1         D12 |
C
C          0 <= Theta < 2*Pi ,
C
C
C               j*Theta
C     (A4) | A-e       *I  B1  |  has full row rank for all
C          |    C2         D21 |
C
C          0 <= Theta < 2*Pi .
C
C     ARGUMENTS
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the system.  N >= 0.
C
C     M       (input) INTEGER
C             The column size of the matrix B.  M >= 0.
C
C     NP      (input) INTEGER
C             The row size of the matrix C.  NP >= 0.
C
C     NCON    (input) INTEGER
C             The number of control inputs (M2).  M >= NCON >= 0,
C             NP-NMEAS >= NCON.
C
C     NMEAS   (input) INTEGER
C             The number of measurements (NP2).  NP >= NMEAS >= 0,
C             M-NCON >= NMEAS.
C
C     A       (input/worksp.) DOUBLE PRECISION array, dimension (LDA,N)
C             The leading N-by-N part of this array must contain the
C             system state matrix A.
C             This array is modified internally, but it is restored on
C             exit.
C
C     LDA     INTEGER
C             The leading dimension of the array A.  LDA >= max(1,N).
C
C     B       (input) DOUBLE PRECISION array, dimension (LDB,M)
C             The leading N-by-M part of this array must contain the
C             system input matrix B.
C
C     LDB     INTEGER
C             The leading dimension of the array B.  LDB >= max(1,N).
C
C     C       (input) DOUBLE PRECISION array, dimension (LDC,N)
C             The leading NP-by-N part of this array must contain the
C             system output matrix C.
C
C     LDC     INTEGER
C             The leading dimension of the array C.  LDC >= max(1,NP).
C
C     D       (input) DOUBLE PRECISION array, dimension (LDD,M)
C             The leading NP-by-M part of this array must contain the
C             system input/output matrix D.
C
C     LDD     INTEGER
C             The leading dimension of the array D.  LDD >= max(1,NP).
C
C     AK      (output) DOUBLE PRECISION array, dimension (LDAK,N)
C             The leading N-by-N part of this array contains the
C             controller state matrix AK.
C
C     LDAK    INTEGER
C             The leading dimension of the array AK.  LDAK >= max(1,N).
C
C     BK      (output) DOUBLE PRECISION array, dimension (LDBK,NMEAS)
C             The leading N-by-NMEAS part of this array contains the
C             controller input matrix BK.
C
C     LDBK    INTEGER
C             The leading dimension of the array BK.  LDBK >= max(1,N).
C
C     CK      (output) DOUBLE PRECISION array, dimension (LDCK,N)
C             The leading NCON-by-N part of this array contains the
C             controller output matrix CK.
C
C     LDCK    INTEGER
C             The leading dimension of the array CK.
C             LDCK >= max(1,NCON).
C
C     DK      (output) DOUBLE PRECISION array, dimension (LDDK,NMEAS)
C             The leading NCON-by-NMEAS part of this array contains the
C             controller input/output matrix DK.
C
C     LDDK    INTEGER
C             The leading dimension of the array DK.
C             LDDK >= max(1,NCON).
C
C     RCOND   (output) DOUBLE PRECISION array, dimension (7)
C             RCOND contains estimates the reciprocal condition
C             numbers of the matrices which are to be inverted and the
C             reciprocal condition numbers of the Riccati equations
C             which have to be solved during the computation of the
C             controller. (See the description of the algorithm in [2].)
C             RCOND(1) contains the reciprocal condition number of the
C                      control transformation matrix TU;
C             RCOND(2) contains the reciprocal condition number of the
C                      measurement transformation matrix TY;
C             RCOND(3) contains the reciprocal condition number of the
C                      matrix Im2 + B2'*X2*B2;
C             RCOND(4) contains the reciprocal condition number of the
C                      matrix Ip2 + C2*Y2*C2';
C             RCOND(5) contains the reciprocal condition number of the
C                      X-Riccati equation;
C             RCOND(6) contains the reciprocal condition number of the
C                      Y-Riccati equation;
C             RCOND(7) contains the reciprocal condition number of the
C                      matrix Im2 + DKHAT*D22 .
