control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
      SUBROUTINE SB03SD( JOB, FACT, TRANA, UPLO, LYAPUN, N, SCALE, A,
     $                   LDA, T, LDT, U, LDU, C, LDC, X, LDX, SEPD,
     $                   RCOND, FERR, IWORK, DWORK, LDWORK, INFO )
C
C     PURPOSE
C
C     To estimate the conditioning and compute an error bound on the
C     solution of the real discrete-time Lyapunov matrix equation
C
C         op(A)'*X*op(A) - X = scale*C
C
C     where op(A) = A or A' (A**T) and C is symmetric (C = C**T). The
C     matrix A is N-by-N, the right hand side C and the solution X are
C     N-by-N symmetric matrices, and scale is a given scale factor.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     JOB     CHARACTER*1
C             Specifies the computation to be performed, as follows:
C             = 'C':  Compute the reciprocal condition number only;
C             = 'E':  Compute the error bound only;
C             = 'B':  Compute both the reciprocal condition number and
C                     the error bound.
C
C     FACT    CHARACTER*1
C             Specifies whether or not the real Schur factorization
C             of the matrix A is supplied on entry, as follows:
C             = 'F':  On entry, T and U (if LYAPUN = 'O') contain the
C                     factors from the real Schur factorization of the
C                     matrix A;
C             = 'N':  The Schur factorization of A will be computed
C                     and the factors will be stored in T and U (if
C                     LYAPUN = 'O').
C
C     TRANA   CHARACTER*1
C             Specifies the form of op(A) to be used, as follows:
C             = 'N':  op(A) = A    (No transpose);
C             = 'T':  op(A) = A**T (Transpose);
C             = 'C':  op(A) = A**T (Conjugate transpose = Transpose).
C
C     UPLO    CHARACTER*1
C             Specifies which part of the symmetric matrix C is to be
C             used, as follows:
C             = 'U':  Upper triangular part;
C             = 'L':  Lower triangular part.
C
C     LYAPUN  CHARACTER*1
C             Specifies whether or not the original Lyapunov equations
C             should be solved in the iterative estimation process,
C             as follows:
C             = 'O':  Solve the original Lyapunov equations, updating
C                     the right-hand sides and solutions with the
C                     matrix U, e.g., X <-- U'*X*U;
C             = 'R':  Solve reduced Lyapunov equations only, without
C                     updating the right-hand sides and solutions.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrices A, X and C.  N >= 0.
C
C     SCALE   (input) DOUBLE PRECISION
C             The scale factor, scale, set by a Lyapunov solver.
C             0 <= SCALE <= 1.
C
C     A       (input) DOUBLE PRECISION array, dimension (LDA,N)
C             If FACT = 'N' or LYAPUN = 'O', the leading N-by-N part of
C             this array must contain the original matrix A.
C             If FACT = 'F' and LYAPUN = 'R', A is not referenced.
C
C     LDA     INTEGER
C             The leading dimension of the array A.
C             LDA >= MAX(1,N), if FACT = 'N' or  LYAPUN = 'O';
C             LDA >= 1,        if FACT = 'F' and LYAPUN = 'R'.
C
C     T       (input/output) DOUBLE PRECISION array, dimension
C             (LDT,N)
C             If FACT = 'F', then on entry the leading N-by-N upper
C             Hessenberg part of this array must contain the upper
C             quasi-triangular matrix T in Schur canonical form from a
C             Schur factorization of A.
C             If FACT = 'N', then this array need not be set on input.
C             On exit, (if INFO = 0 or INFO = N+1, for FACT = 'N') the
C             leading N-by-N upper Hessenberg part of this array
C             contains the upper quasi-triangular matrix T in Schur
C             canonical form from a Schur factorization of A.
C
C     LDT     INTEGER
C             The leading dimension of the array T.  LDT >= MAX(1,N).
C
C     U       (input or output) DOUBLE PRECISION array, dimension
C             (LDU,N)
C             If LYAPUN = 'O' and FACT = 'F', then U is an input
C             argument and on entry, the leading N-by-N part of this
C             array must contain the orthogonal matrix U from a real
C             Schur factorization of A.
