control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
      SUBROUTINE MB01UY( SIDE, UPLO, TRANS, M, N, ALPHA, T, LDT, A, LDA,
     $                   DWORK, LDWORK, INFO )
C
C     PURPOSE
C
C     To compute one of the matrix products
C
C       T : = alpha*op( T ) * A, or T : = alpha*A * op( T ),
C
C     where alpha is a scalar, A is an M-by-N matrix, T is a triangular
C     matrix, and op( T ) is one of
C
C        op( T ) = T   or   op( T ) = T',  the transpose of T.
C
C     A block-row/column algorithm is used, if possible. The result
C     overwrites the array T.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     SIDE    CHARACTER*1
C             Specifies whether the triangular matrix T appears on the
C             left or right in the matrix product, as follows:
C             = 'L':  T := alpha*op( T ) * A;
C             = 'R':  T := alpha*A * op( T ).
C
C     UPLO    CHARACTER*1.
C             Specifies whether the matrix T is an upper or lower
C             triangular matrix, as follows:
C             = 'U':  T is an upper triangular matrix;
C             = 'L':  T is a lower triangular matrix.
C
C     TRANS   CHARACTER*1
C             Specifies the form of op( T ) to be used in the matrix
C             multiplication as follows:
C             = 'N':  op( T ) = T;
C             = 'T':  op( T ) = T';
C             = 'C':  op( T ) = T'.
C
C     Input/Output Parameters
C
C     M       (input) INTEGER
C             The number of rows of the matrix A.  M >= 0.
C
C     N       (input) INTEGER
C             The number of columns of the matrix A.  N >= 0.
C
C     ALPHA   (input) DOUBLE PRECISION
C             The scalar alpha. When alpha is zero then T and A need not
C             be set before entry.
C
C     T       (input/output) DOUBLE PRECISION array, dimension
C             (LDT,max(K,N)), when SIDE = 'L', and
C             (LDT,K),        when SIDE = 'R',
C             where K is M if SIDE = 'L' and is N if SIDE = 'R'.
C             On entry with UPLO = 'U', the leading K-by-K upper
C             triangular part of this array must contain the upper
C             triangular matrix T. The elements below the diagonal
C             do not need to be zero.
C             On entry with UPLO = 'L', the leading K-by-K lower
C             triangular part of this array must contain the lower
C             triangular matrix T. The elements above the diagonal
C             do not need to be zero.
C             On exit, the leading M-by-N part of this array contains
C             the corresponding product defined by SIDE, UPLO, and
C             TRANS.
C
C     LDT     INTEGER
C             The leading dimension of the array T.
C             LDT >= max(1,M),    if SIDE = 'L';
C             LDT >= max(1,M,N),  if SIDE = 'R'.
C
C     A       (input) DOUBLE PRECISION array, dimension (LDA,N)
C             The leading M-by-N part of this array must contain the
C             matrix A.
C
C     LDA     INTEGER
C             The leading dimension of the array A.  LDA >= max(1,M).
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0,  DWORK(1)  returns the optimal value
C             of LDWORK.
C             On exit, if  INFO = -12,  DWORK(1)  returns the minimum
C             value of LDWORK.
C
C     LDWORK  The length of the array DWORK.
C             LDWORK >= 1, if alpha =  0 or MIN(M,N) = 0;
C             LDWORK >= M, if SIDE = 'L';
C             LDWORK >= N, if SIDE = 'R'.
C             For good performance, LDWORK should be larger.
C
C             If LDWORK = -1, then a workspace query is assumed;
C             the routine only calculates the optimal size of the
C             DWORK array, returns this value as the first entry of
C             the DWORK array, and no error message related to LDWORK
C             is issued by XERBLA.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     A block-row/column size is found based on the available workspace.
C     BLAS 3 gemm and trmm are used if possible.
C
C     CONTRIBUTORS
C
C     V. Sima, June 2021.
C
C     REVISIONS
C
C     V. Sima, July 2021.
C
C     KEYWORDS
C
C     Elementary matrix operations.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         SIDE, TRANS, UPLO
      INTEGER           INFO, LDA, LDT, LDWORK, M, N
      DOUBLE PRECISION  ALPHA
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), DWORK(*), T(LDT,*)
C     .. Local Scalars ..
