control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
      SUBROUTINE MB03KE( TRANA, TRANB, ISGN, K, M, N, PREC, SMIN, S, A,
     $                   B, C, SCALE, DWORK, LDWORK, INFO )
C
C     PURPOSE
C
C     To solve small periodic Sylvester-like equations (PSLE)
C
C      op(A(i))*X( i ) + isgn*X(i+1)*op(B(i)) = -scale*C(i), S(i) =  1,
C      op(A(i))*X(i+1) + isgn*X( i )*op(B(i)) = -scale*C(i), S(i) = -1.
C
C     i = 1, ..., K, where op(A) means A or A**T, for the K-periodic
C     matrix sequence X(i) = X(i+K), where A, B and C are K-periodic
C     matrix sequences and A and B are in periodic real Schur form. The
C     matrices A(i) are M-by-M and B(i) are N-by-N, with 1 <= M, N <= 2.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     TRANA   LOGICAL
C             Specifies the form of op(A) to be used, as follows:
C             = .FALSE.:  op(A) = A,
C             = .TRUE. :  op(A) = A**T.
C
C     TRANB   LOGICAL
C             Specifies the form of op(B) to be used, as follows:
C             = .FALSE.:  op(B) = B,
C             = .TRUE. :  op(B) = B**T.
C
C     ISGN    INTEGER
C             Specifies which sign variant of the equations to solve.
C             ISGN = 1 or ISGN = -1.
C
C     Input/Output Parameters
C
C     K       (input) INTEGER
C             The period of the periodic matrix sequences A, B, C and X.
C             K >= 2. (For K = 1, a standard Sylvester equation is
C             obtained.)
C
C     M       (input) INTEGER
C             The order of the matrices A(i) and the number of rows of
C             the matrices C(i) and X(i), i = 1, ..., K.  1 <= M <= 2.
C
C     N       (input) INTEGER
C             The order of the matrices B(i) and the number of columns
C             of the matrices C(i) and X(i), i = 1, ..., K.
C             1 <= N <= 2.
C
C     PREC    (input) DOUBLE PRECISION
C             The relative machine precision. See the LAPACK Library
C             routine DLAMCH.
C
C     SMIN    (input) DOUBLE PRECISION
C             The machine safe minimum divided by PREC.
C
C     S       (input) INTEGER array, dimension (K)
C             The leading K elements of this array must contain the
C             signatures (exponents) of the factors in the K-periodic
C             matrix sequences for A and B. Each entry in S must be
C             either 1 or -1. Notice that it is assumed that the same
C             exponents are tied to both A and B on reduction to the
C             periodic Schur form.
C
C     A       (input) DOUBLE PRECISION array, dimension (M*M*K)
C             On entry, this array must contain the M-by-M matrices
C             A(i), for i = 1, ..., K, stored with the leading dimension
C             M. Matrix A(i) is stored starting at position M*M*(i-1)+1.
C
C     B       (input) DOUBLE PRECISION array, dimension (N*N*K)
C             On entry, this array must contain the N-by-N matrices
C             B(i), for i = 1, ..., K, stored with the leading dimension
C             N. Matrix B(i) is stored starting at position N*N*(i-1)+1.
C
C     C       (input/output) DOUBLE PRECISION array, dimension (M*N*K)
C             On entry, this array must contain the M-by-N matrices
C             C(i), for i = 1, ..., K, stored with the leading dimension
C             M. Matrix C(i) is stored starting at position M*N*(i-1)+1.
C             On exit, the matrices C(i) are overwritten by the solution
C             sequence X(i).
C
C     SCALE   (output) DOUBLE PRECISION
C             The scale factor, scale, set less than or equal to 1 to
C             avoid overflow in X.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) returns the optimal LDWORK.
C             On exit, if INFO = -21, DWORK(1) returns the minimum value
C             of LDWORK.
C
C     LDWORK  INTEGER
C             The dimension of the array DWORK.
C             LDWORK >= (4*K-3) * (M*N)**2 + K * M*N.
C
C             If LDWORK = -1  a workspace query is assumed; the
C             routine only calculates the optimal size of the DWORK
C             array, returns this value as the first entry of the DWORK
C             array, and no error message is issued by XERBLA.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -21, then LDWORK is too small; appropriate
C                   value for LDWORK is returned in DWORK(1); the other
C                   arguments are not tested, for efficiency;
C             = 1:  the solution would overflow with scale = 1, so
C                   SCALE was set less than 1. This is a warning, not
C                   an error.