C             If LYAPUN = 'O' and FACT = 'N', then U is an output
C             argument and on exit, if INFO = 0 or INFO = N+1, it
C             contains the orthogonal N-by-N matrix from a real Schur
C             factorization of A.
C             If LYAPUN = 'R', the array U is not referenced.
C
C     LDU     INTEGER
C             The leading dimension of the array U.
C             LDU >= 1,        if LYAPUN = 'R';
C             LDU >= MAX(1,N), if LYAPUN = 'O'.
C
C     C       (input) DOUBLE PRECISION array, dimension (LDC,N)
C             If UPLO = 'U', the leading N-by-N upper triangular part of
C             this array must contain the upper triangular part of the
C             matrix C of the original Lyapunov equation (with
C             matrix A), if LYAPUN = 'O', or of the reduced Lyapunov
C             equation (with matrix T), if LYAPUN = 'R'.
C             If UPLO = 'L', the leading N-by-N lower triangular part of
C             this array must contain the lower triangular part of the
C             matrix C of the original Lyapunov equation (with
C             matrix A), if LYAPUN = 'O', or of the reduced Lyapunov
C             equation (with matrix T), if LYAPUN = 'R'.
C
C     LDC     INTEGER
C             The leading dimension of the array C.  LDC >= MAX(1,N).
C
C     X       (input) DOUBLE PRECISION array, dimension (LDX,N)
C             The leading N-by-N part of this array must contain the
C             symmetric solution matrix X of the original Lyapunov
C             equation (with matrix A), if LYAPUN = 'O', or of the
C             reduced Lyapunov equation (with matrix T), if
C             LYAPUN = 'R'.
C             The array X is modified internally, but restored on exit.
C
C     LDX     INTEGER
C             The leading dimension of the array X.  LDX >= MAX(1,N).
C
C     SEPD    (output) DOUBLE PRECISION
C             If JOB = 'C' or JOB = 'B', the estimated quantity
C             sepd(op(A),op(A)').
C             If N = 0, or X = 0, or JOB = 'E', SEPD is not referenced.
C
C     RCOND   (output) DOUBLE PRECISION
C             If JOB = 'C' or JOB = 'B', an estimate of the reciprocal
C             condition number of the discrete-time Lyapunov equation.
C             If N = 0 or X = 0, RCOND is set to 1 or 0, respectively.
C             If JOB = 'E', RCOND is not referenced.
C
C     FERR    (output) DOUBLE PRECISION
C             If JOB = 'E' or JOB = 'B', an estimated forward error
C             bound for the solution X. If XTRUE is the true solution,
C             FERR bounds the magnitude of the largest entry in
C             (X - XTRUE) divided by the magnitude of the largest entry
C             in X.
C             If N = 0 or X = 0, FERR is set to 0.
C             If JOB = 'C', FERR is not referenced.
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (N*N)
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0 or INFO = N+1, DWORK(1) returns the
C             optimal value of LDWORK.
C
C     LDWORK  INTEGER
C             The dimension of the array DWORK.
C             LDWORK >= 1,                            if N = 0; else,
C             LDWORK >= MAX(3,2*N*N) + N*N,           if JOB  = 'C',
C                                                        FACT = 'F';
C             LDWORK >= MAX(MAX(3,2*N*N) + N*N, 5*N), if JOB  = 'C',
C                                                        FACT = 'N';
C             LDWORK >= MAX(3,2*N*N) + N*N + 2*N,     if JOB  = 'E', or
C                                                        JOB  = 'B'.
C             For optimum performance LDWORK should sometimes be larger.
