control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
      SUBROUTINE SB10RD( N, M, NP, NCON, NMEAS, GAMMA, A, LDA, B, LDB,
     $                   C, LDC, D, LDD, F, LDF, H, LDH, TU, LDTU, TY,
     $                   LDTY, X, LDX, Y, LDY, AK, LDAK, BK, LDBK, CK,
     $                   LDCK, DK, LDDK, IWORK, DWORK, LDWORK, INFO )
C
C     PURPOSE
C
C     To compute the matrices of an H-infinity (sub)optimal controller
C
C              | AK | BK |
C          K = |----|----|,
C              | CK | DK |
C
C     from the state feedback matrix F and output injection matrix H as
C     determined by the SLICOT Library routine SB10QD.
C
C     ARGUMENTS
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the system.  N >= 0.
C
C     M       (input) INTEGER
C             The column size of the matrix B.  M >= 0.
C
C     NP      (input) INTEGER
C             The row size of the matrix C.  NP >= 0.
C
C     NCON    (input) INTEGER
C             The number of control inputs (M2).  M >= NCON >= 0.
C             NP-NMEAS >= NCON.
C
C     NMEAS   (input) INTEGER
C             The number of measurements (NP2).  NP >= NMEAS >= 0.
C             M-NCON >= NMEAS.
C
C     GAMMA   (input) DOUBLE PRECISION
C             The value of gamma. It is assumed that gamma is
C             sufficiently large so that the controller is admissible.
C             GAMMA >= 0.
C
C     A       (input) DOUBLE PRECISION array, dimension (LDA,N)
C             The leading N-by-N part of this array must contain the
C             system state matrix A.
C
C     LDA     INTEGER
C             The leading dimension of the array A.  LDA >= max(1,N).
C
C     B       (input) DOUBLE PRECISION array, dimension (LDB,M)
C             The leading N-by-M part of this array must contain the
C             system input matrix B.
C
C     LDB     INTEGER
C             The leading dimension of the array B.  LDB >= max(1,N).
C
C     C       (input) DOUBLE PRECISION array, dimension (LDC,N)
C             The leading NP-by-N part of this array must contain the
C             system output matrix C.
C
C     LDC     INTEGER
C             The leading dimension of the array C.  LDC >= max(1,NP).
C
C     D       (input) DOUBLE PRECISION array, dimension (LDD,M)
C             The leading NP-by-M part of this array must contain the
C             system input/output matrix D.
C
C     LDD     INTEGER
C             The leading dimension of the array D.  LDD >= max(1,NP).
C
C     F       (input) DOUBLE PRECISION array, dimension (LDF,N)
C             The leading M-by-N part of this array must contain the
C             state feedback matrix F.
C
C     LDF     INTEGER
C             The leading dimension of the array F.  LDF >= max(1,M).
C
C     H       (input) DOUBLE PRECISION array, dimension (LDH,NP)
C             The leading N-by-NP part of this array must contain the
C             output injection matrix H.
C
C     LDH     INTEGER
C             The leading dimension of the array H.  LDH >= max(1,N).
C
C     TU      (input) DOUBLE PRECISION array, dimension (LDTU,M2)
C             The leading M2-by-M2 part of this array must contain the
C             control transformation matrix TU, as obtained by the
C             SLICOT Library routine SB10PD.
C
C     LDTU    INTEGER
C             The leading dimension of the array TU.  LDTU >= max(1,M2).
C
C     TY      (input) DOUBLE PRECISION array, dimension (LDTY,NP2)
C             The leading NP2-by-NP2 part of this array must contain the
C             measurement transformation matrix TY, as obtained by the
C             SLICOT Library routine SB10PD.
C
C     LDTY    INTEGER
C             The leading dimension of the array TY.
C             LDTY >= max(1,NP2).