C
C     METHOD
C
C     A version of the algorithm described in [1] is used. The routine
C     uses a sparse Kronecker product representation Z of the PSLE and
C     solves for X(i) from an associated linear system Z*x = c using
C     structured (overlapping) variants of QR factorization and backward
C     substitution.
C
C     REFERENCES
C
C     [1] Granat, R., Kagstrom, B. and Kressner, D.
C         Computing periodic deflating subspaces associated with a
C         specified set of eigenvalues.
C         BIT Numerical Mathematics, vol. 47, 763-791, 2007.
C
C     NUMERICAL ASPECTS
C
C     The implemented method is numerically backward stable.
C
C     CONTRIBUTOR
C
C     V. Sima, Research Institute for Informatics, Bucharest, Romania,
C     Mar. 2010, an essentially new version of the PEP routine
C     PEP_DGESY2, by R. Granat, Umea University, Sweden, Apr. 2008.
C
C     REVISIONS
C
C     V. Sima, Apr. 2010, Oct. 2010, Aug. 2011.
C
C     KEYWORDS
C
C     Orthogonal transformation, periodic QZ algorithm, periodic
C     Sylvester-like equations, QZ algorithm.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE, TWO
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
C     ..
C     .. Scalar Arguments ..
      LOGICAL            TRANA, TRANB
      INTEGER            INFO, ISGN, K, LDWORK, M, N
      DOUBLE PRECISION   PREC, SCALE, SMIN
C     ..
C     .. Array Arguments ..
      INTEGER            S( * )
      DOUBLE PRECISION   A( * ), B( * ), C( * ), DWORK( * )
C     ..
C     .. Local Scalars ..
      LOGICAL            DOSCAL, LQUERY
      INTEGER            CB, I, IA1, IA3, IB1, IB3, IC1, II, IM1, IXA,
     $                   IXB, IXC, IZ, J, KM2, KM3, KMN, L, LDW, LEN,
     $                   MINWRK, MM, MN, MN6, MN7, NN, ZC, ZD, ZI, ZI2,
     $                   ZIS
      DOUBLE PRECISION   AC, AD, BETA, BIGNUM, DMIN, ELEM, SCALOC, SGN,
     $                   SPIV, TAU, TEMP
C     ..
C     .. External Functions ..
      INTEGER            IDAMAX
C     ..
C     .. External Subroutines ..
      EXTERNAL           DAXPY, DSCAL, XERBLA
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, MAX, MIN, MOD
C     ..
C     .. Executable Statements ..
C
C     Decode the input parameters.
C     For efficiency reasons, the parameters are not checked.
C
      INFO   = 0
      LQUERY = LDWORK.EQ.-1
C
      MN  = M*N
      KMN = K*MN
C
      MINWRK = ( 4*K - 3 ) * MN**2 + KMN
      IF( .NOT. LQUERY .AND. LDWORK.LT.MINWRK )
     $   INFO = -21
C
C     Quick return if possible.
C
      DWORK( 1 ) = DBLE( MINWRK )
      IF( LQUERY ) THEN
         RETURN
      ELSE IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'MB03KE', -INFO )
         RETURN
      END IF
C
C     Find the overflow threshold.
C
      BIGNUM = PREC / SMIN
C
C     --- Use QR-factorizations and backward substitution ---
C
C     This variant does not utilize the sparsity structure of the
C     individual blocks of the matrix Z - storage of each block Z_i,i
C     is compatible with the BLAS. Numerics is stable since excessive
C     pivot growth is avoided.
C
      MM  = M*M
      NN  = N*N
      SGN = DBLE( ISGN )
      LDW = 3*MN
      IF( M.EQ.2 .AND. N.EQ.2 ) THEN
         MN6 = LDW + LDW
         MN7 = MN6 + LDW
         KM2 = KMN + KMN
         KM3 = KM2 + KMN
      END IF
C
C     Divide workspace for superdiagonal + diagonal + subdiagonal blocks
C     and right-most block column stored in a "block-packed" format. For
C     simplicity, an additional block Z_{0,1} appears in the first block
C     column in Z.
C
      ZD = 1
      ZC = ZD + LDW*MN*( K - 1 )
C
C     Also give workspace for right hand side in CB.
C
      CB = ZC + MN*KMN
C
C     Fill the Z part of the workspace with zeros.