C
C             If LDWORK = -1, then a workspace query is assumed;
C             the routine only calculates the optimal size of the
C             DWORK array, returns this value as the first entry of
C             the DWORK array, and no error message related to LDWORK
C             is issued by XERBLA.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             > 0:  if INFO = i, i <= N, the QR algorithm failed to
C                   complete the reduction to Schur canonical form (see
C                   LAPACK Library routine DGEES); on exit, the matrix
C                   T(i+1:N,i+1:N) contains the partially converged
C                   Schur form, and DWORK(i+1:N) and DWORK(N+i+1:2*N)
C                   contain the real and imaginary parts, respectively,
C                   of the converged eigenvalues; this error is unlikely
C                   to appear;
C             = N+1:  if the matrix T has almost reciprocal eigenvalues;
C                   perturbed values were used to solve Lyapunov
C                   equations, but the matrix T, if given (for
C                   FACT = 'F'), is unchanged.
C
C     METHOD
C
C     The condition number of the discrete-time Lyapunov equation is
C     estimated as
C
C     cond = (norm(Theta)*norm(A) + norm(inv(Omega))*norm(C))/norm(X),
C
C     where Omega and Theta are linear operators defined by
C
C     Omega(W) = op(A)'*W*op(A) - W,
C     Theta(W) = inv(Omega(op(W)'*X*op(A) + op(A)'*X*op(W))).
C
C     The routine estimates the quantities
C
C     sepd(op(A),op(A)') = 1 / norm(inv(Omega))
C
C     and norm(Theta) using 1-norm condition estimators.
C
C     The forward error bound is estimated using a practical error bound
C     similar to the one proposed in [1].
C
C     REFERENCES
C
C     [1] Higham, N.J.
C         Perturbation theory and backward error for AX-XB=C.
C         BIT, vol. 33, pp. 124-136, 1993.
C
C     NUMERICAL ASPECTS
C                               3
C     The algorithm requires 0(N ) operations.
C     The accuracy of the estimates obtained depends on the solution
C     accuracy and on the properties of the 1-norm estimator.
C
C     FURTHER COMMENTS
C
C     The option LYAPUN = 'R' may occasionally produce slightly worse
C     or better estimates, and it is much faster than the option 'O'.
C     When SEPD is computed and it is zero, the routine returns
C     immediately, with RCOND and FERR (if requested) set to 0 and 1,
C     respectively. In this case, the equation is singular.
C
C     CONTRIBUTORS
C
C     P. Petkov, Tech. University of Sofia, December 1998.
C     V. Sima, Katholieke Univ. Leuven, Belgium, February 1999.
C
C     REVISIONS
C
C     V. Sima, Katholieke Univ. Leuven, Belgium, March 2003, July 2012.
C
C     KEYWORDS
C
C     Lyapunov equation, orthogonal transformation, real Schur form.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE, THREE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, THREE = 3.0D0 )
C     ..
C     .. Scalar Arguments ..
      CHARACTER          FACT, JOB, LYAPUN, TRANA, UPLO
      INTEGER            INFO, LDA, LDC, LDT, LDU, LDWORK, LDX, N
      DOUBLE PRECISION   FERR, RCOND, SCALE, SEPD
C     ..
C     .. Array Arguments ..
      INTEGER            IWORK( * )
      DOUBLE PRECISION   A( LDA, * ), C( LDC, * ), DWORK( * ),
     $                   T( LDT, * ), U( LDU, * ), X( LDX, * )
C     ..
C     .. Local Scalars ..
      LOGICAL            JOBB, JOBC, JOBE, LOWER, LQUERY, NOFACT,
     $                   NOTRNA, UPDATE
      CHARACTER          SJOB, TRANAT
      INTEGER            I, IABS, IRES, IWRK, IXMA, J, LDW, NN, SDIM,
     $                   WRKOPT
      DOUBLE PRECISION   ANORM, CNORM, DENOM, EPS, EPSN, TEMP, THNORM,
     $                   TMAX, XANORM, XNORM
C     ..
C     .. Local Arrays ..
      LOGICAL            BWORK( 1 )
C     ..
C     .. External Functions ..
      LOGICAL            LSAME, SELECT
      DOUBLE PRECISION   DLAMCH, DLANGE, DLANHS, DLANSY
      EXTERNAL           DLAMCH, DLANGE, DLANHS, DLANSY, LSAME, SELECT
C     ..
C     .. External Subroutines ..
