control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
      SUBROUTINE MB03KA( COMPQ, WHICHQ, WS, K, NC, KSCHUR, IFST, ILST,
     $                   N, NI, S, T, LDT, IXT, Q, LDQ, IXQ, TOL, IWORK,
     $                   DWORK, LDWORK, INFO )
C
C     PURPOSE
C
C     To reorder the diagonal blocks of the formal matrix product
C
C        T22_K^S(K) * T22_K-1^S(K-1) * ... * T22_1^S(1),             (1)
C
C     of length K, in the generalized periodic Schur form
C
C              [  T11_k  T12_k  T13_k  ]
C        T_k = [    0    T22_k  T23_k  ],    k = 1, ..., K,          (2)
C              [    0      0    T33_k  ]
C
C     where
C
C     - the submatrices T11_k are NI(k+1)-by-NI(k), if S(k) = 1, or
C       NI(k)-by-NI(k+1), if S(k) = -1, and contain dimension-induced
C       infinite eigenvalues,
C     - the submatrices T22_k are NC-by-NC and contain core eigenvalues,
C       which are generically neither zero nor infinite,
C     - the submatrices T33_k contain dimension-induced zero
C       eigenvalues,
C
C     such that the block with starting row index IFST in (1) is moved
C     to row index ILST. The indices refer to the T22_k submatrices.
C
C     Optionally, the transformation matrices Q_1,...,Q_K from the
C     reduction into generalized periodic Schur form are updated with
C     respect to the performed reordering.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     COMPQ   CHARACTER*1
C             = 'N': do not compute any of the matrices Q_k;
C             = 'U': each coefficient of Q must contain an orthogonal
C                    matrix Q1_k on entry, and the products Q1_k*Q_k are
C                    returned, where Q_k, k = 1, ..., K, performed the
C                    reordering;
C             = 'W': the computation of each Q_k is specified
C                    individually in the array WHICHQ.
C
C     WHICHQ  INTEGER array, dimension (K)
C             If COMPQ = 'W', WHICHQ(k) specifies the computation of Q_k
C             as follows:
C             = 0:   do not compute Q_k;
C             > 0:   the kth coefficient of Q must contain an orthogonal
C                    matrix Q1_k on entry, and the product Q1_k*Q_k is
C                    returned.
C             This array is not referenced if COMPQ <> 'W'.
C
C     WS      LOGICAL
C             = .FALSE. : do not perform the strong stability tests;
C             = .TRUE.  : perform the strong stability tests; often,
C                         this is not needed, and omitting them can save
C                         some computations.
C
C     Input/Output Parameters
C
C     K       (input) INTEGER
C             The period of the periodic matrix sequences T and Q (the
C             number of factors in the matrix product).  K >= 2.
C             (For K = 1, a standard eigenvalue reordering problem is
C             obtained.)
C
C     NC      (input) INTEGER
C             The number of core eigenvalues.  0 <= NC <= min(N).
C
C     KSCHUR  (input) INTEGER
C             The index for which the matrix T22_kschur is upper quasi-
C             triangular. All other T22 matrices are upper triangular.
C
C     IFST    (input/output) INTEGER
C     ILST    (input/output) INTEGER
C             Specify the reordering of the diagonal blocks, as follows:
C             The block with starting row index IFST in (1) is moved to
C             row index ILST by a sequence of direct swaps between adjacent
C             blocks in the product.
C             On exit, if IFST pointed on entry to the second row of a
C             2-by-2 block in the product, it is changed to point to the
C             first row; ILST always points to the first row of the block
C             in its final position in the product (which may differ from
C             its input value by +1 or -1).
C             1 <= IFST <= NC, 1 <= ILST <= NC.
C
C     N       (input) INTEGER array, dimension (K)
C             The leading K elements of this array must contain the
C             dimensions of the factors of the formal matrix product T,
C             such that the k-th coefficient T_k is an N(k+1)-by-N(k)
C             matrix, if S(k) = 1, or an N(k)-by-N(k+1) matrix,
C             if S(k) = -1, k = 1, ..., K, where N(K+1) = N(1).
C
C     NI      (input) INTEGER array, dimension (K)
C             The leading K elements of this array must contain the
C             dimensions of the factors of the matrix sequence T11_k.
