control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
      SUBROUTINE TG01PD( DICO, STDOM, JOBAE, COMPQ, COMPZ, N, M, P,
     $                   NLOW, NSUP, ALPHA, A, LDA, E, LDE, B, LDB,
     $                   C, LDC, Q, LDQ, Z, LDZ, NDIM, ALPHAR, ALPHAI,
     $                   BETA, DWORK, LDWORK, INFO )
C
C     PURPOSE
C
C     To compute orthogonal transformation matrices Q and Z which
C     reduce the regular pole pencil A-lambda*E of the descriptor system
C     (A-lambda*E,B,C) to the generalized real Schur form with ordered
C     generalized eigenvalues. The pair (A,E) is reduced to the form
C
C                ( *  *  *  * )             ( *  *  *  * )
C                (            )             (            )
C                ( 0  A1 *  * )             ( 0  E1 *  * )
C       Q'*A*Z = (            ) ,  Q'*E*Z = (            ) ,
C                ( 0  0  A2 * )             ( 0  0  E2 * )
C                (            )             (            )
C                ( 0  0  0  * )             ( 0  0  0  * )
C
C     where the subpencil A1-lambda*E1 contains the eigenvalues which
C     belong to a suitably defined domain of interest and the subpencil
C     A2-lambda*E2 contains the eigenvalues which are outside of the
C     domain of interest.
C     If JOBAE = 'S', the pair (A,E) is assumed to be already in a
C     generalized real Schur form and the reduction is performed only
C     on the subpencil A12 - lambda*E12 defined by rows and columns
C     NLOW to NSUP of A - lambda*E.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     DICO    CHARACTER*1
C             Specifies the type of the descriptor system as follows:
C             = 'C':  continuous-time system;
C             = 'D':  discrete-time system.
C
C     STDOM   CHARACTER*1
C             Specifies whether the domain of interest is of stability
C             type (left part of complex plane or inside of a circle)
C             or of instability type (right part of complex plane or
C             outside of a circle) as follows:
C             = 'S':  stability type domain;
C             = 'U':  instability type domain.
C
C     JOBAE   CHARACTER*1
C             Specifies the shape of the matrix pair (A,E) on entry
C             as follows:
C             = 'S':  (A,E) is in a generalized real Schur form;
C             = 'G':  A and E are general square dense matrices.
C
C     COMPQ   CHARACTER*1
C             = 'I':  Q is initialized to the unit matrix, and the
C                     orthogonal matrix Q is returned;
C             = 'U':  Q must contain an orthogonal matrix Q1 on entry,
C                     and the product Q1*Q is returned.
C                     This option can not be used when JOBAE = 'G'.
C
C     COMPZ   CHARACTER*1
C             = 'I':  Z is initialized to the unit matrix, and the
C                     orthogonal matrix Z is returned;
C             = 'U':  Z must contain an orthogonal matrix Z1 on entry,
C                     and the product Z1*Z is returned.
C                     This option can not be used when JOBAE = 'G'.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The number of rows of the matrix B, the number of columns
C             of the matrix C, and the order of the square matrices A
C             and E.  N >= 0.
C
C     M       (input) INTEGER
C             The number of columns of the matrix B.  M >= 0.
C
C     P       (input) INTEGER
C             The number of rows of the matrix C.  P >= 0.
C
C     NLOW,   (input) INTEGER
C     NSUP    (input) INTEGER
C             NLOW and NSUP specify the boundary indices for the rows
C             and columns of the principal subpencil of A - lambda*E
C             whose diagonal blocks are to be reordered.
C             0 <= NLOW <= NSUP <= N,       if JOBAE = 'S'.
C             NLOW = MIN( 1, N ), NSUP = N, if JOBAE = 'G'.
C
C     ALPHA   (input) DOUBLE PRECISION
C             The boundary of the domain of interest for the generalized
C             eigenvalues of the pair (A,E). For a continuous-time
C             system (DICO = 'C'), ALPHA is the boundary value for the
C             real parts of the generalized eigenvalues, while for a
C             discrete-time system (DICO = 'D'), ALPHA >= 0 represents
C             the boundary value for the moduli of the generalized
C             eigenvalues.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading N-by-N part of this array must
C             contain the state dynamics matrix A.