C
C     Tolerances
C
C     TOL     DOUBLE PRECISION
C             Tolerance used for controlling the accuracy of the
C             transformations applied for diagonalizing D12 and D21,
C             and for checking the nonsingularity of the matrices to be
C             inverted. If TOL <= 0, then a default value equal to
C             sqrt(EPS) is used, where EPS is the relative machine
C             precision.
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (max(2*M2,2*N,N*N,NP2))
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) contains the optimal
C             LDWORK.
C
C     LDWORK  INTEGER
C             The dimension of the array DWORK.
C             LDWORK >= N*M + NP*(N+M) + M2*M2 + NP2*NP2 +
C                       max(1,LW1,LW2,LW3,LW4,LW5,LW6), where
C             LW1 = (N+NP1+1)*(N+M2) + max(3*(N+M2)+N+NP1,5*(N+M2)),
C             LW2 = (N+NP2)*(N+M1+1) + max(3*(N+NP2)+N+M1,5*(N+NP2)),
C             LW3 = M2 + NP1*NP1 + max(NP1*max(N,M1),3*M2+NP1,5*M2),
C             LW4 = NP2 + M1*M1 + max(max(N,NP1)*M1,3*NP2+M1,5*NP2),
C             LW5 = 2*N*N+max(1,14*N*N+6*N+max(14*N+23,16*N),M2*(N+M2+
C                             max(3,M1)),NP2*(N+NP2+3)),
C             LW6 = max(N*M2,N*NP2,M2*NP2,M2*M2+4*M2),
C             with M1 = M - M2 and NP1 = NP - NP2.
C             For good performance, LDWORK must generally be larger.
C             Denoting Q = max(M1,M2,NP1,NP2), an upper bound is
C             2*Q*(3*Q+2*N)+max(1,(N+Q)*(N+Q+6),Q*(Q+max(N,Q,5)+1),
C                     2*N*N+max(1,14*N*N+6*N+max(14*N+23,16*N),
C                               Q*(N+Q+max(Q,3)))).
C
C     BWORK   LOGICAL array, dimension (2*N)
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C                                      j*Theta
C             = 1:  if the matrix | A-e       *I  B2  | had not full
C                                 |      C1       D12 |
C                   column rank in respect to the tolerance EPS;
C                                      j*Theta
C             = 2:  if the matrix | A-e       *I  B1  |  had not full
C                                 |      C2       D21 |
C                   row rank in respect to the tolerance EPS;
C             = 3:  if the matrix D12 had not full column rank in
C                   respect to the tolerance TOL;
C             = 4:  if the matrix D21 had not full row rank in respect
C                   to the tolerance TOL;
C             = 5:  if the singular value decomposition (SVD) algorithm
C                   did not converge (when computing the SVD of one of
C                   the matrices |A-I  B2 |, |A-I  B1 |, D12 or D21).
C                                |C1   D12|  |C2   D21|
C             = 6:  if the X-Riccati equation was not solved
C                   successfully;
C             = 7:  if the matrix Im2 + B2'*X2*B2 is not positive
C                   definite, or it is numerically singular (with
C                   respect to the tolerance TOL);
C             = 8:  if the Y-Riccati equation was not solved
C                   successfully;
C             = 9:  if the matrix Ip2 + C2*Y2*C2' is not positive
C                   definite, or it is numerically singular (with
C                   respect to the tolerance TOL);
C             =10:  if the matrix Im2 + DKHAT*D22 is singular, or its
C                   estimated condition number is larger than or equal
C                   to 1/TOL.
C
C     METHOD
C
C     The routine implements the formulas given in [1].
C
C     REFERENCES
C
C     [1] Zhou, K., Doyle, J.C., and Glover, K.
C         Robust and Optimal Control.
C         Prentice-Hall, Upper Saddle River, NJ, 1996.
C
C     [2] Petkov, P.Hr., Gu, D.W., and Konstantinov, M.M.
C         Fortran 77 routines for Hinf and H2 design of linear
C         discrete-time control systems.
C         Report 99-8, Department of Engineering, Leicester University,
C         April 1999.
C
C     NUMERICAL ASPECTS
C
C     The accuracy of the result depends on the condition numbers of the
C     matrices which are to be inverted and on the condition numbers of
C     the matrix Riccati equations which are to be solved in the
C     computation of the controller. (The corresponding reciprocal
C     condition numbers are given in the output array RCOND.)
C
C     CONTRIBUTORS
C
C     P.Hr. Petkov, D.W. Gu and M.M. Konstantinov, May 1999.