C
      DO 10 J = 1, CB - 1
         DWORK( J ) = ZERO
   10 CONTINUE
C
C     Build matrix Z in ZD and ZC.
C
      IXA = 1
      IXB = 1
      IXC = 1
      IM1 = K
      ZI  = ZD + MN
C
      DO 20 I = 1, K - 1
C
C        Build Z_{i,i}, i = 1,...,K-1.
C
         IF( S( IM1 ).EQ.-1 ) THEN
C
            IA1 = ( IM1 - 1 )*MM + 1
            DWORK( ZI ) = A( IA1 )
            IF( M.EQ.2 ) THEN
               IA3 = IA1 + 2
               IF( .NOT. TRANA ) THEN
                  DWORK( ZI + 1   )  = A( IA1 + 1 )
                  DWORK( ZI + LDW )  = A( IA3     )
               ELSE
                  DWORK( ZI + 1   )  = A( IA3     )
                  DWORK( ZI + LDW )  = A( IA1 + 1 )
               END IF
               DWORK( ZI + LDW + 1 ) = A( IA3 + 1 )
            END IF
            IF( N.EQ.2 ) THEN
               ZI2 = ZI + ( LDW + 1 )*M
               DWORK( ZI2 ) = DWORK( ZI )
               IF( M.EQ.2 ) THEN
                  DWORK( ZI2 + 1 )       = DWORK( ZI + 1 )
                  DWORK( ZI2 + LDW     ) = DWORK( ZI + LDW     )
                  DWORK( ZI2 + LDW + 1 ) = DWORK( ZI + LDW + 1 )
               END IF
            END IF
C
         ELSE
C
            IB1 = ( IM1 - 1 )*NN + 1
            DWORK( ZI ) = SGN*B( IB1 )
            IF( .NOT. TRANB ) THEN
               IF( M.EQ.2 ) THEN
                  DWORK( ZI + LDW + 1 ) = DWORK( ZI )
                  IF( N.EQ.2 ) THEN
                     IB3 = IB1 + 2
                     DWORK( ZI + 2 )       = SGN*B( IB3 )
                     DWORK( ZI + LDW + 3 ) = DWORK( ZI  + 2 )
                     DWORK( ZI + MN6     ) = SGN*B( IB1 + 1 )
                     DWORK( ZI + MN6 + 2 ) = SGN*B( IB3 + 1 )
                     DWORK( ZI + MN7 + 1 ) = DWORK( ZI  + MN6 )
                     DWORK( ZI + MN7 + 3 ) = DWORK( ZI  + MN6 + 2 )
                  END IF
               ELSE IF( N.EQ.2 ) THEN
                  IB3 = IB1 + 2
                  DWORK( ZI + 1 )       = SGN*B( IB3 )
                  DWORK( ZI + LDW     ) = SGN*B( IB1 + 1 )
                  DWORK( ZI + LDW + 1 ) = SGN*B( IB3 + 1 )
               END IF
            ELSE
               IF( M.EQ.2 ) THEN
                  DWORK( ZI + LDW + 1 ) = DWORK( ZI )
                  IF( N.EQ.2 ) THEN
                     IB3 = IB1 + 2
                     DWORK( ZI + 2 )       = SGN*B( IB1 + 1 )
                     DWORK( ZI + LDW + 3 ) = DWORK( ZI  + 2 )
                     DWORK( ZI + MN6     ) = SGN*B( IB3     )
                     DWORK( ZI + MN6 + 2 ) = SGN*B( IB3 + 1 )
                     DWORK( ZI + MN7 + 1 ) = DWORK( ZI  + MN6 )
                     DWORK( ZI + MN7 + 3 ) = DWORK( ZI  + MN6 + 2 )
                  END IF
               ELSE IF( N.EQ.2 ) THEN
                  IB3 = IB1 + 2
                  DWORK( ZI + 1 )       = SGN*B( IB1 + 1 )
                  DWORK( ZI + LDW     ) = SGN*B( IB3     )
                  DWORK( ZI + LDW + 1 ) = SGN*B( IB3 + 1 )
               END IF
            END IF
C
         END IF
C
C        Build Z_{i+1,i}, i = 1,...,K-1.