C
C     X       (input) DOUBLE PRECISION array, dimension (LDX,N)
C             The leading N-by-N part of this array must contain the
C             matrix X, solution of the X-Riccati equation, as obtained
C             by the SLICOT Library routine SB10QD.
C
C     LDX     INTEGER
C             The leading dimension of the array X.  LDX >= max(1,N).
C
C     Y       (input) DOUBLE PRECISION array, dimension (LDY,N)
C             The leading N-by-N part of this array must contain the
C             matrix Y, solution of the Y-Riccati equation, as obtained
C             by the SLICOT Library routine SB10QD.
C
C     LDY     INTEGER
C             The leading dimension of the array Y.  LDY >= max(1,N).
C
C     AK      (output) DOUBLE PRECISION array, dimension (LDAK,N)
C             The leading N-by-N part of this array contains the
C             controller state matrix AK.
C
C     LDAK    INTEGER
C             The leading dimension of the array AK.  LDAK >= max(1,N).
C
C     BK      (output) DOUBLE PRECISION array, dimension (LDBK,NMEAS)
C             The leading N-by-NMEAS part of this array contains the
C             controller input matrix BK.
C
C     LDBK    INTEGER
C             The leading dimension of the array BK.  LDBK >= max(1,N).
C
C     CK      (output) DOUBLE PRECISION array, dimension (LDCK,N)
C             The leading NCON-by-N part of this array contains the
C             controller output matrix CK.
C
C     LDCK    INTEGER
C             The leading dimension of the array CK.
C             LDCK >= max(1,NCON).
C
C     DK      (output) DOUBLE PRECISION array, dimension (LDDK,NMEAS)
C             The leading NCON-by-NMEAS part of this array contains the
C             controller input/output matrix DK.
C
C     LDDK    INTEGER
C             The leading dimension of the array DK.
C             LDDK >= max(1,NCON).
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (LIWORK), where
C             LIWORK = max(2*(max(NP,M)-M2-NP2,M2,N),NP2)
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) contains the optimal
C             LDWORK.
C
C     LDWORK  INTEGER
C             The dimension of the array DWORK.
C             LDWORK >= max(1, M2*NP2 + NP2*NP2 + M2*M2 +
C                           max(D1*D1 + max(2*D1, (D1+D2)*NP2),
C                               D2*D2 + max(2*D2, D2*M2), 3*N,
C                               N*(2*NP2 + M2) +
C                               max(2*N*M2, M2*NP2 +
C                                           max(M2*M2+3*M2, NP2*(2*NP2+
C                                                  M2+max(NP2,N))))))
C             where D1 = NP1 - M2, D2 = M1 - NP2,
C                  NP1 = NP - NP2, M1 = M - M2.
C             For good performance, LDWORK must generally be larger.
C             Denoting Q = max(M1,M2,NP1,NP2), an upper bound is
C             max( 1, Q*(3*Q + 3*N + max(2*N, 4*Q + max(Q, N)))).
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = 1:  if the controller is not admissible (too small value
C                   of gamma);
C             = 2:  if the determinant of Im2 + Tu*D11HAT*Ty*D22 is zero.
C
C     METHOD
C
C     The routine implements the Glover's and Doyle's formulas [1],[2].
C
C     REFERENCES
C
C     [1] Glover, K. and Doyle, J.C.
C         State-space formulae for all stabilizing controllers that
C         satisfy an Hinf norm bound and relations to risk sensitivity.
C         Systems and Control Letters, vol. 11, pp. 167-172, 1988.
C
C     [2] Balas, G.J., Doyle, J.C., Glover, K., Packard, A., and
C         Smith, R.
C         mu-Analysis and Synthesis Toolbox.
C         The MathWorks Inc., Natick, Mass., 1995.
C
C     NUMERICAL ASPECTS
C
C     The accuracy of the result depends on the condition numbers of the
C     input and output transformations.
C
C     CONTRIBUTORS
C
C     P.Hr. Petkov, D.W. Gu and M.M. Konstantinov, October 1998.
