SUBROUTINE SB08DD( DICO, N, M, P, A, LDA, B, LDB, C, LDC, D, LDD,
     $                   NQ, NR, CR, LDCR, DR, LDDR, TOL, DWORK, LDWORK,
     $                   IWARN, INFO )
C
C     PURPOSE
C
C     To construct, for a given system G = (A,B,C,D), a feedback matrix
C     F, an orthogonal transformation matrix Z, and a gain matrix V,
C     such that the systems
C
C          Q = (Z'*(A+B*F)*Z, Z'*B*V, (C+D*F)*Z, D*V)
C     and
C          R = (Z'*(A+B*F)*Z, Z'*B*V, F*Z, V)
C
C     provide a stable right coprime factorization of G in the form
C                       -1
C              G = Q * R  ,
C
C     where G, Q and R are the corresponding transfer-function matrices
C     and the denominator R is inner, that is, R'(-s)*R(s) = I in the
C     continuous-time case, or R'(1/z)*R(z) = I in the discrete-time
C     case. The Z matrix is not explicitly computed.
C
C     Note: G must have no controllable poles on the imaginary axis
C     for a continuous-time system, or on the unit circle for a
C     discrete-time system. If the given state-space representation
C     is not stabilizable, the unstabilizable part of the original
C     system is automatically deflated and the order of the systems
C     Q and R is accordingly reduced.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     DICO    CHARACTER*1
C             Specifies the type of the original system as follows:
C             = 'C':  continuous-time system;
C             = 'D':  discrete-time system.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The dimension of the state vector, i.e. the order of the
C             matrix A, and also the number of rows of the matrix B and
C             the number of columns of the matrices C and CR.  N >= 0.
C
C     M       (input) INTEGER
C             The dimension of input vector, i.e. the number of columns
C             of the matrices B, D and DR and the number of rows of the
C             matrices CR and DR.  M >= 0.
C
C     P       (input) INTEGER
C             The dimension of output vector, i.e. the number of rows
C             of the matrices C and D.  P >= 0.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading N-by-N part of this array must
C             contain the state dynamics matrix A. The matrix A must not
C             have controllable eigenvalues on the imaginary axis, if
C             DICO = 'C', or on the unit circle, if DICO = 'D'.
C             On exit, the leading NQ-by-NQ part of this array contains
C             the leading NQ-by-NQ part of the matrix Z'*(A+B*F)*Z, the
C             state dynamics matrix of the numerator factor Q, in a
C             real Schur form. The trailing NR-by-NR part of this matrix
C             represents the state dynamics matrix of a minimal
C             realization of the denominator factor R.
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= MAX(1,N).
C
C     B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C             On entry, the leading N-by-M part of this array must
C             contain the input/state matrix.
C             On exit, the leading NQ-by-M part of this array contains
C             the leading NQ-by-M part of the matrix Z'*B*V, the
C             input/state matrix of the numerator factor Q. The last
C             NR rows of this matrix form the input/state matrix of
C             a minimal realization of the denominator factor R.
C
C     LDB     INTEGER
C             The leading dimension of array B.  LDB >= MAX(1,N).
C
C     C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C             On entry, the leading P-by-N part of this array must
C             contain the state/output matrix C.
C             On exit, the leading P-by-NQ part of this array contains
C             the leading P-by-NQ part of the matrix (C+D*F)*Z,
C             the state/output matrix of the numerator factor Q.
C
C     LDC     INTEGER
C             The leading dimension of array C.  LDC >= MAX(1,P).
C
C     D       (input/output) DOUBLE PRECISION array, dimension (LDD,M)
C             On entry, the leading P-by-M part of this array must
C             contain the input/output matrix.
C             On exit, the leading P-by-M part of this array contains
C             the matrix D*V representing the input/output matrix
C             of the numerator factor Q.
C
C     LDD     INTEGER
C             The leading dimension of array D.  LDD >= MAX(1,P).
C
C     NQ      (output) INTEGER
C             The order of the resulting factors Q and R.
C             Generally, NQ = N - NS, where NS is the number of
C             uncontrollable eigenvalues outside the stability region.
C
C     NR      (output) INTEGER
C             The order of the minimal realization of the factor R.
C             Generally, NR is the number of controllable eigenvalues
C             of A outside the stability region (the number of modified
C             eigenvalues).