C
         ZI = ZI + MN
         IF( S( I ).EQ.1 ) THEN
C
            IA1 = IXA
            DWORK( ZI ) = A( IA1 )
            IF( M.EQ.2 ) THEN
               IA3 = IA1 + 2
               IF( .NOT. TRANA ) THEN
                  DWORK( ZI + 1   )  = A( IA1 + 1 )
                  DWORK( ZI + LDW )  = A( IA3     )
               ELSE
                  DWORK( ZI + 1   )  = A( IA3     )
                  DWORK( ZI + LDW )  = A( IA1 + 1 )
               END IF
               DWORK( ZI + LDW + 1 ) = A( IA3 + 1 )
            END IF
            IF( N.EQ.2 ) THEN
               ZI2 = ZI + ( LDW + 1 )*M
               DWORK( ZI2 ) = DWORK( ZI )
               IF( M.EQ.2 ) THEN
                  DWORK( ZI2 + 1 )       = DWORK( ZI + 1 )
                  DWORK( ZI2 + LDW     ) = DWORK( ZI + LDW     )
                  DWORK( ZI2 + LDW + 1 ) = DWORK( ZI + LDW + 1 )
               END IF
            END IF
C
         ELSE
C
            IB1 = IXB
            DWORK( ZI ) = SGN*B( IB1 )
            IF( .NOT. TRANB ) THEN
               IF( M.EQ.2 ) THEN
                  DWORK( ZI + LDW + 1 ) = DWORK( ZI )
                  IF( N.EQ.2 ) THEN
                     IB3 = IB1 + 2
                     DWORK( ZI + 2 )       = SGN*B( IB3 )
                     DWORK( ZI + LDW + 3 ) = DWORK( ZI  + 2 )
                     DWORK( ZI + MN6     ) = SGN*B( IB1 + 1 )
                     DWORK( ZI + MN6 + 2 ) = SGN*B( IB3 + 1 )
                     DWORK( ZI + MN7 + 1 ) = DWORK( ZI  + MN6     )
                     DWORK( ZI + MN7 + 3 ) = DWORK( ZI  + MN6 + 2 )
                  END IF
               ELSE IF( N.EQ.2 ) THEN
                  IB3 = IB1 + 2
                  DWORK( ZI + 1 )       = SGN*B( IB3 )
                  DWORK( ZI + LDW     ) = SGN*B( IB1 + 1 )
                  DWORK( ZI + LDW + 1 ) = SGN*B( IB3 + 1 )
               END IF
            ELSE
               IF( M.EQ.2 ) THEN
                  DWORK( ZI + LDW + 1 ) = DWORK( ZI )
                  IF( N.EQ.2 ) THEN
                     IB3 = IB1 + 2
                     DWORK( ZI + 2 )       = SGN*B( IB1 + 1 )
                     DWORK( ZI + LDW + 3 ) = DWORK( ZI  + 2 )
                     DWORK( ZI + MN6     ) = SGN*B( IB3     )
                     DWORK( ZI + MN6 + 2 ) = SGN*B( IB3 + 1 )
                     DWORK( ZI + MN7 + 1 ) = DWORK( ZI  + MN6     )
                     DWORK( ZI + MN7 + 3 ) = DWORK( ZI  + MN6 + 2 )
                  END IF
               ELSE IF( N.EQ.2 ) THEN
                  IB3 = IB1 + 2
                  DWORK( ZI + 1 )       = SGN*B( IB1 + 1 )
                  DWORK( ZI + LDW     ) = SGN*B( IB3     )
                  DWORK( ZI + LDW + 1 ) = SGN*B( IB3 + 1 )
               END IF
            END IF
         END IF
C
         IXA = IXA + MM
         IXB = IXB + NN
         IM1 = I
         ZI  = ZI + MN*( LDW - 1 )
   20 CONTINUE
C
C     Build Z_{K,K}.