C             If JOBAE = 'S' then A must be a matrix in real Schur form.
C             On exit, the leading N-by-N part of this array contains
C             the matrix Q'*A*Z in real Schur form, with the elements
C             below the first subdiagonal set to zero.
C             The leading NDIM-by-NDIM part of the principal subpencil
C             A12 - lambda*E12, defined by A12 := A(NLOW:NSUP,NLOW:NSUP)
C             and E12 := E(NLOW:NSUP,NLOW:NSUP), has generalized
C             eigenvalues in the domain of interest, and the trailing
C             part of this subpencil has generalized eigenvalues outside
C             the domain of interest.
C             The domain of interest for eig(A12,E12), the generalized
C             eigenvalues of the pair (A12,E12), is defined by the
C             parameters ALPHA, DICO and STDOM as follows:
C               For DICO = 'C':
C                  Real(eig(A12,E12)) < ALPHA if STDOM = 'S';
C                  Real(eig(A12,E12)) > ALPHA if STDOM = 'U'.
C               For DICO = 'D':
C                  Abs(eig(A12,E12)) < ALPHA if STDOM = 'S';
C                  Abs(eig(A12,E12)) > ALPHA if STDOM = 'U'.
C
C     LDA     INTEGER
C             The leading dimension of the array A.  LDA >= MAX(1,N).
C
C     E       (input/output) DOUBLE PRECISION array, dimension (LDE,N)
C             On entry, the leading N-by-N part of this array must
C             contain the descriptor matrix E.
C             If JOBAE = 'S', then E must be an upper triangular matrix.
C             On exit, the leading N-by-N part of this array contains an
C             upper triangular matrix Q'*E*Z, with the elements below
C             the diagonal set to zero.
C             The leading NDIM-by-NDIM part of the principal subpencil
C             A12 - lambda*E12 (see description of A) has generalized
C             eigenvalues in the domain of interest, and the trailing
C             part of this subpencil has generalized eigenvalues outside
C             the domain of interest.
C
C     LDE     INTEGER
C             The leading dimension of the array E.  LDE >= MAX(1,N).
C
C     B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C             On entry, the leading N-by-M part of this array must
C             contain the input matrix B.
C             On exit, the leading N-by-M part of this array contains
C             the transformed input matrix Q'*B.
C
C     LDB     INTEGER
C             The leading dimension of the array B.  LDB >= MAX(1,N).
C
C     C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C             On entry, the leading P-by-N part of this array must
C             contain the output matrix C.
C             On exit, the leading P-by-N part of this array contains
C             the transformed output matrix C*Z.
C
C     LDC     INTEGER
C             The leading dimension of the array C.  LDC >= MAX(1,P).
C
C     Q       (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
C             If COMPQ = 'I':  on entry, Q need not be set;
C                              on exit, the leading N-by-N part of this
C                              array contains the orthogonal matrix Q,
C                              where Q' is the product of orthogonal
C                              transformations which are applied to A,
C                              E, and B on the left.
C             If COMPQ = 'U':  on entry, the leading N-by-N part of this
C                              array must contain an orthogonal matrix
C                              Q1;
C                              on exit, the leading N-by-N part of this
C                              array contains the orthogonal matrix
C                              Q1*Q.
C
C     LDQ     INTEGER
C             The leading dimension of the array Q. LDQ >= MAX(1,N).
C
C     Z       (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
C             If COMPZ = 'I':  on entry, Z need not be set;
C                              on exit, the leading N-by-N part of this
C                              array contains the orthogonal matrix Z,
C                              which is the product of orthogonal
C                              transformations applied to A, E, and C
C                              on the right.
C             If COMPZ = 'U':  on entry, the leading N-by-N part of this
C                              array must contain an orthogonal matrix
C                              Z1;
C                              on exit, the leading N-by-N part of this
C                              array contains the orthogonal matrix
C                              Z1*Z.
C
C     LDZ     INTEGER
C             The leading dimension of the array Z. LDZ >= MAX(1,N).