      EXTERNAL           DAXPY, DCOPY, DGEES, DGEMM, DLACPY, DLASET,
     $                   MA02ED, MB01RU, MB01RX, MB01RY, MB01UD, SB03SX,
     $                   SB03SY, XERBLA
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, INT, MAX, MIN
C     ..
C     .. Executable Statements ..
C
C     Decode and Test input parameters.
C
      JOBC   = LSAME( JOB,    'C' )
      JOBE   = LSAME( JOB,    'E' )
      JOBB   = LSAME( JOB,    'B' )
      NOFACT = LSAME( FACT,   'N' )
      NOTRNA = LSAME( TRANA,  'N' )
      LOWER  = LSAME( UPLO,   'L' )
      UPDATE = LSAME( LYAPUN, 'O' )
C
      NN  = N*N
      LDW = MAX( 3, 2*NN ) + NN
C
      INFO = 0
      IF( .NOT.( JOBB .OR. JOBC .OR. JOBE ) ) THEN
         INFO = -1
      ELSE IF( .NOT.( NOFACT .OR. LSAME( FACT, 'F' ) ) ) THEN
         INFO = -2
      ELSE IF( .NOT.( NOTRNA .OR. LSAME( TRANA,  'T' ) .OR.
     $                            LSAME( TRANA,  'C' ) ) ) THEN
         INFO = -3
      ELSE IF( .NOT.( LOWER  .OR. LSAME( UPLO,   'U' ) ) ) THEN
         INFO = -4
      ELSE IF( .NOT.( UPDATE .OR. LSAME( LYAPUN, 'R' ) ) ) THEN
         INFO = -5
      ELSE IF( N.LT.0 ) THEN
         INFO = -6
      ELSE IF( SCALE.LT.ZERO .OR. SCALE.GT.ONE ) THEN
         INFO = -7
      ELSE IF( LDA.LT.1 .OR.
     $       ( LDA.LT.N .AND. ( UPDATE .OR. NOFACT ) ) ) THEN
         INFO = -9
      ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
         INFO = -11
      ELSE IF( LDU.LT.1 .OR. ( LDU.LT.N .AND. UPDATE ) ) THEN
         INFO = -13
      ELSE IF( LDC.LT.MAX( 1, N ) ) THEN
         INFO = -15
      ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
         INFO = -17
      ELSE
         IF( JOBC ) THEN
            IF( NOFACT ) THEN
               IWRK = MAX( LDW, 5*N )
            ELSE
               IWRK = LDW
            END IF
         ELSE
            IWRK = LDW + 2*N
         END IF
         IWRK = MAX( 1, IWRK )
         LQUERY = LDWORK.EQ.-1
         IF( NOFACT ) THEN
            IF( UPDATE ) THEN
               SJOB = 'V'
            ELSE
               SJOB = 'N'
            END IF
         END IF
         IF( LQUERY ) THEN
            IF( NOFACT ) THEN
               CALL DGEES( SJOB, 'Not ordered', SELECT, N, T, LDT, SDIM,
     $                     DWORK, DWORK, U, LDU, DWORK, -1, BWORK,
     $                     INFO )
               WRKOPT = MAX( IWRK, INT( DWORK( 1 ) ) + 2*N )
            ELSE
               WRKOPT = IWRK
            END IF
         END IF
         IF( LDWORK.LT.IWRK .AND. .NOT. LQUERY )
     $      INFO = -23
      END IF
C
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SB03SD', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         DWORK( 1 ) = WRKOPT
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF( N.EQ.0 ) THEN
         IF( .NOT.JOBE )
     $      RCOND = ONE
         IF( .NOT.JOBC )
     $      FERR  = ZERO
         DWORK( 1 ) = ONE
         RETURN
      END IF
C
C     Compute the 1-norm of the matrix X.
C
      XNORM = DLANSY( '1-norm', UPLO, N, X, LDX, DWORK )
      IF( XNORM.EQ.ZERO ) THEN
C
C        The solution is zero.