C
      IXA = IXA - MM
      IXB = IXB - NN
      ZI  = ZC + KMN - MN
      IF( S( K - 1 ).EQ.-1 ) THEN
C
         IA1 = IXA
         DWORK( ZI ) = A( IA1 )
         IF( M.EQ.2 ) THEN
            IA3 = IA1 + 2
            IF( .NOT. TRANA ) THEN
               DWORK( ZI + 1   )  = A( IA1 + 1 )
               DWORK( ZI + KMN )  = A( IA3     )
            ELSE
               DWORK( ZI + 1   )  = A( IA3     )
               DWORK( ZI + KMN )  = A( IA1 + 1 )
            END IF
            DWORK( ZI + KMN + 1 ) = A( IA3 + 1 )
         END IF
         IF( N.EQ.2 ) THEN
            ZI2 = ZI + ( KMN + 1 )*M
            DWORK( ZI2 ) = DWORK( ZI )
            IF( M.EQ.2 ) THEN
               DWORK( ZI2 + 1 )       = DWORK( ZI + 1 )
               DWORK( ZI2 + KMN     ) = DWORK( ZI + KMN     )
               DWORK( ZI2 + KMN + 1 ) = DWORK( ZI + KMN + 1 )
            END IF
         END IF
C
      ELSE
C
         IB1 = IXB
         DWORK( ZI ) = SGN*B( IB1 )
         IF( .NOT. TRANB ) THEN
            IF( M.EQ.2 ) THEN
               DWORK( ZI + KMN + 1 ) = DWORK( ZI )
               IF( N.EQ.2 ) THEN
                  IB3 = IB1 + 2
                  DWORK( ZI + 2 )       = SGN*B( IB3 )
                  DWORK( ZI + KMN + 3 ) = DWORK( ZI  + 2 )
                  DWORK( ZI + KM2     ) = SGN*B( IB1 + 1 )
                  DWORK( ZI + KM2 + 2 ) = SGN*B( IB3 + 1 )
                  DWORK( ZI + KM3 + 1 ) = DWORK( ZI  + KM2     )
                  DWORK( ZI + KM3 + 3 ) = DWORK( ZI  + KM2 + 2 )
               END IF
            ELSE IF( N.EQ.2 ) THEN
               IB3 = IB1 + 2
               DWORK( ZI + 1 )       = SGN*B( IB3 )
               DWORK( ZI + KMN     ) = SGN*B( IB1 + 1 )
               DWORK( ZI + KMN + 1 ) = SGN*B( IB3 + 1 )
            END IF
         ELSE
            IF( M.EQ.2 ) THEN
               DWORK( ZI + KMN + 1 ) = DWORK( ZI )
               IF( N.EQ.2 ) THEN
                  IB3 = IB1 + 2
                  DWORK( ZI + 2 )       = SGN*B( IB1 + 1 )
                  DWORK( ZI + KMN + 3 ) = DWORK( ZI  + 2 )
                  DWORK( ZI + KM2     ) = SGN*B( IB3     )
                  DWORK( ZI + KM2 + 2 ) = SGN*B( IB3 + 1 )
                  DWORK( ZI + KM3 + 1 ) = DWORK( ZI  + KM2     )
                  DWORK( ZI + KM3 + 3 ) = DWORK( ZI  + KM2 + 2 )
               END IF
            ELSE IF( N.EQ.2 ) THEN
               IB3 = IB1 + 2
               DWORK( ZI + 1 )       = SGN*B( IB1 + 1 )
               DWORK( ZI + KMN     ) = SGN*B( IB3     )
               DWORK( ZI + KMN + 1 ) = SGN*B( IB3 + 1 )
            END IF
         END IF
      END IF
C
C     Build Z_{1,K}.
C
      IF( S( K ).EQ.1 ) THEN
C
         IA1 = IA1 + MM
         DWORK( ZC ) = A( IA1 )
         IF( M.EQ.2 ) THEN
            IA3 = IA1 + 2
            IF( .NOT. TRANA ) THEN
               DWORK( ZC + 1   )  = A( IA1 + 1 )
               DWORK( ZC + KMN )  = A( IA3     )
            ELSE
               DWORK( ZC + 1   )  = A( IA3     )
               DWORK( ZC + KMN )  = A( IA1 + 1 )
            END IF
            DWORK( ZC + KMN + 1 ) = A( IA3 + 1 )
         END IF
         IF( N.EQ.2 ) THEN
            ZI2 = ZC + ( KMN + 1 )*M
            DWORK( ZI2 ) = DWORK( ZC )
            IF( M.EQ.2 ) THEN
               DWORK( ZI2 + 1 )       = DWORK( ZC + 1 )
               DWORK( ZI2 + KMN     ) = DWORK( ZC + KMN     )
               DWORK( ZI2 + KMN + 1 ) = DWORK( ZC + KMN + 1 )
            END IF
         END IF
C
      ELSE
C
         IB1 = IB1 + NN
         DWORK( ZC ) = SGN*B( IB1 )
         IF( .NOT. TRANB ) THEN
            IF( M.EQ.2 ) THEN