C
C     NDIM    (output) INTEGER
C             The number of generalized eigenvalues of the principal
C             subpencil A12 - lambda*E12 (see description of A) lying
C             inside the domain of interest for eigenvalues.
C
C     ALPHAR  (output) DOUBLE PRECISION array, dimension (N)
C     ALPHAI  (output) DOUBLE PRECISION array, dimension (N)
C     BETA    (output) DOUBLE PRECISION array, dimension (N)
C             On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N,
C             are the generalized eigenvalues.
C             ALPHAR(j) + ALPHAI(j)*i, and BETA(j), j = 1,...,N, are the
C             diagonals of the complex Schur form (S,T) that would
C             result if the 2-by-2 diagonal blocks of the real Schur
C             form of (A,B) were further reduced to triangular form
C             using 2-by-2 complex unitary transformations.
C             If ALPHAI(j) is zero, then the j-th eigenvalue is real;
C             if positive, then the j-th and (j+1)-st eigenvalues are a
C             complex conjugate pair, with ALPHAI(j+1) negative.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) returns the optimal value
C             of LDWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             LDWORK >= 8*N+16, if JOBAE = 'G';
C             LDWORK >= 4*N+16, if JOBAE = 'S'.
C             For optimum performance LDWORK should be larger.
C
C             If LDWORK = -1, then a workspace query is assumed; the
C             routine only calculates the optimal size of the DWORK
C             array, returns this value as the first entry of the DWORK
C             array, and no error message related to LDWORK is issued by
C             XERBLA.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = 1:  the QZ algorithm failed to compute all generalized
C                   eigenvalues of the pair (A,E);
C             = 2:  a failure occured during the ordering of the
C                   generalized real Schur form of the pair (A,E).
C
C     METHOD
C
C     If JOBAE = 'G', the pair (A,E) is reduced to an ordered
C     generalized real Schur form using an orthogonal equivalence
C     transformation A <-- Q'*A*Z and E <-- Q'*E*Z. This transformation
C     is determined so that the leading diagonal blocks of the resulting
C     pair (A,E) have generalized eigenvalues in a suitably defined
C     domain of interest. Then, the transformations are applied to the
C     matrices B and C: B <-- Q'*B and C <-- C*Z.
C     If JOBAE = 'S', then the diagonal blocks of the subpencil
C     A12 - lambda*E12, defined by A12 := A(NLOW:NSUP,NLOW:NSUP)
C     and E12 := E(NLOW:NSUP,NLOW:NSUP), are reordered using orthogonal
C     equivalence transformations, such that the leading blocks have
C     generalized eigenvalues in a suitably defined domain of interest.
C
C     NUMERICAL ASPECTS
C                                     3
C     The algorithm requires about 25N  floating point operations.
C
C     CONTRIBUTOR
C
C     A. Varga, German Aerospace Center,
C     DLR Oberpfaffenhofen, October 2002.
C     Based on the RASP routine SRSFOD.
C
C     REVISIONS
C
C     V. Sima, Dec. 2016.
C
C     KEYWORDS
C
C     Deflating subspace, orthogonal transformation,
C     generalized real Schur form, equivalence transformation.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION ZERO, ONE
      PARAMETER        ( ZERO = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      CHARACTER        COMPQ, COMPZ, DICO, JOBAE, STDOM
      INTEGER          INFO, LDA, LDB, LDC, LDE, LDQ, LDWORK, LDZ, M, N,
     $                 NDIM, NLOW, NSUP, P
      DOUBLE PRECISION ALPHA
C     .. Array Arguments ..
      DOUBLE PRECISION A(LDA,*), ALPHAI(*), ALPHAR(*), B(LDB,*),
     $                 BETA(*),  C(LDC,*),  DWORK(*),  E(LDE,*),
     $                 Q(LDQ,*), Z(LDZ,*)
C     .. Local Scalars ..
      LOGICAL          DISCR, LJOBG, LQUERY
      INTEGER          I, ICOMPQ, ICOMPZ, LW, MINWRK, NB, NBC, NC, NR,
     $                 SDIM, WRKOPT
C     .. Local Arrays ..