      CHARACTER         TRANC, UPLOC
      LOGICAL           LONT, LOTR, LQUERY, LSIDE, LTRAN, LUPLO, UPNT,
     $                  UPTR
      INTEGER           BL, I, II, IJ, J, K, L, MN, NB, NC, NR, WRKMIN,
     $                  WRKOPT
C     .. External Functions ..
      LOGICAL           LSAME
      EXTERNAL          LSAME
C     .. External Subroutines ..
      EXTERNAL          DCOPY, DGEMM, DGEMV, DGEQRF, DLACPY, DLASET,
     $                  DTRMM, MA02ED, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         DBLE, INT, MAX, MIN
C
C     .. Executable Statements ..
C
C     Decode and test the input scalar arguments.
C
      INFO  = 0
      LSIDE = LSAME( SIDE,  'L' )
      LUPLO = LSAME( UPLO,  'U' )
      LTRAN = LSAME( TRANS, 'T' ) .OR. LSAME( TRANS, 'C' )
      IF ( LSIDE ) THEN
         K = M
         L = N
      ELSE
         K = N
         L = M
      END IF
      MN = MIN( M, N )
C
C     Ensure that at least two rows or columns of A fit into the
C     workspace, if optimal workspace is required.
C
      WRKMIN = 1
      IF ( ALPHA.NE.ZERO .AND. MN.GT.0 )
     $   WRKMIN = MAX( WRKMIN, K )
      LQUERY = LDWORK.EQ.-1
C
      IF ( (      .NOT.LSIDE ).AND.( .NOT.LSAME( SIDE,  'R' ) ) ) THEN
         INFO = -1
      ELSE IF ( ( .NOT.LUPLO ).AND.( .NOT.LSAME( UPLO,  'L' ) ) ) THEN
         INFO = -2
      ELSE IF ( ( .NOT.LTRAN ).AND.( .NOT.LSAME( TRANS, 'N' ) ) ) THEN
         INFO = -3
      ELSE IF ( M.LT.0 ) THEN
         INFO = -4
      ELSE IF ( N.LT.0 ) THEN
         INFO = -5
      ELSE IF ( LDT.LT.MAX( 1, M ) .OR. ( .NOT.LSIDE .AND. LDT.LT.N ) )
     $      THEN
         INFO = -8
      ELSE IF ( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -10
      ELSE IF( LQUERY ) THEN
         IF ( ALPHA.NE.ZERO .AND. MN.GT.0 ) THEN
            CALL DGEQRF( M, MAX( M,N ), A, LDA, DWORK, DWORK, -1, INFO )
            WRKOPT = MAX( WRKMIN, 2*L, INT( DWORK(1) ) )
            DWORK(1) = DBLE( WRKOPT )
         ELSE
            DWORK(1) = ONE
         END IF
         RETURN
      ELSE IF ( LDWORK.LT.WRKMIN ) THEN
         DWORK(1) = DBLE( WRKMIN )
         INFO = -12
      END IF
C
      IF ( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'MB01UY', -INFO )
         RETURN
      END IF
C
C     Quick return, if possible.
C
      IF ( MN.EQ.0 )
     $   RETURN
C
      IF ( ALPHA.EQ.ZERO ) THEN
C
C        Set T to zero and return.
C
         CALL DLASET( 'Full', M, N, ZERO, ZERO, T, LDT )
         RETURN
      END IF
C
C     Set the panel (block-row/column) size NB.
C
      NB = MAX( 1, MIN( K, INT( LDWORK/L ) ) )
C
      IF ( LDWORK.GE.M*N ) THEN
C
C        Enough workspace for a fast BLAS 3 calculation.
C        Save relevant parts of A in the workspace and compute one of
C        the matrix products
C          T : = alpha*op( triu( T ) ) * A, or
C          T : = alpha*A * op( triu( T ) ),
C        involving the upper/lower triangle of T.
C
         CALL DLACPY( 'All', M, N, A, LDA, DWORK, M )
         CALL DTRMM(  SIDE, UPLO, TRANS, 'NonUnit', M, N, ALPHA, T, LDT,
     $                DWORK, M )
         CALL DLACPY( 'All', M, N, DWORK, M, T, LDT )
C
      ELSE IF ( NB.GT.1 ) THEN
C
C        Use BLAS 3 calculations in a loop. BL is the number of panels.