               DWORK( ZC + KMN + 1 ) = DWORK( ZC )
               IF( N.EQ.2 ) THEN
                  IB3 = IB1 + 2
                  DWORK( ZC + 2 )       = SGN*B( IB3 )
                  DWORK( ZC + KMN + 3 ) = DWORK( ZC  + 2 )
                  DWORK( ZC + KM2     ) = SGN*B( IB1 + 1 )
                  DWORK( ZC + KM2 + 2 ) = SGN*B( IB3 + 1 )
                  DWORK( ZC + KM3 + 1 ) = DWORK( ZC  + KM2     )
                  DWORK( ZC + KM3 + 3 ) = DWORK( ZC  + KM2 + 2 )
               END IF
            ELSE IF( N.EQ.2 ) THEN
               IB3 = IB1 + 2
               DWORK( ZC + 1 )       = SGN*B( IB3 )
               DWORK( ZC + KMN     ) = SGN*B( IB1 + 1 )
               DWORK( ZC + KMN + 1 ) = SGN*B( IB3 + 1 )
            END IF
         ELSE
            IF( M.EQ.2 ) THEN
               DWORK( ZC + KMN + 1 ) = DWORK( ZC )
               IF( N.EQ.2 ) THEN
                  IB3 = IB1 + 2
                  DWORK( ZC + 2 )       = SGN*B( IB1 + 1 )
                  DWORK( ZC + KMN + 3 ) = DWORK( ZC  + 2 )
                  DWORK( ZC + KM2     ) = SGN*B( IB3     )
                  DWORK( ZC + KM2 + 2 ) = SGN*B( IB3 + 1 )
                  DWORK( ZC + KM3 + 1 ) = DWORK( ZC  + KM2     )
                  DWORK( ZC + KM3 + 3 ) = DWORK( ZC  + KM2 + 2 )
               END IF
            ELSE IF( N.EQ.2 ) THEN
               IB3 = IB1 + 2
               DWORK( ZC + 1 )       = SGN*B( IB1 + 1 )
               DWORK( ZC + KMN     ) = SGN*B( IB3     )
               DWORK( ZC + KMN + 1 ) = SGN*B( IB3 + 1 )
            END IF
         END IF
      END IF
C
C     Prepare right hand side in CB.
C
      ZI = CB + MN
      DO 30 L = 1, K - 1
         IC1 = IXC
         DWORK( ZI ) = -C( IC1 )
         IF( M.EQ.1 ) THEN
            IF( N.EQ.2 )
     $         DWORK( ZI + 1 ) = -C( IC1 + 1 )
         ELSE
            DWORK( ZI + 1 )    = -C( IC1 + 1 )
            IF( N.EQ.2 ) THEN
               DWORK( ZI + 2 ) = -C( IC1 + 2 )
               DWORK( ZI + 3 ) = -C( IC1 + 3 )
            END IF
         END IF
         IXC = IXC + MN
         ZI  = ZI  + MN
   30 CONTINUE
C
      ZI  = CB
      IC1 = IXC
      DWORK( ZI ) = -C( IC1 )
      IF( M.EQ.1 ) THEN
         IF( N.EQ.2 )
     $      DWORK( ZI + 1 ) = -C( IC1 + 1 )
      ELSE
         DWORK( ZI + 1 )    = -C( IC1 + 1 )
         IF( N.EQ.2 ) THEN
            DWORK( ZI + 2 ) = -C( IC1 + 2 )
            DWORK( ZI + 3 ) = -C( IC1 + 3 )
         END IF
      END IF
C
C     Solve the Kronecker product system for X_i, i = 1,...,K
C     using overlapping (structured) QR-factorization and
C     backward substitution.
C
C     Step 1: Reduce the system to triangular form via overlapping
C             QR-factorizations.
C
C             The method here is based on successively formed
C             Householder reflections which are applied one by one
C             to the matrix Z and the right hand side c. The size
C             of each reflection is chosen as the number of elements
C             in each column from the last non-zero element up to
C             the diagonal.
C
C             Notation:
C             L   = current position of the column to work with;
C             I   = corresponding block column in Z;
C             II  = corresponding row and column position in Z-block;
C             LEN = length of the current Householder reflection.
C
      I   = 1
      II  = 0
      ZIS = ZD + MN
      ZI2 = ZD + MN*LDW
C
C     Treat Z_{K,K} separately from [Z_{i,i}',Z_{i+1,i}']' (see below).
C     DMIN is the minimum modulus of the final diagonal values.