C
C     REVISIONS
C
C     V. Sima, Research Institute for Informatics, Bucharest, May 1999,
C     Sept. 1999, Oct. 2001.
C
C     KEYWORDS
C
C     Algebraic Riccati equation, H-infinity optimal control, robust
C     control.
C
C  *********************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
C     ..
C     .. Scalar Arguments ..
      INTEGER            INFO, LDA, LDAK, LDB, LDBK, LDC, LDCK, LDD,
     $                   LDDK, LDF, LDH, LDTU, LDTY, LDWORK, LDX, LDY,
     $                   M, N, NCON, NMEAS, NP
      DOUBLE PRECISION   GAMMA
C     ..
C     .. Array Arguments ..
      INTEGER            IWORK( * )
      DOUBLE PRECISION   A( LDA, * ), AK( LDAK, * ), B( LDB, * ),
     $                   BK( LDBK, * ), C( LDC, * ), CK( LDCK, * ),
     $                   D( LDD, * ), DK( LDDK, * ), DWORK( * ),
     $                   F( LDF, * ), H( LDH, * ), TU( LDTU, * ),
     $                   TY( LDTY, * ), X( LDX, * ), Y( LDY, * )
C     ..
C     .. Local Scalars ..
      INTEGER            I, ID11, ID12, ID21, IJ, INFO2, IW1, IW2, IW3,
     $                   IW4, IWB, IWC, IWRK, J, LWAMAX, M1, M2, MINWRK,
     $                   ND1, ND2, NP1, NP2
      DOUBLE PRECISION   ANORM, EPS, RCOND
C     ..
C     .. External Functions ..
      DOUBLE PRECISION   DLAMCH, DLANGE, DLANSY
      EXTERNAL           DLAMCH, DLANGE, DLANSY
C     ..
C     .. External Subroutines ..
      EXTERNAL           DGECON, DGEMM, DGETRF, DGETRI, DGETRS, DLACPY,
     $                   DLASET, DPOTRF, DSYCON, DSYRK, DSYTRF, DSYTRS,
     $                   DTRMM, MA02AD, MB01RX, XERBLA
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC          DBLE, INT, MAX
C     ..
C     .. Executable Statements ..
C
C     Decode and Test input parameters.
C
      M1  = M - NCON
      M2  = NCON
      NP1 = NP - NMEAS
      NP2 = NMEAS
C
      INFO = 0
      IF( N.LT.0 ) THEN
         INFO = -1
      ELSE IF( M.LT.0 ) THEN
         INFO = -2
      ELSE IF( NP.LT.0 ) THEN
         INFO = -3
      ELSE IF( NCON.LT.0 .OR. M1.LT.0 .OR. M2.GT.NP1 ) THEN
         INFO = -4
      ELSE IF( NMEAS.LT.0 .OR. NP1.LT.0 .OR. NP2.GT.M1 ) THEN
         INFO = -5
      ELSE IF( GAMMA.LT.ZERO ) THEN
         INFO = -6
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -8
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -10
      ELSE IF( LDC.LT.MAX( 1, NP ) ) THEN
         INFO = -12
      ELSE IF( LDD.LT.MAX( 1, NP ) ) THEN
         INFO = -14
      ELSE IF( LDF.LT.MAX( 1, M ) ) THEN
         INFO = -16
      ELSE IF( LDH.LT.MAX( 1, N ) ) THEN
         INFO = -18
      ELSE IF( LDTU.LT.MAX( 1, M2 ) ) THEN
         INFO = -20
      ELSE IF( LDTY.LT.MAX( 1, NP2 ) ) THEN
         INFO = -22
      ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
         INFO = -24
      ELSE IF( LDY.LT.MAX( 1, N ) ) THEN
         INFO = -26
      ELSE IF( LDAK.LT.MAX( 1, N ) ) THEN
         INFO = -28
      ELSE IF( LDBK.LT.MAX( 1, N ) ) THEN
         INFO = -30
      ELSE IF( LDCK.LT.MAX( 1, M2 ) ) THEN
         INFO = -32
      ELSE IF( LDDK.LT.MAX( 1, M2 ) ) THEN
         INFO = -34
      ELSE
C
C        Compute workspace.