C
C        If UPLO = 'L' and TRANS <> 'N', change the format so that to
C        correspond to UPLO = 'U' and TRANS = 'N'.
C        If UPLO = 'U' and TRANS <> 'N', change the format so that to
C        correspond to UPLO = 'L' and TRANS = 'N'.
C
         IF ( LTRAN ) THEN 
            CALL MA02ED( UPLO, K, T, LDT )
            IF ( LUPLO ) THEN 
               UPLOC = 'Lower'
            ELSE
               UPLOC = 'Upper'
            END IF
            TRANC = 'NoTran'
            LUPLO = .NOT.LUPLO
            LTRAN = .NOT.LTRAN
         ELSE
            UPLOC = UPLO
            TRANC = TRANS
         END IF
C
         BL = MAX( 1, INT( K/NB ) )
         J  = MIN( K, NB*BL )
C
         IF ( LSIDE ) THEN
C
            IF ( LUPLO ) THEN
C
C              Compute the last rows.
C
               IF ( J.EQ.M ) THEN
                  NR = NB
                  II = M  - NB + 1
                  BL = BL - 1
               ELSE
                  NR = M - J
                  II = J + 1
               END IF
               CALL DLACPY( 'All', NR, N, A(II,1), LDA, DWORK, NR )
               CALL DTRMM(  SIDE, UPLOC, TRANC, 'NonUnit', NR, N, ALPHA,
     $                      T(II,II), LDT, DWORK, NR )
               CALL DLACPY( 'All', NR, N, DWORK, NR, T(II,1), LDT )
C
               DO 10 I = 1, BL
                  IJ = II
                  II = II - NB
                  CALL DLACPY( 'All', NB, N, A(II,1), LDA, DWORK, NB )
                  CALL DTRMM(  SIDE, UPLOC, TRANC, 'NonUnit', NB, N,
     $                         ALPHA, T(II,II), LDT, DWORK, NB )
                  CALL DGEMM(  TRANC, 'NoTrans', NB, N, M-IJ+1, ALPHA,
     $                         T(II,IJ), LDT, A(IJ,1), LDA, ONE, DWORK,
     $                         NB )
                  CALL DLACPY( 'All', NB, N, DWORK, NB, T(II,1), LDT )
   10          CONTINUE
C
            ELSE
C
C              Compute the first rows.
C
               IF ( J.EQ.M ) THEN
                  NR = NB
                  BL = BL - 1
               ELSE
                  NR = M - J
               END IF
               CALL DLACPY( 'All', NR, N, A, LDA, DWORK, NR )
               CALL DTRMM(  SIDE, UPLOC, TRANC, 'NonUnit', NR, N, ALPHA,
     $                      T, LDT, DWORK, NR )
               CALL DLACPY( 'All', NR, N, DWORK, NR, T, LDT )
               II = NR + 1
C
               DO 20 I = 1, BL
                  CALL DLACPY( 'All', NB, N, A(II,1), LDA, DWORK, NB )
                  CALL DTRMM(  SIDE, UPLOC, TRANC, 'NonUnit', NB, N,
     $                         ALPHA, T(II,II), LDT, DWORK, NB )
                  CALL DGEMM(  TRANC, 'NoTrans', NB, N, II-1, ALPHA,
     $                         T(II,1), LDT, A, LDA, ONE, DWORK, NB )
                  CALL DLACPY( 'All', NB, N, DWORK, NB, T(II,1), LDT )
                  II = II + NB
   20          CONTINUE
C
            END IF
C
         ELSE
C
            IF ( LUPLO ) THEN
C
C              Compute the first columns.