C
      DMIN = BIGNUM
C
      DO 50 L = 1, KMN - MN
         II  = II   + 1
         ZI  = ZIS  + 2*MN
         LEN = 2*MN - II + 1
C
C        REPEAT
   40    CONTINUE
         ZI = ZI - 1
         ELEM = DWORK( ZI )
         IF( ELEM.EQ.ZERO ) THEN
            LEN = LEN - 1
            GO TO 40
         END IF
C        UNTIL ELEM.NE.ZERO.
C
         IF( LEN.GT.1 ) THEN
C
C           Generate Householder reflection to zero out the current
C           column. The new main diagonal value is stored temporarily
C           in BETA.
C
            ZI = ZI - LEN + 1
            CALL DLARFG( LEN, DWORK( ZI ), DWORK( ZI + 1 ), 1, TAU )
            BETA = DWORK( ZI )
            DWORK( ZI ) = ONE
C
C           Apply reflection to Z and c: first to the rest of the
C           corresponding rows and columns of [Z_{i,i}',Z_{i+1,i}']'
C           of size LEN-by-(MN-II) ...
C
            CALL DLARFX( 'Left', LEN, MN - II, DWORK( ZI ), TAU,
     $                   DWORK( ZI + LDW ), LDW, DWORK )
C
C           ... then to the corresponding part of
C           [Z_{i,i+1}',Z_{i+1,i+1}']' of size LEN-by-MN ...
C
            IF( I.LT.K - 1 )
     $         CALL DLARFX( 'Left', LEN, MN, DWORK( ZI ), TAU,
     $                      DWORK( ZI2 ), LDW, DWORK )
C
C           ... next to the corresponding part of
C           [Z_{i,K}',Z_{i+1,K}']' of size LEN-by-MN ...
C
            CALL DLARFX( 'Left', LEN, MN, DWORK( ZI ), TAU,
     $                   DWORK( ZC + L - 1 ), KMN, DWORK )
C
C           ... and finally to c(L:L+LEN-1).
C
            CALL DLARFX( 'Left', LEN, 1, DWORK( ZI ), TAU,
     $                   DWORK( CB + L - 1 ), KMN, DWORK )
C
C           Store the new diagonal value.
C
            DWORK( ZI ) = BETA
            DMIN = MIN( DMIN, ABS( BETA ) )
         END IF
C
         ZIS = ZIS + LDW
         ZI2 = ZI2 + 1
         IF( MOD( L, MN ).EQ.0 ) THEN
            I   =  I + 1
            II  =  0
            ZI2 = ZD + I*MN*LDW
         END IF
   50 CONTINUE
C
      II = 0
      ZI = ZC + KMN - MN
C
C     Z_{K,K} is treated separately.
C
      DO 60 L = KMN - MN + 1, KMN
         II  = II + 1
         LEN = MN - II + 1
         IF( LEN.GT.1 ) THEN
C
C           Generate Householder reflection.
C
            CALL DLARFG( LEN, DWORK( ZI ), DWORK( ZI + 1 ), 1, TAU )
            BETA = DWORK( ZI )
            DWORK( ZI ) = ONE
C
C           Apply reflection to Z and c: first to Z_{i,i} ...
C
            CALL DLARFX( 'Left', LEN, MN - II, DWORK( ZI ), TAU,
     $                   DWORK( ZI + KMN ), KMN, DWORK )
C
C           ... and finally to c(L:L+LEN-1).
C
            CALL DLARFX( 'Left', LEN, 1, DWORK( ZI ), TAU,
     $                   DWORK( CB + L - 1 ), KMN, DWORK )
C
C           Store the new diagonal value.
C
            DWORK( ZI ) = BETA
            DMIN = MIN( DMIN, ABS( BETA ) )
         END IF
         ZI = ZI + KMN + 1
C
   60 CONTINUE
C
C     Step 2: Use backward substitution on the computed triangular
C             system.
C
C             Here, we take the possible irregularities above the
C             diagonal of the resulting R-factor into account by
C             checking the number of elements from the main diagonal
C             to the last non-zero element above the diagonal that
C             resides in the current column.
C             Pivots less than SPIV = MAX( PREC*DMIN, SMIN ) are set
C             to SPIV.
C
      SCALE  = ONE
      DOSCAL = .FALSE.
      DMIN   = MAX( DMIN, SMIN )
      SPIV   = MAX( PREC*DMIN, SMIN )
C
C     Check for scaling.