C
         ND1 = NP1 - M2
         ND2 = M1 - NP2
         MINWRK = MAX( 1, M2*NP2 + NP2*NP2 + M2*M2 +
     $                 MAX( ND1*ND1 + MAX( 2*ND1, ( ND1 + ND2 )*NP2 ),
     $                      ND2*ND2 + MAX( 2*ND2, ND2*M2 ), 3*N,
     $                      N*( 2*NP2 + M2 ) +
     $                         MAX( 2*N*M2, M2*NP2 +
     $                                MAX( M2*M2 + 3*M2, NP2*( 2*NP2 +
     $                                     M2 + MAX( NP2, N ) ) ) ) ) )
         IF( LDWORK.LT.MINWRK )
     $      INFO = -37
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SB10RD', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF( N.EQ.0 .OR. M.EQ.0 .OR. NP.EQ.0 .OR. M1.EQ.0 .OR. M2.EQ.0
     $    .OR. NP1.EQ.0 .OR. NP2.EQ.0 ) THEN
         DWORK( 1 ) = ONE
         RETURN
      END IF
C
C     Get the machine precision.
C
      EPS = DLAMCH( 'Epsilon' )
C
C     Workspace usage.
C
      ID11 = 1
      ID21 = ID11 + M2*NP2
      ID12 = ID21 + NP2*NP2
      IW1  = ID12 + M2*M2
      IW2  = IW1  + ND1*ND1
      IW3  = IW2  + ND1*NP2
      IWRK = IW2
C
C     Set D11HAT := -D1122 .
C
      IJ = ID11
      DO 20 J = 1, NP2
         DO 10 I = 1, M2
            DWORK( IJ ) = -D( ND1+I, ND2+J )
            IJ = IJ + 1
   10    CONTINUE
   20 CONTINUE
C
C     Set D21HAT := Inp2 .
C
      CALL DLASET( 'Upper', NP2, NP2, ZERO, ONE, DWORK( ID21 ), NP2 )
C
C     Set D12HAT := Im2 .
C
      CALL DLASET( 'Lower', M2, M2, ZERO, ONE, DWORK( ID12 ), M2 )
C
C     Compute D11HAT, D21HAT, D12HAT .
C
      LWAMAX = 0
      IF( ND1.GT.0 ) THEN
         IF( ND2.EQ.0 ) THEN
C
C           Compute D21HAT'*D21HAT = Inp2 - D1112'*D1112/gamma^2 .
C
            CALL DSYRK( 'U', 'T', NP2, ND1, -ONE/GAMMA**2, D, LDD, ONE,
     $                  DWORK( ID21 ), NP2 )
         ELSE
C
C           Compute gdum = gamma^2*Ind1 - D1111*D1111' .
C
            CALL DLASET( 'U', ND1, ND1, ZERO, GAMMA**2, DWORK( IW1 ),
     $                   ND1 )
            CALL DSYRK( 'U', 'N', ND1, ND2, -ONE, D, LDD, ONE,
     $                  DWORK( IW1 ), ND1 )
            ANORM = DLANSY( 'I', 'U', ND1, DWORK( IW1 ), ND1,
     $                      DWORK( IWRK ) )
            CALL DSYTRF( 'U', ND1, DWORK( IW1 ), ND1, IWORK,
     $                   DWORK( IWRK ), LDWORK-IWRK+1, INFO2 )
            IF( INFO2.GT.0 ) THEN
               INFO = 1
               RETURN
            END IF
            LWAMAX = INT( DWORK( IWRK ) ) + IWRK - 1
            CALL DSYCON( 'U', ND1, DWORK( IW1 ), ND1, IWORK, ANORM,
     $                   RCOND, DWORK( IWRK ), IWORK( ND1+1 ), INFO2 )
C
C           Return if the matrix is singular to working precision.