C
C     CR      (output) DOUBLE PRECISION array, dimension (LDCR,N)
C             The leading M-by-NQ part of this array contains the
C             leading M-by-NQ part of the feedback matrix F*Z, which
C             reflects the eigenvalues of A lying outside the stable
C             region to values which are symmetric with respect to the
C             imaginary axis (if DICO = 'C') or the unit circle (if
C             DICO = 'D').  The last NR columns of this matrix form the
C             state/output matrix of a minimal realization of the
C             denominator factor R.
C
C     LDCR    INTEGER
C             The leading dimension of array CR.  LDCR >= MAX(1,M).
C
C     DR      (output) DOUBLE PRECISION array, dimension (LDDR,M)
C             The leading M-by-M part of this array contains the upper
C             triangular matrix V of order M representing the
C             input/output matrix of the denominator factor R.
C
C     LDDR    INTEGER
C             The leading dimension of array DR.  LDDR >= MAX(1,M).
C
C     Tolerances
C
C     TOL     DOUBLE PRECISION
C             The absolute tolerance level below which the elements of
C             B are considered zero (used for controllability tests).
C             If the user sets TOL <= 0, then an implicitly computed,
C             default tolerance, defined by  TOLDEF = N*EPS*NORM(B),
C             is used instead, where EPS is the machine precision
C             (see LAPACK Library routine DLAMCH) and NORM(B) denotes
C             the 1-norm of B.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) returns the optimal value
C             of LDWORK.
C
C     LDWORK  INTEGER
C             The dimension of working array DWORK.
C             LDWORK >= MAX( 1, N*(N+5), M*(M+2), 4*M, 4*P ).
C             For optimum performance LDWORK should be larger.
C
C     Warning Indicator
C
C     IWARN   INTEGER
C             = 0:  no warning;
C             = K:  K violations of the numerical stability condition
C                   NORM(F) <= 10*NORM(A)/NORM(B) occured during the
C                   assignment of eigenvalues.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = 1:  the reduction of A to a real Schur form failed;
C             = 2:  a failure was detected during the ordering of the
C                   real Schur form of A, or in the iterative process
C                   for reordering the eigenvalues of Z'*(A + B*F)*Z
C                   along the diagonal;
C             = 3:  if DICO = 'C' and the matrix A has a controllable
C                   eigenvalue on the imaginary axis, or DICO = 'D'
C                   and A has a controllable eigenvalue on the unit
C                   circle.
C
C     METHOD
C
C     The subroutine is based on the factorization algorithm of [1].
C
C     REFERENCES
C
C     [1] Varga A.
C         A Schur method for computing coprime factorizations with inner
C         denominators and applications in model reduction.
C         Proc. ACC'93, San Francisco, CA, pp. 2130-2131, 1993.
C
C     NUMERICAL ASPECTS
C                                            3
C     The algorithm requires no more than 14N  floating point
C     operations.
C
C     CONTRIBUTOR
C
C     A. Varga, German Aerospace Center,
C     DLR Oberpfaffenhofen, July 1998.
C     Based on the RASP routine RCFID.
C
C     REVISIONS
C
C     Nov. 1998, V. Sima, Research Institute for Informatics, Bucharest.
C     Dec. 1998, V. Sima, Katholieke Univ. Leuven, Leuven.
C     Feb. 1999, May 2003, A. Varga, DLR Oberpfaffenhofen.
C
C     KEYWORDS
C
C     Coprime factorization, eigenvalue, eigenvalue assignment,
C     feedback control, pole placement, state-space model.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ONE, TEN, ZERO
      PARAMETER         ( ONE = 1.0D0, TEN = 1.0D1, ZERO = 0.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         DICO
      INTEGER           INFO, IWARN, LDA, LDB, LDC, LDCR, LDD, LDDR,
     $                  LDWORK, M, N, NQ, NR, P
      DOUBLE PRECISION  TOL
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), C(LDC,*), CR(LDCR,*),
     $                  D(LDD,*), DR(LDDR,*), DWORK(*)
C     .. Local Scalars ..
      LOGICAL           DISCR
      INTEGER           I, IB, IB1, J, K, KFI, KV, KW, KWI, KWR, KZ, L,
     $                  L1, NB, NCUR, NFP, NLOW, NSUP
      DOUBLE PRECISION  ALPHA, BNORM, CS, PR, RMAX, SM, SN, TOLER,
     $                  WRKOPT, X, Y
C     .. Local Arrays ..