C
      I  = IDAMAX( KMN, DWORK( CB ), 1 )
      AC = ABS( DWORK( CB + I - 1 ) )
      IF( TWO*SMIN*AC.GT.DMIN ) THEN
         TEMP = ( ONE / TWO ) / AC
         CALL DSCAL( KMN, TEMP, DWORK( CB ), 1 )
         SCALE = SCALE*TEMP
      END IF
C
      ZI = CB - 1
C
      DO 70 I = KMN, KMN - MN + 1, -1
C
         AD = ABS( DWORK( ZI ) )
         AC = ABS( DWORK( CB + I - 1 ) )
         IF( AD.LT.SPIV ) THEN
            AD = SPIV
            DWORK( ZI ) = SPIV
         END IF
         SCALOC = ONE
         IF( AD.LT.ONE .AND. AC.GT.ONE ) THEN
            IF( AC.GT.BIGNUM*AD ) THEN
               INFO   = 1
               SCALOC = BIGNUM*AD / AC
               DOSCAL = .TRUE.
               SCALE  = SCALE * SCALOC
            END IF
         END IF
         TEMP = ( DWORK( CB + I - 1 ) * SCALOC ) / DWORK( ZI )
         IF( DOSCAL ) THEN
            DOSCAL = .FALSE.
            CALL DSCAL( KMN, SCALOC, DWORK( CB ), 1 )
         END IF
         DWORK( CB + I - 1 ) = TEMP
C
         CALL DAXPY( I - 1, -TEMP, DWORK( ZI - I + 1 ), 1, DWORK( CB ),
     $               1 )
C
         ZI = ZI - KMN - 1
   70 CONTINUE
C
      ZIS = ZC - LDW
      ZI  = ZIS + 2*MN - 1
      IZ  = 0
C
      DO 90 I = KMN - MN, 1, -1
         AD = ABS( DWORK( ZI ) )
         AC = ABS( DWORK( CB + I - 1 ) )
         IF( AD.LT.SPIV ) THEN
            AD = SPIV
            DWORK( ZI ) = SPIV
         END IF
         SCALOC = ONE
         IF( AD.LT.ONE .AND. AC.GT.ONE ) THEN
            IF( AC.GT.BIGNUM*AD ) THEN
               INFO   = 1
               SCALOC = BIGNUM*AD / AC
               DOSCAL = .TRUE.
               SCALE  = SCALE * SCALOC
            END IF
         END IF
         TEMP = ( DWORK( CB + I - 1 ) * SCALOC ) / DWORK( ZI )
         IF( DOSCAL ) THEN
            DOSCAL = .FALSE.
            CALL DSCAL( KMN, SCALOC, DWORK( CB ), 1 )
         END IF
         DWORK( CB + I - 1 ) = TEMP
         LEN = MN + MOD( I - 1, MN ) + 1
         ZI2 = ZIS
   80    CONTINUE
         IF( DWORK( ZI2 ).EQ.ZERO ) THEN
            LEN = LEN - 1
            ZI2 = ZI2 + 1
            GO TO 80
         END IF
C
         J = MAX( 1, I - LEN + 1 )
         CALL DAXPY( I - J, -TEMP, DWORK( ZI - I + J ), 1,
     $               DWORK( CB + J - 1 ), 1 )
C
         IF( MN.GT.1 ) THEN
            IF( MOD( I, MN ).EQ.1 ) THEN
               IZ = 1 - MN
            ELSE
               IZ = 1
            END IF
         END IF
         ZI  = ZI  - LDW - IZ
         ZIS = ZIS - LDW
   90 CONTINUE
C
C     Reshape the solution into C.
C
      IC1 = 1
      ZI  = CB
C
      DO 100 L = 1, K
         C( IC1 ) = DWORK( ZI )
         IF( M.EQ.1 ) THEN
            IF( N.EQ.2 )
     $         C( IC1 + 1 ) = DWORK( ZI + 1 )
         ELSE
            C( IC1 + 1 ) = DWORK( ZI + 1 )
            IF( N.EQ.2 ) THEN
               C( IC1 + 2 ) = DWORK( ZI + 2 )
               C( IC1 + 3 ) = DWORK( ZI + 3 )
            END IF
         END IF
         IC1 = IC1 + MN
         ZI  = ZI  + MN
  100 CONTINUE
C
C     Store the minimal workspace on output.
C
      DWORK( 1 ) = DBLE( MINWRK )
      RETURN
C
C *** Last line of MB03KE ***
      END