C
         IF( .NOT.JOBE )
     $      RCOND = ZERO
         IF( .NOT.JOBC )
     $      FERR  = ZERO
         DWORK( 1 ) = DBLE( N )
         RETURN
      END IF
C
C     Compute the 1-norm of A or T.
C
      IF( NOFACT .OR. UPDATE ) THEN
         ANORM  = DLANGE( '1-norm', N, N, A, LDA, DWORK )
      ELSE
         ANORM  = DLANHS( '1-norm', N, T, LDT, DWORK )
      END IF
C
C     For the special case A = I, set SEPD and RCOND to 0.
C     For the special case A = 0, set SEPD and RCOND to 1.
C     A quick test is used in general.
C
      IF( ANORM.EQ.ONE ) THEN
         IF( NOFACT .OR. UPDATE ) THEN
            CALL DLACPY( 'Full', N, N, A, LDA, DWORK, N )
         ELSE
            CALL DLACPY( 'Full', N, N, T, LDT, DWORK, N )
            IF( N.GT.2 )
     $         CALL DLASET( 'Lower', N-2, N-2, ZERO, ZERO, DWORK( 3 ),
     $                      N )
         END IF
         DWORK( NN+1 ) = ONE
         CALL DAXPY( N, -ONE, DWORK( NN+1 ), 0, DWORK, N+1 )
         IF( DLANGE( 'Max', N, N, DWORK, N, DWORK ).EQ.ZERO ) THEN
            IF( .NOT.JOBE ) THEN
               SEPD  = ZERO
               RCOND = ZERO
            END IF
            IF( .NOT.JOBC )
     $         FERR = ONE
            DWORK( 1 ) = DBLE( NN + 1 )
            RETURN
         END IF
C
      ELSE IF( ANORM.EQ.ZERO ) THEN
         IF( .NOT.JOBE ) THEN
            SEPD  = ONE
            RCOND = ONE
         END IF
         IF( JOBC ) THEN
            DWORK( 1 ) = DBLE( N )
            RETURN
         ELSE
C
C           Set FERR for the special case A = 0.
C
            CALL DLACPY( UPLO, N, N, X, LDX, DWORK, N )
C
            IF( LOWER ) THEN
               DO 10 J = 1, N
                  CALL DAXPY( N-J+1, SCALE, C( J, J ), 1,
     $                        DWORK( (J-1)*N+J ), 1 )
   10          CONTINUE
            ELSE
               DO 20 J = 1, N
                  CALL DAXPY( J, SCALE, C( 1, J ), 1,
     $                        DWORK( (J-1)*N+1 ), 1 )
   20          CONTINUE
            END IF
C
            FERR = MIN( ONE, DLANSY( '1-norm', UPLO, N, DWORK, N,
     $                               DWORK( NN+1 ) ) / XNORM )
            DWORK( 1 ) = DBLE( NN + N )
            RETURN
         END IF
      END IF
C
C     General case.
C
      CNORM = DLANSY( '1-norm', UPLO, N, C, LDC, DWORK )
C
C     Workspace usage.
C
      IABS = NN
      IXMA = MAX( 3, 2*NN )
      IRES = IXMA
      IWRK = IXMA + NN
      WRKOPT = 0
C
      IF( NOFACT ) THEN
C
C        Compute the Schur factorization of A, A = U*T*U'.
C        Workspace:  need   5*N;
C                    prefer larger.
C        (Note: Comments in the code beginning "Workspace:" describe the
C        minimal amount of real workspace needed at that point in the
C        code, as well as the preferred amount for good performance.)
C
         CALL DLACPY( 'Full', N, N, A, LDA, T, LDT )
         CALL DGEES( SJOB, 'Not ordered', SELECT, N, T, LDT, SDIM,
     $               DWORK( 1 ), DWORK( N+1 ), U, LDU, DWORK( 2*N+1 ),
     $               LDWORK-2*N, BWORK, INFO )
         IF( INFO.GT.0 )
     $      RETURN
         WRKOPT = INT( DWORK( 2*N+1 ) ) + 2*N
      END IF
C
C     Compute X*op(A) or X*op(T).