C
               II = 1
               IF ( J.EQ.N ) THEN
                  NC = NB
                  BL = BL - 1
               ELSE
                  NC = N - J
               END IF
               CALL DLACPY( 'All', M, NC, A, LDA, DWORK, M )
               CALL DTRMM(  SIDE, UPLOC, TRANC, 'NonUnit', M, NC, ALPHA,
     $                      T, LDT, DWORK, M )
               CALL DLACPY( 'All', M, NC, DWORK, M, T, LDT )
               II = II + NC
C
               DO 30 I = 1, BL
                  IJ = II - 1
                  CALL DLACPY( 'All', M, NB, A(1,II), LDA, DWORK, M )
                  CALL DTRMM(  SIDE, UPLOC, TRANC, 'NonUnit', M, NB,
     $                         ALPHA, T(II,II), LDT, DWORK, M )
                  CALL DGEMM(  TRANC, 'NoTrans', M, NB, IJ, ALPHA, A,
     $                         LDA, T(1,II), LDT, ONE, DWORK, M )
                  CALL DLACPY( 'All', M, NB, DWORK, M, T(1,II), LDT )
                  II = II + NB
   30          CONTINUE
C
            ELSE
C
C              Compute the last columns.
C
               IF ( J.EQ.N ) THEN
                  NC = NB
                  II = N  - NB + 1
                  BL = BL - 1
               ELSE
                  NC = N - J
                  II = J + 1
               END IF
               CALL DLACPY( 'All', M, NC, A(1,II), LDA, DWORK, M )
               CALL DTRMM(  SIDE, UPLOC, TRANC, 'NonUnit', M, NC, ALPHA,
     $                      T(II,II), LDT, DWORK, M )
               CALL DLACPY( 'All', M, NC, DWORK, M, T(1,II), LDT )
C
               DO 40 I = 1, BL
                  IJ = II
                  II = II - NB
                  CALL DLACPY( 'All', M, NB, A(1,II), LDA, DWORK, M )
                  CALL DTRMM(  SIDE, UPLOC, TRANC, 'NonUnit', M, NB,
     $                         ALPHA, T(II,II), LDT, DWORK, M )
                  CALL DGEMM(  TRANC, 'NoTrans', M, NB, NC, ALPHA,
     $                         A(1,IJ), LDA, T(IJ,II), LDT, ONE, DWORK,
     $                         M )
                  CALL DLACPY( 'All', M, NB, DWORK, M, T(1,II), LDT )
                  NC = NC + NB
   40          CONTINUE
C
            END IF
C
         END IF
C
      ELSE
C
C        Use BLAS 2 calculations in a loop.
C        Fill-in the other part of T by symmetry.
C
         UPNT = LUPLO .AND. .NOT.LTRAN
         LOTR = LTRAN .AND. .NOT.LUPLO
         UPTR = LUPLO .AND. LTRAN
         LONT = .NOT.LUPLO .AND. .NOT.LTRAN
C
         IF ( LUPLO .OR. LOTR )
     $      CALL MA02ED( UPLO, K, T, LDT )
C
         IF ( LSIDE ) THEN
C
            IF ( UPNT .OR. LOTR ) THEN
C
               DO 50 I = 1, M
                  CALL DCOPY( M-I+1, T(I,I), 1, DWORK, 1 )
                  CALL DGEMV( 'Trans', M-I+1, N, ALPHA, A(I,1), LDA,
     $                        DWORK, 1, ZERO, T(I,1), LDT )
   50          CONTINUE
C
            ELSE IF ( UPTR .OR. LONT ) THEN
C
               DO 60 I = 1, M
                  CALL DCOPY( I, T(I,1), LDT, DWORK, 1 )
                  CALL DGEMV( 'Trans', I, N, ALPHA, A, LDA, DWORK, 1,
     $                        ZERO, T(I,1), LDT )
   60          CONTINUE
C
            END IF
C
         ELSE
C
            IF ( UPNT .OR. LOTR ) THEN
C
               DO 70 I = 1, N
                  CALL DCOPY( I, T(1,I), 1, DWORK, 1 )
                  CALL DGEMV( 'NoTran', M, I, ALPHA, A, LDA, DWORK, 1,
     $                        ZERO, T(1,I), 1 )
   70          CONTINUE
C
            ELSE IF ( UPTR .OR. LONT ) THEN
C
               DO 80 I = 1, N
                  CALL DCOPY( N-I+1, T(I,I), 1, DWORK, 1 )
                  CALL DGEMV( 'NoTran', M, N-I+1, ALPHA, A(1,I), LDA,
     $                        DWORK, 1, ZERO, T(1,I), 1 )
   80          CONTINUE
C
            END IF
C
         END IF
C
      END IF
C
      DWORK(1) = DBLE( MAX( WRKMIN, WRKOPT ) )
      RETURN
C *** Last line of MB01UY ***
      END