C
            IF( RCOND.LT.EPS ) THEN
               INFO = 1
               RETURN
            END IF
C
C           Compute inv(gdum)*D1112 .
C
            CALL DLACPY( 'Full', ND1, NP2, D( 1, ND2+1 ), LDD,
     $                   DWORK( IW2 ), ND1 )
            CALL DSYTRS( 'U', ND1, NP2, DWORK( IW1 ), ND1, IWORK,
     $                   DWORK( IW2 ), ND1, INFO2 )
C
C           Compute D11HAT = -D1121*D1111'*inv(gdum)*D1112 - D1122 .
C
            CALL DGEMM( 'T', 'N', ND2, NP2, ND1, ONE, D, LDD,
     $                  DWORK( IW2 ), ND1, ZERO, DWORK( IW3 ), ND2 )
            CALL DGEMM( 'N', 'N', M2, NP2, ND2, -ONE, D( ND1+1, 1 ),
     $                  LDD, DWORK( IW3 ), ND2, ONE, DWORK( ID11 ), M2 )
C
C           Compute D21HAT'*D21HAT = Inp2 - D1112'*inv(gdum)*D1112 .
C
            CALL MB01RX( 'Left', 'Upper', 'Transpose', NP2, ND1, ONE,
     $                   -ONE, DWORK( ID21 ), NP2, D( 1, ND2+1 ), LDD,
     $                   DWORK( IW2 ), ND1, INFO2 )
C
            IW2  = IW1 + ND2*ND2
            IWRK = IW2
C
C           Compute gdum = gamma^2*Ind2 - D1111'*D1111 .
C
            CALL DLASET( 'L', ND2, ND2, ZERO, GAMMA**2, DWORK( IW1 ),
     $                   ND2 )
            CALL DSYRK( 'L', 'T', ND2, ND1, -ONE, D, LDD, ONE,
     $                  DWORK( IW1 ), ND2 )
            ANORM = DLANSY( 'I', 'L', ND2, DWORK( IW1 ), ND2,
     $                      DWORK( IWRK ) )
            CALL DSYTRF( 'L', ND2, DWORK( IW1 ), ND2, IWORK,
     $                   DWORK( IWRK ), LDWORK-IWRK+1, INFO2 )
            IF( INFO2.GT.0 ) THEN
               INFO = 1
               RETURN
            END IF
            LWAMAX = MAX( INT( DWORK( IWRK ) ) + IWRK - 1, LWAMAX )
            CALL DSYCON( 'L', ND2, DWORK( IW1 ), ND2, IWORK, ANORM,
     $                   RCOND, DWORK( IWRK ), IWORK( ND2+1 ), INFO2 )
C
C           Return if the matrix is singular to working precision.
C
            IF( RCOND.LT.EPS ) THEN
               INFO = 1
               RETURN
            END IF
C
C           Compute inv(gdum)*D1121' .
C
            CALL MA02AD( 'Full', M2, ND2, D( ND1+1, 1 ), LDD,
     $                   DWORK( IW2 ), ND2 )
            CALL DSYTRS( 'L', ND2, M2, DWORK( IW1 ), ND2, IWORK,
     $                   DWORK( IW2 ), ND2, INFO2 )
C
C           Compute D12HAT*D12HAT' = Im2 - D1121*inv(gdum)*D1121' .
C
            CALL MB01RX( 'Left', 'Lower', 'NoTranspose', M2, ND2, ONE,
     $                   -ONE, DWORK( ID12 ), M2, D( ND1+1, 1 ), LDD,
     $                   DWORK( IW2 ), ND2, INFO2 )
         END IF
      ELSE
         IF( ND2.GT.0 ) THEN
C
C           Compute D12HAT*D12HAT' = Im2 - D1121*D1121'/gamma^2 .