      LOGICAL          BWORK(1)
C     .. External Functions ..
      LOGICAL          DELCTG, LSAME
      EXTERNAL         DELCTG, LSAME
C     .. External Subroutines ..
      EXTERNAL         DCOPY, DGEMM, DGEQRF, DGGES, DLACPY, DLASET,
     $                 MB03QG, MB03QV, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC        INT, MAX, MIN
C
C     .. Executable Statements ..
C
C     Decode COMPQ.
C
      IF( LSAME( COMPQ, 'I' ) ) THEN
         ICOMPQ = 1
      ELSE IF( LSAME( COMPQ, 'U' ) ) THEN
         ICOMPQ = 2
      ELSE
         ICOMPQ = 0
      END IF
C
C     Decode COMPZ.
C
      IF( LSAME( COMPZ, 'I' ) ) THEN
         ICOMPZ = 1
      ELSE IF( LSAME( COMPZ, 'U' ) ) THEN
         ICOMPZ = 2
      ELSE
         ICOMPZ = 0
      END IF
C
      INFO  = 0
      DISCR = LSAME( DICO,  'D' )
      LJOBG = LSAME( JOBAE, 'G' )
C
C     Check input scalar arguments.
C
      IF( .NOT. ( LSAME( DICO, 'C' ) .OR. DISCR ) ) THEN
         INFO = -1
      ELSE IF( .NOT. ( LSAME( STDOM, 'S' ) .OR.
     $                 LSAME( STDOM, 'U' ) ) ) THEN
         INFO = -2
      ELSE IF( .NOT. ( LSAME( JOBAE, 'S' ) .OR. LJOBG ) ) THEN
         INFO = -3
      ELSE IF( ICOMPQ.LE.0 .OR. ( LJOBG .AND. ICOMPQ.EQ.2 ) ) THEN
         INFO = -4
      ELSE IF( ICOMPZ.LE.0 .OR. ( LJOBG .AND. ICOMPZ.EQ.2 ) ) THEN
         INFO = -5
      ELSE IF( N.LT.0 ) THEN
         INFO = -6
      ELSE IF( M.LT.0 ) THEN
         INFO = -7
      ELSE IF( P.LT.0 ) THEN
         INFO = -8
      ELSE IF(    ( LJOBG .AND. NLOW.NE.MIN( 1, N ) ) .OR.
     $       ( .NOT.LJOBG .AND. NLOW.LT.0 ) )  THEN
         INFO = -9
      ELSE IF( ( LJOBG .AND. NSUP.NE.N )  .OR. ( .NOT.LJOBG .AND.
     $         ( NSUP.LT.NLOW .OR. N.LT.NSUP ) ) ) THEN
         INFO = -10
      ELSE IF( DISCR .AND. ALPHA.LT.ZERO ) THEN
         INFO = -11
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -13
      ELSE IF( LDE.LT.MAX( 1, N ) ) THEN
         INFO = -15
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -17
      ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
         INFO = -19
      ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
         INFO = -21
      ELSE IF( LDZ.LT.MAX( 1, N ) ) THEN
         INFO = -23
      ELSE
         IF( N.EQ.0 ) THEN
            MINWRK = 1
         ELSE IF( LJOBG ) THEN
            MINWRK = 8*N + 16
         ELSE
            MINWRK = 4*N + 16
         END IF
         LQUERY = LDWORK.EQ.-1
C
C        Estimate the optimal block size.
C
         CALL DGEQRF( N, MAX( M, P ), A, LDA, DWORK, DWORK, -1, INFO )
         NB = INT( DWORK(1) )/MAX( 1, M, P )
         LW = MIN( NB*NB, N*MAX( M, P ) )
C
         IF( LQUERY ) THEN
            WRKOPT = MINWRK
            IF( LJOBG ) THEN
               CALL DGGES( 'Vectors', 'Vectors', 'Not ordered', DELCTG,
     $                     N, A, LDA, E, LDE, SDIM, ALPHAR, ALPHAI,
     $                     BETA, Q, LDQ, Z, LDZ, DWORK, -1, BWORK,
     $                     INFO )
               WRKOPT = MAX( WRKOPT, INT( DWORK(1) ) )
            END IF
            CALL MB03QG( DICO, STDOM, 'Update', 'Update', N, NLOW, NSUP,
     $                   ALPHA, A, LDA, E, LDE, Q, LDQ, Z, LDZ, NDIM,
     $                   DWORK, -1, INFO )
            WRKOPT = MAX( WRKOPT, LW, INT( DWORK(1) ) )
         ELSE IF( LDWORK.LT.MINWRK ) THEN
            INFO = -29
         END IF
      END IF
C
      IF( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'TG01PD', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         DWORK(1) = WRKOPT
         RETURN
      END IF
C
C     Quick return if possible.