C             N(k) >= NI(k) + NC >= 0.
C
C     S       (input) INTEGER array, dimension (K)
C             The leading K elements of this array must contain the
C             signatures (exponents) of the factors in the K-periodic
C             matrix sequence. Each entry in S must be either 1 or -1;
C             the value S(k) = -1 corresponds to using the inverse of
C             the factor T_k.
C
C     T       (input/output) DOUBLE PRECISION array, dimension (*)
C             On entry, this array must contain at position IXT(k) the
C             matrix T_k, which is at least N(k+1)-by-N(k), if S(k) = 1,
C             or at least N(k)-by-N(k+1), if S(k) = -1, in periodic
C             Schur form.
C             On exit, the matrices T_k are overwritten by the reordered
C             periodic Schur form.
C
C     LDT     INTEGER array, dimension (K)
C             The leading dimensions of the matrices T_k in the one-
C             dimensional array T.
C             LDT(k) >= max(1,N(k+1)),  if S(k) =  1,
C             LDT(k) >= max(1,N(k)),    if S(k) = -1.
C
C     IXT     INTEGER array, dimension (K)
C             Start indices of the matrices T_k in the one-dimensional
C             array T.
C
C     Q       (input/output) DOUBLE PRECISION array, dimension (*)
C             On entry, this array must contain at position IXQ(k) a
C             matrix Q_k of size at least N(k)-by-N(k), provided that
C             COMPQ = 'U', or COMPQ = 'W' and WHICHQ(k) > 0.
C             On exit, if COMPQ = 'U', or COMPQ = 'W' and WHICHQ(k) > 0,
C             Q_k is post-multiplied with the orthogonal matrix that
C             performed the reordering.
C             This array is not referenced if COMPQ = 'N'.
C
C     LDQ     INTEGER array, dimension (K)
C             The leading dimensions of the matrices Q_k in the one-
C             dimensional array Q.
C             LDQ(k) >= max(1,N(k)), if COMPQ = 'U', or COMPQ = 'W' and
C                                                       WHICHQ(k) > 0;
C             This array is not referenced if COMPQ = 'N'.
C
C     IXQ     INTEGER array, dimension (K)
C             Start indices of the matrices Q_k in the one-dimensional
C             array Q.
C             This array is not referenced if COMPQ = 'N'.
C
C     Tolerances
C
C     TOL     DOUBLE PRECISION array, dimension (3)
C             This array contains tolerance parameters. The weak and
C             strong stability tests use a threshold computed by the
C             formula  MAX( c*EPS*NRM, SMLNUM ),  where c is a constant,
C             NRM is the Frobenius norm of the current matrix formed by
C             concatenating K pairs of adjacent diagonal blocks of sizes
C             1 and/or 2 in the T22_k submatrices from (2), which are
C             swapped, and EPS and SMLNUM are the machine precision and
C             safe minimum divided by EPS, respectively (see LAPACK
C             Library routine DLAMCH). The norm NRM is computed by this
C             routine; the other values are stored in the array TOL.
C             TOL(1), TOL(2), and TOL(3) contain c, EPS, and SMLNUM,
C             respectively. TOL(1) should normally be at least 10.
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (4*K)
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) returns the optimal LDWORK.
C
C     LDWORK  INTEGER
C             The dimension of the array DWORK.
C             LDWORK >= 10*K + MN, if all blocks between IFST and ILST
C                                  have order 1;
C             LDWORK >= 25*K + MN, if there is at least a block of
C                                  order 2, but no adjacent blocks of
C                                  order 2 can appear between IFST and
C                                  ILST during reordering;
C             LDWORK >= MAX(42*K + MN, 80*K - 48), if at least a pair of
C                                  adjacent blocks of order 2 can appear
C                                  between IFST and ILST during
C                                  reordering;
C             where MN = MXN, if MXN > 10, and MN = 0, otherwise, with
C             MXN = MAX(N(k),k=1,...,K).
C
C             If LDWORK = -1  a workspace query is assumed; the
C             routine only calculates the optimal size of the DWORK
C             array, returns this value as the first entry of the DWORK
C             array, and no error message is issued by XERBLA.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -21, the LDWORK argument was too small;
C             = 1:  the reordering of T failed because some eigenvalues
C                   are too close to separate (the problem is very ill-
C                   conditioned); T may have been partially reordered.