C
      IF( UPDATE ) THEN
         CALL DGEMM( 'NoTranspose', TRANA, N, N, N, ONE, X, LDX, A, LDA,
     $               ZERO, DWORK( IXMA+1 ), N )
      ELSE
         CALL MB01UD( 'Right', TRANA, N, N, ONE, T, LDT, X, LDX,
     $                DWORK( IXMA+1 ), N, INFO )
      END IF
C
      IF( .NOT.JOBE ) THEN
C
C        Estimate sepd(op(A),op(A)') = sepd(op(T),op(T)') and
C        norm(Theta).
C        Workspace max(3,2*N*N) + N*N.
C
         CALL SB03SY( 'Both', TRANA, LYAPUN, N, T, LDT, U, LDU,
     $                DWORK( IXMA+1 ), N, SEPD, THNORM, IWORK, DWORK,
     $                IXMA, INFO )
C
         WRKOPT = MAX( WRKOPT, MAX( 3, 2*NN ) + NN )
C
C        Return if the equation is singular.
C
         IF( SEPD.EQ.ZERO ) THEN
            RCOND = ZERO
            IF( JOBB )
     $         FERR  = ONE
            DWORK( 1 ) = DBLE( WRKOPT )
            RETURN
         END IF
C
C        Estimate the reciprocal condition number.
C
         TMAX = MAX( SEPD, XNORM, ANORM )
         IF( TMAX.LE.ONE ) THEN
            TEMP  =    SEPD*XNORM
            DENOM = ( SCALE*CNORM ) + ( SEPD*ANORM )*THNORM
         ELSE
            TEMP  =   (  SEPD / TMAX )*( XNORM / TMAX )
            DENOM = ( ( SCALE / TMAX )*( CNORM / TMAX ) ) +
     $              ( (  SEPD / TMAX )*( ANORM / TMAX ) )*THNORM
         END IF
         IF( TEMP.GE.DENOM ) THEN
            RCOND = ONE
         ELSE
            RCOND = TEMP / DENOM
         END IF
      END IF
C
      IF( .NOT.JOBC ) THEN
C
C        Form a triangle of the residual matrix
C        R = scale*C + X - op(A)'*X*op(A), or
C        R = scale*C + X - op(T)'*X*op(T),
C        exploiting the symmetry. For memory savings, R is formed in the
C        leading N-by-N upper/lower triangular part of DWORK, and it is
C        finally moved in the location where X*op(A) or X*op(T) was
C        stored, freeing workspace for the SB03SX call.
C
         IF( NOTRNA ) THEN
            TRANAT = 'T'
         ELSE
            TRANAT = 'N'
         END IF
C
         CALL DLACPY( UPLO, N, N, C, LDC, DWORK, N )
C
         IF( UPDATE ) THEN
            CALL MB01RX( 'Left', UPLO, TRANAT, N, N, SCALE, -ONE, DWORK,
     $                   N, A, LDA, DWORK( IXMA+1 ), N, INFO )
         ELSE
            CALL MB01RY( 'Left', UPLO, TRANAT, N, SCALE, -ONE, DWORK, N,
     $                   T, LDT, DWORK( IXMA+1 ), N, DWORK( IWRK+1 ),
     $                   INFO )
         END IF
C
         IF( LOWER ) THEN
            DO 30 J = 1, N
               CALL DAXPY( N-J+1, ONE, X( J, J ), 1, DWORK( (J-1)*N+J ),
     $                     1 )
   30       CONTINUE
         ELSE
            DO 40 J = 1, N
               CALL DAXPY( J, ONE, X( 1, J ), 1, DWORK( (J-1)*N+1 ), 1 )
   40       CONTINUE
         END IF
C
         CALL DLACPY( UPLO, N, N, DWORK, N, DWORK( IRES+1 ), N )
C
C        Get the machine precision.