C
      NDIM = 0
      IF( N.EQ.0 ) THEN
         DWORK(1) = ONE
         RETURN
      END IF
C
      IF( LJOBG ) THEN
C
C        Reduce (A,E) to real generalized Schur form using an orthogonal
C        equivalence transformation (A,E) <- (Q'*A*Z,Q'*E*Z), accumulate
C        the transformations in Q and Z, and compute the generalized
C        eigenvalues of the pair (A,E) in (ALPHAR, ALPHAI, BETA).
C
C        Workspace:  need   8*N+16;
C                    prefer larger.
C
         CALL DGGES( 'Vectors', 'Vectors', 'Not ordered', DELCTG, N,
     $               A, LDA, E, LDE, SDIM, ALPHAR, ALPHAI, BETA, Q, LDQ,
     $               Z, LDZ, DWORK, LDWORK, BWORK, INFO )
         IF( INFO.NE.0 ) THEN
            INFO = 1
            RETURN
         END IF
         WRKOPT = MAX( MINWRK, INT( DWORK(1) ) )
      ELSE
C
C        Initialize Q and Z if necessary.
C
         IF( ICOMPQ.EQ.1 )
     $      CALL DLASET( 'Full', N, N, ZERO, ONE, Q, LDQ )
         IF( ICOMPZ.EQ.1 )
     $      CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDZ )
         WRKOPT = MINWRK
      END IF
C
C     Separate the spectrum of (A,E). The leading NDIM-by-NDIM subpencil
C     of A12-lambda*E12 corresponds to the generalized eigenvalues of
C     interest.
C     Workspace:  need   4*N+16.
C
      CALL MB03QG( DICO, STDOM, 'Update', 'Update', N, NLOW, NSUP,
     $             ALPHA, A, LDA, E, LDE, Q, LDQ, Z, LDZ, NDIM, DWORK,
     $             LDWORK, INFO )
      IF( INFO.NE.0 ) THEN
         INFO = 2
         RETURN
      END IF
      WRKOPT = MAX( WRKOPT, INT( DWORK(1) ) )
C
C     Compute the generalized eigenvalues.
C
      CALL MB03QV( N, A, LDA, E, LDE, ALPHAR, ALPHAI, BETA, INFO )
C
C     Apply the transformation: B <-- Q'*B.
C
      NBC = MAX( 1, MIN( LDWORK/N, M ) )
      DO 10 I = 1, M, NBC
         NC = MIN( NBC, M-I+1 )
         CALL DGEMM( 'Transpose', 'No transpose', N, NC, N, ONE, Q, LDQ,
     $               B(1,I), LDB, ZERO, DWORK, N )
         CALL DLACPY( 'All', N, NC, DWORK, N, B(1,I), LDB )
   10 CONTINUE
C
C     Apply the transformation: C <-- C*Z.
C
      NBC = MAX( 1, MIN( LDWORK/N, P ) )
      DO 20 I = 1, P, NBC
         NR = MIN( NBC, P-I+1 )
         CALL DGEMM( 'No Transpose', 'No transpose', NR, N, N, ONE,
     $              C(I,1), LDC, Z, LDZ, ZERO, DWORK, NR )
         CALL DLACPY( 'All', NR, N, DWORK, NR, C(I,1), LDC )
   20 CONTINUE
C
      DWORK( 1 ) = MAX( WRKOPT, LW )
C
      RETURN
C *** Last line of TG01PD ***
      END