C                   The returned value of ILST is the index where this
C                   was detected.
C
C     METHOD
C
C     An adaptation of the LAPACK Library routine DTGEXC is used.
C
C     NUMERICAL ASPECTS
C
C     The implemented method is numerically backward stable.
C
C     CONTRIBUTOR
C
C     R. Granat, Umea University, Sweden, Apr. 2008.
C
C     REVISIONS
C
C     V. Sima, Research Institute for Informatics, Bucharest, Romania,
C     Mar. 2010, SLICOT Library version of the PEP routine PEP_DTGEXC.
C     V. Sima, July 2010.
C
C     KEYWORDS
C
C     Orthogonal transformation, periodic QZ algorithm, periodic
C     Sylvester-like equations, QZ algorithm.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION   ZERO
      PARAMETER          ( ZERO = 0.0D+0 )
C     ..
C     .. Scalar Arguments ..
      CHARACTER          COMPQ
      LOGICAL            WS
      INTEGER            IFST, ILST, INFO, K, KSCHUR, LDWORK, NC
C     ..
C     .. Array Arguments ..
      INTEGER            IWORK( * ), IXQ( * ), IXT( * ), LDQ( * ),
     $                   LDT( * ), N( * ), NI( * ), S( * ), WHICHQ( * )
      DOUBLE PRECISION   DWORK( * ), Q( * ), T( * ), TOL( * )
C     ..
C     .. Local Scalars ..
      INTEGER            HERE, I, IP1, IT, MINWRK, NBF, NBL, NBNEXT
C     ..
C     .. External Subroutines ..
      EXTERNAL           MB03KB, XERBLA
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC          DBLE, INT, MAX, MOD
C     ..
C     .. Executable Statements ..
C
C     For efficiency reasons the parameters are not checked, except for
C     workspace.
C
      IF( NC.EQ.2 ) THEN
         NBF = 1
         NBL = 1
      ELSE IF( NC.EQ.3 ) THEN
         NBF = 1
         NBL = 2
      ELSE
         NBF = 2
         NBL = 2
      END IF
      CALL MB03KB( COMPQ, WHICHQ, WS, K, NC, KSCHUR, 1, NBF, NBL, N, NI,
     $             S, T, LDT, IXT, Q, LDQ, IXQ, TOL, IWORK, DWORK, -1,
     $             INFO )
      MINWRK = MAX( 1, INT( DWORK(1) ) )
      IF( LDWORK.NE.-1 .AND. LDWORK.LT.MINWRK )
     $   INFO = -21
C
C     Quick return if possible
C
      IF( LDWORK.EQ.-1 ) THEN
         DWORK(1) = DBLE( MINWRK )
         RETURN
      ELSE IF( INFO.LT.0 ) THEN
         CALL XERBLA( 'MB03KA', -INFO )
         RETURN
      END IF
C
C     Set I and IP1 to point to KSCHUR and KSCHUR+1 to simplify
C     indices below.
C
      I   = KSCHUR
      IP1 = MOD( I, K ) + 1
C
C     Determine the first row of the block in T22_kschur corresponding
C     to the first block in the product and find out if it is 1-by-1 or
C     2-by-2.
C
      IF( IFST.GT.1 ) THEN
         IF( S(I).EQ.1 ) THEN
            IT = IXT(I) + ( NI(I) + IFST - 2 )*LDT(I) + NI(IP1) + IFST
     $                  - 1
         ELSE
            IT = IXT(I) + ( NI(IP1) + IFST - 2 )*LDT(I) + NI(I) + IFST
     $                  - 1
         END IF
         IF( T( IT ).NE.ZERO )
     $      IFST = IFST - 1
      END IF
      NBF = 1
      IF( IFST.LT.NC ) THEN
         IF( S(I).EQ.1 ) THEN
            IT = IXT(I) + ( NI(I) + IFST - 1 )*LDT(I) + NI(IP1) + IFST
         ELSE
            IT = IXT(I) + ( NI(IP1) + IFST - 1 )*LDT(I) + NI(I) + IFST
         END IF
         IF( T( IT ).NE.ZERO )
     $      NBF = 2
      END IF
C
C     Determine the first row of the block in T_kschur corresponding
C     to the last block in the product and find out it is 1-by-1 or
C     2-by-2.