C
C     REVISIONS
C
C     V. Sima, Research Institute for Informatics, Bucharest, May 1999,
C     Sept. 1999, Feb. 2000, Nov. 2005.
C
C     KEYWORDS
C
C     Algebraic Riccati equation, H2 optimal control, optimal regulator,
C     robust control.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
C     ..
C     .. Scalar Arguments ..
      INTEGER            INFO, LDA, LDAK, LDB, LDBK, LDC, LDCK, LDD,
     $                   LDDK, LDWORK, M, N, NCON, NMEAS, NP
      DOUBLE PRECISION   TOL
C     ..
C     .. Array Arguments ..
      INTEGER            IWORK( * )
      DOUBLE PRECISION   A( LDA, * ), AK( LDAK, * ), B( LDB, * ),
     $                   BK( LDBK, * ), C( LDC, * ), CK( LDCK, * ),
     $                   D( LDD, * ), DK( LDDK, * ), DWORK( * ),
     $                   RCOND( * )
      LOGICAL            BWORK( * )
C     ..
C     .. Local Scalars ..
      INTEGER            I, INFO2, IWC, IWD, IWRK, IWTU, IWTY, IWX, IWY,
     $                   LW1, LW2, LW3, LW4, LW5, LW6, LWAMAX, M1, M2,
     $                   M2L, MINWRK, NL, NLP, NP1, NP2, NPL
      DOUBLE PRECISION   TOLL
C     ..
C     .. External Functions ..
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           DLAMCH
C     ..
C     .. External Subroutines ..
      EXTERNAL           DLACPY, SB10PD, SB10SD, SB10TD, XERBLA
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC          DBLE, INT, MAX, SQRT
C     ..
C     .. Executable Statements ..
C
C     Decode and Test input parameters.
C
      M1  = M - NCON
      M2  = NCON
      NP1 = NP - NMEAS
      NP2 = NMEAS
      NL  = MAX( 1, N )
      NPL = MAX( 1, NP )
      M2L = MAX( 1, M2 )
      NLP = MAX( 1, NP2 )
C
      INFO = 0
      IF( N.LT.0 ) THEN
         INFO = -1
      ELSE IF( M.LT.0 ) THEN
         INFO = -2
      ELSE IF( NP.LT.0 ) THEN
         INFO = -3
      ELSE IF( NCON.LT.0 .OR. M1.LT.0 .OR. M2.GT.NP1 ) THEN
         INFO = -4
      ELSE IF( NMEAS.LT.0 .OR. NP1.LT.0 .OR. NP2.GT.M1 ) THEN
         INFO = -5
      ELSE IF( LDA.LT.NL ) THEN
         INFO = -7
      ELSE IF( LDB.LT.NL ) THEN
         INFO = -9
      ELSE IF( LDC.LT.NPL ) THEN
         INFO = -11
      ELSE IF( LDD.LT.NPL ) THEN
         INFO = -13
      ELSE IF( LDAK.LT.NL ) THEN
         INFO = -15
      ELSE IF( LDBK.LT.NL ) THEN
         INFO = -17
      ELSE IF( LDCK.LT.M2L ) THEN
         INFO = -19
      ELSE IF( LDDK.LT.M2L ) THEN
         INFO = -21
      ELSE
C
C        Compute workspace.
C
         LW1 = ( N + NP1 + 1 )*( N + M2 ) + MAX( 3*( N + M2 ) + N + NP1,
     $                                           5*( N + M2 ) )
         LW2 = ( N + NP2 )*( N + M1 + 1 ) + MAX( 3*( N + NP2 ) + N +
     $                                           M1, 5*( N + NP2 ) )
         LW3 = M2 + NP1*NP1 + MAX( NP1*MAX( N, M1 ), 3*M2 + NP1, 5*M2 )
         LW4 = NP2 + M1*M1  + MAX( MAX( N, NP1 )*M1, 3*NP2 + M1, 5*NP2 )
         LW5 = 2*N*N + MAX( 1, 14*N*N +
     $                         6*N + MAX( 14*N + 23, 16*N ),
     $                         M2*( N + M2 +  MAX( 3, M1 ) ),
     $                         NP2*( N + NP2 + 3 ) )
         LW6 = MAX( N*M2, N*NP2, M2*NP2, M2*M2 + 4*M2 )
         MINWRK = N*M + NP*( N + M ) + M2*M2 + NP2*NP2 +
     $            MAX( 1, LW1, LW2, LW3, LW4, LW5, LW6 )
         IF( LDWORK.LT.MINWRK )
     $      INFO = -26
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SB10ED', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF( N.EQ.0 .AND. MAX( M2, NP2 ).EQ.0 ) THEN
          RCOND( 1 ) = ONE
          RCOND( 2 ) = ONE
          RCOND( 3 ) = ONE
          RCOND( 4 ) = ONE
          RCOND( 5 ) = ONE
          RCOND( 6 ) = ONE
          RCOND( 7 ) = ONE
          DWORK( 1 ) = ONE
          RETURN
      END IF
C
      TOLL = TOL
      IF( TOLL.LE.ZERO ) THEN
C
C        Set the default value of the tolerance for rank tests.