C
            CALL DSYRK( 'L', 'N', M2, ND2, -ONE/GAMMA**2, D, LDD, ONE,
     $                  DWORK( ID12 ), M2 )
         END IF
      END IF
C
C     Compute D21HAT using Cholesky decomposition.
C
      CALL DPOTRF( 'U', NP2, DWORK( ID21 ), NP2, INFO2 )
      IF( INFO2.GT.0 ) THEN
         INFO = 1
         RETURN
      END IF
C
C     Compute D12HAT using Cholesky decomposition.
C
      CALL DPOTRF( 'L', M2, DWORK( ID12 ), M2, INFO2 )
      IF( INFO2.GT.0 ) THEN
         INFO = 1
         RETURN
      END IF
C             _
C     Compute Z = In - Y*X/gamma^2 and its LU factorization in AK .
C
      IWRK = IW1
      CALL DLASET( 'Full', N, N, ZERO, ONE, AK, LDAK )
      CALL DGEMM( 'N', 'N', N, N, N, -ONE/GAMMA**2, Y, LDY, X, LDX,
     $            ONE, AK, LDAK )
      ANORM = DLANGE( '1', N, N, AK, LDAK, DWORK( IWRK ) )
      CALL DGETRF( N, N, AK, LDAK, IWORK, INFO2 )
      IF( INFO2.GT.0 ) THEN
         INFO = 1
         RETURN
      END IF
      CALL DGECON( '1', N, AK, LDAK, ANORM, RCOND, DWORK( IWRK ),
     $             IWORK( N+1 ), INFO )
C
C     Return if the matrix is singular to working precision.
C
      IF( RCOND.LT.EPS ) THEN
         INFO = 1
         RETURN
      END IF
C
      IWB = IW1
      IWC = IWB + N*NP2
      IW1 = IWC + ( M2 + NP2 )*N
      IW2 = IW1 + N*M2
C
C     Compute C2' + F12' in BK .
C
      DO 40 J = 1, N
         DO 30 I = 1, NP2
            BK( J, I ) = C( NP1 + I, J ) + F( ND2 + I, J )
   30    CONTINUE
   40 CONTINUE
C                                                          _
C     Compute the transpose of (C2 + F12)*Z , with Z = inv(Z) .
C
      CALL DGETRS( 'Transpose', N, NP2, AK, LDAK, IWORK, BK, LDBK,
     $             INFO2 )
C
C     Compute the transpose of F2*Z .
C
      CALL MA02AD( 'Full', M2, N, F( M1+1, 1 ), LDF, DWORK( IW1 ), N )
      CALL DGETRS( 'Transpose', N, M2, AK, LDAK, IWORK, DWORK( IW1 ), N,
     $             INFO2 )
C
C     Compute the transpose of C1HAT = F2*Z - D11HAT*(C2 + F12)*Z .
C
      CALL DGEMM( 'N', 'T', N, M2, NP2, -ONE, BK, LDBK, DWORK( ID11 ),
     $            M2, ONE, DWORK( IW1 ), N )
C
C     Compute CHAT .
C
      CALL DGEMM( 'N', 'T', M2, N, M2, ONE, TU, LDTU, DWORK( IW1 ), N,
     $            ZERO, DWORK( IWC ), M2+NP2 )
      CALL MA02AD( 'Full', N, NP2, BK, LDBK, DWORK( IWC+M2 ), M2+NP2 )
      CALL DTRMM( 'L', 'U', 'N', 'N', NP2, N, -ONE, DWORK( ID21 ), NP2,
     $            DWORK( IWC+M2 ), M2+NP2 )
C
C     Compute B2 + H12 .