C
      IF( ILST.GT.1 ) THEN
         IF( S(I).EQ.1 ) THEN
            IT = IXT(I) + ( NI(I) + ILST - 2 )*LDT(I) + NI(IP1) + ILST
     $                  - 1
         ELSE
            IT = IXT(I) + ( NI(IP1) + ILST - 2 )*LDT(I) + NI(I) + ILST
     $                  - 1
         END IF
         IF( T( IT ).NE.ZERO )
     $      ILST = ILST - 1
      END IF
      NBL = 1
      IF( ILST.LT.NC ) THEN
         IF( S(I).EQ.1 ) THEN
            IT = IXT(I) + ( NI(I) + ILST - 1 )*LDT(I) + NI(IP1) + ILST
         ELSE
            IT = IXT(I) + ( NI(IP1) + ILST - 1 )*LDT(I) + NI(I) + ILST
         END IF
         IF( T( IT ).NE.ZERO )
     $      NBL = 2
      END IF
C
C     If the specified and last block in the product were the same,
C     return.
C
      IF( IFST.EQ.ILST )
     $   RETURN
C
C     If the specified block lies above the last block on the diagonal
C     of the product and the blocks have unequal sizes, update ILST.
C
      IF( IFST.LT.ILST ) THEN
C
C        Update ILST.
C
         IF( NBF.EQ.2 .AND. NBL.EQ.1 )
     $      ILST = ILST - 1
         IF( NBF.EQ.1 .AND. NBL.EQ.2 )
     $      ILST = ILST + 1
C
         HERE = IFST
C
   10    CONTINUE
C
C        Swap a block with next one below.
C
         IF( NBF.EQ.1 .OR. NBF.EQ.2 ) THEN
C
C           Current next block is either 1-by-1 or 2-by-2.
C
            NBNEXT = 1
            IF( HERE+NBF+1.LE.NC ) THEN
               IF( S(I).EQ.1 ) THEN
                  IT = IXT(I) + ( NI(I) + HERE + NBF - 1 )*LDT(I) +
     $                          NI(IP1) + HERE + NBF
               ELSE
                  IT = IXT(I) + ( NI(IP1) + HERE + NBF - 1 )*LDT(I) +
     $                              NI(I) + HERE + NBF
               END IF
               IF( T( IT ).NE.ZERO )
     $            NBNEXT = 2
            END IF
            CALL MB03KB( COMPQ, WHICHQ, WS, K, NC, KSCHUR, HERE, NBF,
     $                   NBNEXT, N, NI, S, T, LDT, IXT, Q, LDQ, IXQ,
     $                   TOL, IWORK, DWORK, LDWORK, INFO )
            IF( INFO.NE.0 ) THEN
               ILST = HERE
               RETURN
            END IF
            HERE = HERE + NBNEXT
C
C           Test if a 2-by-2 block breaks into two 1-by-1 blocks.
C
            IF( NBF.EQ.2 ) THEN
               IF( S(I).EQ.1 ) THEN
                  IT = IXT(I) + ( NI(I) + HERE - 1 )*LDT(I) + NI(IP1)
     $                        + HERE
               ELSE
                  IT = IXT(I) + ( NI(IP1) + HERE - 1 )*LDT(I) + NI(I)
     $                        + HERE
               END IF
               IF( T( IT ).EQ.ZERO )
     $            NBF = 3
            END IF
         ELSE
C
C           Current next block consists of two 1-by-1 blocks each of
C           which must be swapped individually.
C
            NBNEXT = 1
            IF( HERE+3.LE.NC ) THEN
               IF( S(I).EQ.1 ) THEN
                  IT = IXT(I) + ( NI(I) + HERE + 1 )*LDT(I) + NI(IP1) +
     $                                    HERE + 2
               ELSE
                  IT = IXT(I) + ( NI(IP1) + HERE + 1 )*LDT(I) + NI(I) +
     $                                      HERE + 2
               END IF
               IF( T( IT ).NE.ZERO )
     $            NBNEXT = 2
            END IF
            CALL MB03KB( COMPQ, WHICHQ, WS, K, NC, KSCHUR, HERE+1, 1,
     $                   NBNEXT, N, NI, S, T, LDT, IXT, Q, LDQ, IXQ,
     $                   TOL, IWORK, DWORK, LDWORK, INFO )
            IF( INFO.NE.0 ) THEN
               ILST = HERE
               RETURN
            END IF
            IF( NBNEXT.EQ.1 ) THEN
C
C              Swap two 1-by-1 blocks.