C
         TOLL = SQRT( DLAMCH( 'Epsilon' ) )
      END IF
C
C     Workspace usage.
C
      IWC  = N*M  + 1
      IWD  = IWC  + NP*N
      IWTU = IWD  + NP*M
      IWTY = IWTU + M2*M2
      IWRK = IWTY + NP2*NP2
C
      CALL DLACPY( 'Full', N,  M, B, LDB, DWORK, NL )
      CALL DLACPY( 'Full', NP, N, C, LDC, DWORK( IWC ), NPL )
      CALL DLACPY( 'Full', NP, M, D, LDD, DWORK( IWD ), NPL )
C
C     Transform the system so that D12 and D21 satisfy the formulas
C     in the computation of the H2 optimal controller.
C     Since SLICOT Library routine SB10PD performs the tests
C     corresponding to the continuous-time counterparts of the
C     assumptions (A3) and (A4), for the frequency w = 0, the
C     next SB10PD routine call uses A - I.
C
      DO 10 I = 1, N
         A(I,I) = A(I,I) - ONE
   10 CONTINUE
C
      CALL SB10PD( N, M, NP, NCON, NMEAS, A, LDA, DWORK, NL,
     $             DWORK( IWC ), NPL, DWORK( IWD ), NPL, DWORK( IWTU ),
     $             M2L, DWORK( IWTY ), NLP, RCOND, TOLL, DWORK( IWRK ),
     $             LDWORK-IWRK+1, INFO2 )
C
      DO 20 I = 1, N
         A(I,I) = A(I,I) + ONE
   20 CONTINUE
C
      IF( INFO2.GT.0 ) THEN
         INFO = INFO2
         RETURN
      END IF
      LWAMAX = INT( DWORK( IWRK ) ) + IWRK - 1
C
      IWX  = IWRK
      IWY  = IWX + N*N
      IWRK = IWY + N*N
C
C     Compute the optimal H2 controller for the normalized system.
C
      CALL SB10SD( N, M, NP, NCON, NMEAS, A, LDA, DWORK, NL,
     $             DWORK( IWC ), NPL, DWORK( IWD ), NPL, AK, LDAK, BK,
     $             LDBK, CK, LDCK, DK, LDDK, DWORK( IWX ), NL,
     $             DWORK( IWY ), NL, RCOND( 3 ), TOLL, IWORK,
     $             DWORK( IWRK ), LDWORK-IWRK+1, BWORK, INFO2 )
      IF( INFO2.GT.0 ) THEN
         INFO = INFO2 + 5
         RETURN
      END IF
      LWAMAX = MAX( INT( DWORK( IWRK ) ) + IWRK - 1, LWAMAX )
C
      IWRK = IWX
C
C     Compute the H2 optimal controller for the original system.
C
      CALL SB10TD( N, M, NP, NCON, NMEAS, DWORK( IWD ), NPL,
     $             DWORK( IWTU ), M2L, DWORK( IWTY ), NLP, AK, LDAK, BK,
     $             LDBK, CK, LDCK, DK, LDDK, RCOND( 7 ), TOLL, IWORK,
     $             DWORK( IWRK ), LDWORK-IWRK+1, INFO2 )
      IF( INFO2.GT.0 ) THEN
         INFO = 10
         RETURN
      END IF
C
      DWORK( 1 ) = DBLE( LWAMAX )
      RETURN
C *** Last line of SB10ED ***
      END