C
      IJ = IW2
      DO 60 J = 1, M2
         DO 50 I = 1, N
            DWORK( IJ ) = B( I, M1 + J ) + H( I, ND1 + J )
            IJ = IJ + 1
   50    CONTINUE
   60 CONTINUE
C
C     Compute A + HC in AK .
C
      CALL DLACPY( 'Full', N, N, A, LDA, AK, LDAK )
      CALL DGEMM( 'N', 'N', N, N, NP, ONE, H, LDH, C, LDC, ONE, AK,
     $            LDAK )
C
C     Compute AHAT = A + HC + (B2 + H12)*C1HAT in AK .
C
      CALL DGEMM( 'N', 'T', N, N, M2, ONE, DWORK( IW2 ), N,
     $            DWORK( IW1 ), N, ONE, AK, LDAK )
C
C     Compute B1HAT = -H2 + (B2 + H12)*D11HAT in BK .
C
      CALL DLACPY( 'Full', N, NP2, H( 1, NP1+1 ), LDH, BK, LDBK )
      CALL DGEMM( 'N', 'N', N, NP2, M2, ONE, DWORK( IW2 ), N,
     $            DWORK( ID11 ), M2, -ONE, BK, LDBK )
C
C     Compute the first block of BHAT, BHAT1 .
C
      CALL DGEMM( 'N', 'N', N, NP2, NP2, ONE, BK, LDBK, TY, LDTY, ZERO,
     $            DWORK( IWB ), N )
C
C     Compute Tu*D11HAT .
C
      CALL DGEMM( 'N', 'N', M2, NP2, M2, ONE, TU, LDTU, DWORK( ID11 ),
     $            M2, ZERO, DWORK( IW1 ), M2 )
C
C     Compute Tu*D11HAT*Ty in DK .
C
      CALL DGEMM( 'N', 'N', M2, NP2, NP2, ONE, DWORK( IW1 ), M2, TY,
     $            LDTY, ZERO, DK, LDDK )
C
C     Compute P = Im2 + Tu*D11HAT*Ty*D22 and its condition.
C
      IW2  = IW1 + M2*NP2
      IWRK = IW2 + M2*M2
      CALL DLASET( 'Full', M2, M2, ZERO, ONE, DWORK( IW2 ), M2 )
      CALL DGEMM( 'N', 'N', M2, M2, NP2, ONE, DK, LDDK,
     $            D( NP1+1, M1+1 ), LDD, ONE, DWORK( IW2 ), M2 )
      ANORM = DLANGE( '1', M2, M2, DWORK( IW2 ), M2, DWORK( IWRK ) )
      CALL DGETRF( M2, M2, DWORK( IW2 ), M2, IWORK, INFO2 )
      IF( INFO2.GT.0 ) THEN
         INFO = 2
         RETURN
      END IF
      CALL DGECON( '1', M2, DWORK( IW2 ), M2, ANORM, RCOND,
     $             DWORK( IWRK ), IWORK( M2+1 ), INFO2 )
C
C     Return if the matrix is singular to working precision.
C
      IF( RCOND.LT.EPS ) THEN
         INFO = 2
         RETURN
      END IF
C
C     Find the controller matrix CK, CK = inv(P)*CHAT(1:M2,:) .
C
      CALL DLACPY( 'Full', M2, N, DWORK( IWC ), M2+NP2, CK, LDCK )
      CALL DGETRS( 'NoTranspose', M2, N, DWORK( IW2 ), M2, IWORK, CK,
     $             LDCK, INFO2 )
C
C     Find the controller matrices AK, BK, and DK, exploiting the
C     special structure of the relations.
C
C     Compute Q = Inp2 + D22*Tu*D11HAT*Ty and its LU factorization.