C
               CALL MB03KB( COMPQ, WHICHQ, WS, K, NC, KSCHUR, HERE, 1,
     $                      NBNEXT, N, NI, S, T, LDT, IXT, Q, LDQ, IXQ,
     $                      TOL, IWORK, DWORK, LDWORK, INFO )
               IF( INFO.NE.0 ) THEN
                  ILST = HERE
                  RETURN
               END IF
               HERE = HERE + 1
            ELSE
C
C              Recompute NBNEXT in case 2-by-2 split.
C
               IF( S(I).EQ.1 ) THEN
                  IT = IXT(I) + ( NI(I) + HERE )*LDT(I) + NI(IP1) + HERE
     $                        + 1
               ELSE
                  IT = IXT(I) + ( NI(IP1) + HERE )*LDT(I) + NI(I) + HERE
     $                                    + 1
               END IF
               IF( T( IT ).EQ.ZERO )
     $            NBNEXT = 1
               IF( NBNEXT.EQ.2 ) THEN
C
C                 The 2-by-2 block did not split.
C
                  CALL MB03KB( COMPQ, WHICHQ, WS, K, NC, KSCHUR, HERE,
     $                         1, NBNEXT, N, NI, S, T, LDT, IXT, Q, LDQ,
     $                         IXQ, TOL, IWORK, DWORK, LDWORK, INFO )
                  IF( INFO.NE.0 ) THEN
                     ILST = HERE
                     RETURN
                  END IF
                  HERE = HERE + 2
               ELSE
C
C                 The 2-by-2 block did split.
C
                  CALL MB03KB( COMPQ, WHICHQ, WS, K, NC, KSCHUR, HERE,
     $                         1, 1, N, NI, S, T, LDT, IXT, Q, LDQ, IXQ,
     $                         TOL, IWORK, DWORK, LDWORK, INFO )
                  IF( INFO.NE.0 ) THEN
                     ILST = HERE
                     RETURN
                  END IF
                  CALL MB03KB( COMPQ, WHICHQ, WS, K, NC, KSCHUR, HERE+1,
     $                         1, 1, N, NI, S, T, LDT, IXT, Q, LDQ, IXQ,
     $                         TOL, IWORK, DWORK, LDWORK, INFO )
                  IF( INFO.NE.0 ) THEN
                     ILST = HERE + 1
                     RETURN
                  END IF
                  HERE = HERE + 2
               END IF
            END IF
         END IF
         IF( HERE.LT.ILST )
     $      GO TO 10
C
      ELSE
C
         HERE = IFST
   20    CONTINUE
C
C        Swap a block with next one above.
C
         IF( NBF.EQ.1 .OR. NBF.EQ.2 ) THEN
C
C           Current block is either 1-by-1 or 2-by-2.
C
            NBNEXT = 1
            IF( HERE.GE.3 ) THEN
               IF( S(I).EQ.1 ) THEN
                  IT = IXT(I) + ( NI(I) + HERE - 3 )*LDT(I) + NI(IP1)
     $                                  + HERE - 2
               ELSE
                  IT = IXT(I) + ( NI(IP1) + HERE - 3 )*LDT(I) + NI(I)
     $                                    + HERE - 2
               END IF
               IF( T( IT ).NE.ZERO )
     $            NBNEXT = 2
            END IF
            CALL MB03KB( COMPQ, WHICHQ, WS, K, NC, KSCHUR, HERE-NBNEXT,
     $                   NBNEXT, NBF, N, NI, S, T, LDT, IXT, Q, LDQ,
     $                   IXQ, TOL, IWORK, DWORK, LDWORK, INFO )
            IF( INFO.NE.0 ) THEN
               ILST = HERE
               RETURN
            END IF
            HERE = HERE - NBNEXT
C
C           Test if a 2-by-2 block breaks into two 1-by-1 blocks.