C
         EPS  = DLAMCH( 'Epsilon' )
         EPSN = EPS*DBLE( 2*N + 2 )
C
C        Add to abs(R) a term that takes account of rounding errors in
C        forming R:
C          abs(R) := abs(R) + EPS*(3*scale*abs(C) + 3*abs(X) +
C                    2*(n+1)*abs(op(A))'*abs(X)*abs(op(A))), or
C          abs(R) := abs(R) + EPS*(3*scale*abs(C) + 3*abs(X) +
C                    2*(n+1)*abs(op(T))'*abs(X)*abs(op(T))),
C        where EPS is the machine precision.
C        Workspace max(3,2*N*N) + N*N + 2*N.
C        Note that the lower or upper triangular part of X specified by
C        UPLO is used as workspace, but it is finally restored.
C
         IF( UPDATE ) THEN
            DO 60 J = 1, N
               DO 50 I = 1, N
                  DWORK( IABS+(J-1)*N+I ) = ABS( A( I, J ) )
   50          CONTINUE
   60       CONTINUE
         ELSE
            DO 80 J = 1, N
               DO 70 I = 1, MIN( J+1, N )
                  DWORK( IABS+(J-1)*N+I ) = ABS( T( I, J ) )
   70          CONTINUE
   80       CONTINUE
         END IF
C
         CALL DCOPY( N, X, LDX+1, DWORK( IWRK+1 ), 1 )
C
         IF( LOWER ) THEN
            DO 100 J = 1, N
               DO 90 I = J, N
                  TEMP = ABS( X( I, J ) )
                  X( I, J ) = TEMP
                  DWORK( IRES+(J-1)*N+I ) =
     $                   ABS( DWORK( IRES+(J-1)*N+I ) ) +
     $                   EPS*THREE*( SCALE*ABS( C( I, J ) ) + TEMP )
   90          CONTINUE
  100       CONTINUE
         ELSE
            DO 120 J = 1, N
               DO 110 I = 1, J
                  TEMP = ABS( X( I, J ) )
                  X( I, J ) = TEMP
                  DWORK( IRES+(J-1)*N+I ) =
     $                   ABS( DWORK( IRES+(J-1)*N+I ) ) +
     $                   EPS*THREE*( SCALE*ABS( C( I, J ) ) + TEMP )
  110          CONTINUE
  120       CONTINUE
         END IF
C
         IF( UPDATE ) THEN
            CALL MB01RU( UPLO, TRANAT, N, N, ONE, EPSN, DWORK( IRES+1 ),
     $                   N, DWORK( IABS+1 ), N, X, LDX, DWORK, NN,
     $                   INFO )
         ELSE
C
C           Compute W = abs(X)*abs(op(T)), and then premultiply by
C           abs(T)' and add in the result.
C
            CALL MB01UD( 'Right', TRANA, N, N, ONE, DWORK( IABS+1 ), N,
     $                   X, LDX, DWORK, N, INFO )
            CALL MB01RY( 'Left', UPLO, TRANAT, N, ONE, EPSN,
     $                   DWORK( IRES+1 ), N, DWORK( IABS+1 ), N, DWORK,
     $                   N, DWORK( IWRK+N+1 ), INFO )
         END IF
C
         WRKOPT = MAX( WRKOPT, MAX( 3, 2*NN ) + NN + 2*N )
C
C        Restore X.
C
         CALL DCOPY( N, DWORK( IWRK+1 ), 1, X, LDX+1 )
         IF( LOWER ) THEN
            CALL MA02ED( 'Upper', N, X, LDX )
         ELSE
            CALL MA02ED( 'Lower', N, X, LDX )
         END IF
C
C        Compute forward error bound, using matrix norm estimator.
C        Workspace max(3,2*N*N) + N*N.
C
         XANORM = DLANSY( 'Max', UPLO, N, X, LDX, DWORK )
C
         CALL SB03SX( TRANA, UPLO, LYAPUN, N, XANORM, T, LDT, U, LDU,
     $                DWORK( IRES+1 ), N, FERR, IWORK, DWORK, IRES,
     $                INFO )
      END IF
C
      DWORK( 1 ) = DBLE( WRKOPT )
      RETURN
C
C *** Last line of SB03SD ***
      END