      DOUBLE PRECISION  Z(4,4)
C     .. External Functions ..
      DOUBLE PRECISION  DLAMCH, DLANGE
      LOGICAL           LSAME
      EXTERNAL          DLAMCH, DLANGE, LSAME
C     .. External Subroutines ..
      EXTERNAL          DGEMM, DLACPY, DLAEXC, DLANV2, DLASET, DROT,
     $                  DTRMM, DTRMV, SB01FY, TB01LD, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         DBLE, MAX, MIN
C     .. Executable Statements ..
C
      DISCR = LSAME( DICO, 'D' )
      IWARN = 0
      INFO  = 0
C
C     Check the scalar input parameters.
C
      IF( .NOT. ( LSAME( DICO, 'C' ) .OR. DISCR ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( M.LT.0 ) THEN
         INFO = -3
      ELSE IF( P.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -6
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -8
      ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
         INFO = -10
      ELSE IF( LDD.LT.MAX( 1, P ) ) THEN
         INFO = -12
      ELSE IF( LDCR.LT.MAX( 1, M ) ) THEN
         INFO = -16
      ELSE IF( LDDR.LT.MAX( 1, M ) ) THEN
         INFO = -18
      ELSE IF( LDWORK.LT.MAX( 1, N*(N+5), M*(M+2), 4*M, 4*P ) ) THEN
         INFO = -21
      END IF
      IF( INFO.NE.0 )THEN
C
C        Error return.
C
         CALL XERBLA( 'SB08DD', -INFO )
         RETURN
      END IF
C
C     Set DR = I and quick return if possible.
C
      NR = 0
      IF( MIN( M, P ).GT.0 )
     $   CALL DLASET( 'Full', M, M, ZERO, ONE, DR, LDDR )
      IF( MIN( N, M ).EQ.0 ) THEN
         NQ = 0
         DWORK(1) = ONE
         RETURN
      END IF
C
C     Set F = 0 in the array CR.
C
      CALL DLASET( 'Full', M, N, ZERO, ZERO, CR, LDCR )
C
C     Compute the norm of B and set the default tolerance if necessary.
C
      BNORM = DLANGE( '1-norm', N, M, B, LDB, DWORK )
      TOLER = TOL
      IF( TOLER.LE.ZERO )
     $   TOLER = DBLE( N ) * BNORM * DLAMCH( 'Epsilon' )
      IF( BNORM.LE.TOLER ) THEN
         NQ = 0
         DWORK(1) = ONE
         RETURN
      END IF
C
C     Compute the bound for the numerical stability condition.
C
      RMAX = TEN * DLANGE( '1-norm', N, N, A, LDA, DWORK ) / BNORM
C
C     Allocate working storage.
C
      KZ  = 1
      KWR = KZ  + N*N
      KWI = KWR + N
      KW  = KWI + N
C
C     Reduce A to an ordered real Schur form using an orthogonal
C     similarity transformation A <- Z'*A*Z and accumulate the
C     transformations in Z.  The separation of spectrum of A is
C     performed such that the leading NFP-by-NFP submatrix of A
C     corresponds to the "stable" eigenvalues which will be not
C     modified. The bottom (N-NFP)-by-(N-NFP) diagonal block of A
C     corresponds to the "unstable" eigenvalues to be modified.
C     Apply the transformation to B and C: B <- Z'*B and C <- C*Z.
C
C     Workspace needed:      N*(N+2);
C     Additional workspace:  need   3*N;
C                            prefer larger.
C
      IF( DISCR ) THEN
         ALPHA = ONE
      ELSE
         ALPHA = ZERO
      END IF
      CALL TB01LD( DICO, 'Stable', 'General', N, M, P, ALPHA, A, LDA,
     $             B, LDB, C, LDC, NFP, DWORK(KZ), N, DWORK(KWR),
     $             DWORK(KWI), DWORK(KW), LDWORK-KW+1, INFO )
      IF( INFO.NE.0 )
     $    RETURN
C
      WRKOPT = DWORK(KW) + DBLE( KW-1 )
C
C     Perform the pole assignment if there exist "unstable" eigenvalues.
C
      NQ = N
      IF( NFP.LT.N ) THEN
         KV  = 1
         KFI = KV  + M*M
         KW  = KFI + 2*M
C
C        Set the limits for the bottom diagonal block.