C
            IF( NBF.EQ.2 ) THEN
               IF( S(I).EQ.1 ) THEN
                  IT = IXT(I) + ( NI(I) + HERE - 1 )*LDT(I) + NI(IP1)
     $                                  + HERE
               ELSE
                  IT = IXT(I) + ( NI(IP1) + HERE - 1 )*LDT(I) + NI(I)
     $                                    + HERE
               END IF
               IF( T( IT ).EQ.ZERO )
     $            NBF = 3
            END IF
C
         ELSE
C
C           Current block consists of two 1-by-1 blocks each of which
C           must be swapped individually.
C
            NBNEXT = 1
            IF( HERE.GE.3 ) THEN
               IF( S(I).EQ.1 ) THEN
                  IT = IXT(I) + ( NI(I) + HERE - 3 )*LDT(I) + NI(IP1)
     $                                  + HERE - 2
               ELSE
                  IT = IXT(I) + ( NI(IP1) + HERE - 3 )*LDT(I) + NI(I)
     $                                    + HERE - 2
               END IF
               IF( T( IT ).NE.ZERO )
     $            NBNEXT = 2
            END IF
            CALL MB03KB( COMPQ, WHICHQ, WS, K, NC, KSCHUR, HERE-NBNEXT,
     $                   NBNEXT, 1, N, NI, S, T, LDT, IXT, Q, LDQ, IXQ,
     $                   TOL, IWORK, DWORK, LDWORK, INFO )
            IF( INFO.NE.0 ) THEN
               ILST = HERE
               RETURN
            END IF
            IF( NBNEXT.EQ.1 ) THEN
C
C              Swap two 1-by-1 blocks.
C
               CALL MB03KB( COMPQ, WHICHQ, WS, K, NC, KSCHUR, HERE,
     $                      NBNEXT, 1, N, NI, S, T, LDT, IXT, Q, LDQ,
     $                      IXQ, TOL, IWORK, DWORK, LDWORK, INFO )
               IF( INFO.NE.0 ) THEN
                  ILST = HERE
                  RETURN
               END IF
               HERE = HERE - 1
            ELSE
C
C              Recompute NBNEXT in case 2-by-2 split.
C
               IF( S(I).EQ.1 ) THEN
                  IT = IXT(I) + ( NI(I) + HERE - 2 )*LDT(I) + NI(IP1)
     $                                  + HERE - 1
               ELSE
                  IT = IXT(I) + ( NI(IP1) + HERE - 2 )*LDT(I) + NI(I)
     $                                    + HERE - 1
               END IF
               IF( T( IT ).EQ.ZERO )
     $            NBNEXT = 1
               IF( NBNEXT.EQ.2 ) THEN
C
C                 The 2-by-2 block did not split.
C
                  CALL MB03KB( COMPQ, WHICHQ, WS, K, NC, KSCHUR, HERE-1,
     $                         2, 1, N, NI, S, T, LDT, IXT, Q, LDQ, IXQ,
     $                         TOL, IWORK, DWORK, LDWORK, INFO )
                  IF( INFO.NE.0 ) THEN
                     ILST = HERE
                     RETURN
                  END IF
                  HERE = HERE - 2
               ELSE

C                 The 2-by-2 block did split.
C
                  CALL MB03KB( COMPQ, WHICHQ, WS, K, NC, KSCHUR, HERE,
     $                         1, 1, N, NI, S, T, LDT, IXT, Q, LDQ, IXQ,
     $                         TOL, IWORK, DWORK, LDWORK, INFO )
                  IF( INFO.NE.0 ) THEN
                     ILST = HERE
                     RETURN
                  END IF
                  CALL MB03KB( COMPQ, WHICHQ, WS, K, NC, KSCHUR, HERE-1,
     $                         1, 1, N, NI, S, T, LDT, IXT, Q, LDQ, IXQ,
     $                         TOL, IWORK, DWORK, LDWORK, INFO )
                  IF( INFO.NE.0 ) THEN
                     ILST = HERE - 1
                     RETURN
                  END IF
                  HERE = HERE - 2
               END IF
            END IF
         END IF
         IF( HERE.GT.ILST )
     $      GO TO 20
      END IF
      ILST = HERE
C
C     Store optimal workspace values and return.
C
      DWORK(1) = DBLE( MINWRK )
      RETURN
C
C *** Last line of MB03KA ***
      END