C
      IW3  = IW2 + NP2*NP2
      IW4  = IW3 + NP2*M2
      IWRK = IW4 + NP2*NP2
      CALL DLASET( 'Full', NP2, NP2, ZERO, ONE, DWORK( IW2 ), NP2 )
      CALL DGEMM( 'N', 'N', NP2, NP2, M2, ONE, D( NP1+1, M1+1 ), LDD,
     $            DK, LDDK, ONE, DWORK( IW2 ), NP2 )
      CALL DGETRF( NP2, NP2, DWORK( IW2 ), NP2, IWORK, INFO2 )
      IF( INFO2.GT.0 ) THEN
         INFO = 2
         RETURN
      END IF
C
C     Compute A1 = inv(Q)*D22 and inv(Q) .
C
      CALL DLACPY( 'Full', NP2, M2, D( NP1+1, M1+1 ), LDD, DWORK( IW3 ),
     $             NP2 )
      CALL DGETRS( 'NoTranspose', NP2, M2, DWORK( IW2 ), NP2, IWORK,
     $             DWORK( IW3 ), NP2, INFO2 )
      CALL DGETRI( NP2, DWORK( IW2 ), NP2, IWORK, DWORK( IWRK ),
     $             LDWORK-IWRK+1, INFO2 )
      LWAMAX = MAX( INT( DWORK( IWRK ) ) + IWRK - 1, LWAMAX )
C
C     Compute A2 = ( inv(Ty) - inv(Q)*inv(Ty) -
C                    A1*Tu*D11HAT )*inv(D21HAT) .
C
      CALL DLACPY( 'Full', NP2, NP2, TY, LDTY, DWORK( IW4 ), NP2 )
      CALL DGETRF( NP2, NP2, DWORK( IW4 ), NP2, IWORK, INFO2 )
      CALL DGETRI( NP2, DWORK( IW4 ), NP2, IWORK, DWORK( IWRK ),
     $             LDWORK-IWRK+1, INFO2 )
C
      CALL DLACPY( 'Full', NP2, NP2, DWORK( IW4 ), NP2, DWORK( IWRK ),
     $             NP2 )
      CALL DGEMM( 'N', 'N', NP2, NP2, NP2, -ONE, DWORK( IW2), NP2,
     $            DWORK( IWRK ), NP2, ONE, DWORK( IW4 ), NP2 )
      CALL DGEMM( 'N', 'N', NP2, NP2, M2, -ONE, DWORK( IW3), NP2,
     $            DWORK( IW1 ), M2, ONE, DWORK( IW4 ), NP2 )
      CALL DTRMM( 'R', 'U', 'N', 'N', NP2, NP2, ONE, DWORK( ID21 ), NP2,
     $            DWORK( IW4 ), NP2 )
C
C     Compute [ A1  A2 ]*CHAT .
C
      CALL DGEMM( 'N', 'N', NP2, N, M2+NP2, ONE, DWORK( IW3 ), NP2,
     $            DWORK( IWC ), M2+NP2, ZERO, DWORK( IWRK ), NP2 )
C
C     Compute AK := AHAT - BHAT1*[ A1  A2 ]*CHAT .
C
      CALL DGEMM( 'N', 'N', N, N, NP2, -ONE, DWORK( IWB ), N,
     $            DWORK( IWRK ), NP2, ONE, AK, LDAK )
C
C     Compute BK := BHAT1*inv(Q) .
C
      CALL DGEMM( 'N', 'N', N, NP2, NP2, ONE, DWORK( IWB ), N,
     $            DWORK( IW2 ), NP2, ZERO, BK, LDBK )
C
C     Compute DK := Tu*D11HAT*Ty*inv(Q) .
C
      CALL DGEMM( 'N', 'N', M2, NP2, NP2, ONE, DK, LDDK, DWORK( IW2 ),
     $            NP2, ZERO, DWORK( IW3 ), M2 )
      CALL DLACPY( 'Full', M2, NP2, DWORK( IW3 ), M2, DK, LDDK )
C
      DWORK( 1 ) = DBLE( LWAMAX )
      RETURN
C *** Last line of SB10RD ***
      END