C
         NLOW = NFP + 1
         NSUP = N
C
C        WHILE (NLOW <= NSUP) DO
   10    IF( NLOW.LE.NSUP ) THEN
C
C           Main loop for assigning one or two poles.
C
C           Determine the dimension of the last block.
C
            IB = 1
            IF( NLOW.LT.NSUP ) THEN
               IF( A(NSUP,NSUP-1).NE.ZERO ) IB = 2
            END IF
            L = NSUP - IB + 1
C
C           Check the controllability of the last block.
C
            IF( DLANGE( '1-norm', IB, M, B(L,1), LDB, DWORK(KW) )
     $            .LE.TOLER ) THEN
C
C              Deflate the uncontrollable block and resume the main
C              loop.
C
               NSUP = NSUP - IB
            ELSE
C
C              Determine the M-by-IB feedback matrix FI which assigns
C              the selected IB poles for the pair
C              ( A(L:L+IB-1,L:L+IB-1), B(L:L+IB-1,1:M) ).
C
C              Workspace needed: M*(M+2).
C
               CALL SB01FY( DISCR, IB, M, A(L,L), LDA, B(L,1), LDB,
     $                      DWORK(KFI), M, DWORK(KV), M, INFO )
               IF( INFO.EQ.2 ) THEN
                  INFO = 3
                  RETURN
               END IF
C
C              Check for possible numerical instability.
C
               IF( DLANGE( '1-norm', M, IB, DWORK(KFI), M, DWORK(KW) )
     $               .GT.RMAX ) IWARN = IWARN + 1
C
C              Update the state matrix A <-- A + B*[0 FI].
C
               CALL DGEMM( 'NoTranspose', 'NoTranspose', NSUP, IB, M,
     $                     ONE, B, LDB, DWORK(KFI), M, ONE, A(1,L),
     $                     LDA )
C
C              Update the feedback matrix F <-- F + V*[0 FI] in CR.
C
               IF( DISCR )
     $            CALL DTRMM( 'Left', 'Upper', 'NoTranspose', 'NonUnit',
     $                        M, IB, ONE, DR, LDDR, DWORK(KFI), M )
               K = KFI
               DO 30 J = L, L + IB - 1
                  DO 20 I = 1, M
                     CR(I,J) = CR(I,J) + DWORK(K)
                     K = K + 1
   20             CONTINUE
   30          CONTINUE
C
               IF( DISCR ) THEN
C
C                 Update the input matrix B <-- B*V.
C
                  CALL DTRMM( 'Right', 'Upper', 'NoTranspose',
     $                        'NonUnit', N, M, ONE, DWORK(KV), M, B,
     $                        LDB )
C
C                 Update the feedthrough matrix DR <-- DR*V.
C
                  K = KV
                  DO 40 I = 1, M
                     CALL DTRMV( 'Upper', 'Transpose', 'NonUnit',
     $                           M-I+1, DWORK(K), M, DR(I,I), LDDR )
                     K = K + M + 1
   40             CONTINUE
               END IF
C
               IF( IB.EQ.2 ) THEN
C
C                 Put the 2x2 block in a standard form.
C
                  L1 = L + 1
                  CALL DLANV2( A(L,L), A(L,L1), A(L1,L), A(L1,L1),
     $                         X, Y, PR, SM, CS, SN )
C
C                 Apply the transformation to A, B, C and F.
C
                  IF( L1.LT.NSUP )
     $               CALL DROT( NSUP-L1, A(L,L1+1), LDA, A(L1,L1+1),
     $                          LDA, CS, SN )
                  CALL DROT( L-1, A(1,L), 1, A(1,L1), 1, CS, SN )
                  CALL DROT( M, B(L,1), LDB, B(L1,1), LDB, CS, SN )
                  IF( P.GT.0 )
     $               CALL DROT( P, C(1,L), 1, C(1,L1), 1, CS, SN )
                  CALL DROT( M, CR(1,L), 1, CR(1,L1), 1, CS, SN )
               END IF
               IF( NLOW+IB.LE.NSUP ) THEN
C
C                 Move the last block(s) to the leading position(s) of
C                 the bottom block.
C
C                 Workspace:     need MAX(4*N, 4*M, 4*P).
C
                  NCUR = NSUP - IB
C                 WHILE (NCUR >= NLOW) DO
   50             IF( NCUR.GE.NLOW ) THEN
C
C                    Loop for positioning of the last block.
C
C                    Determine the dimension of the current block.
C
                     IB1 = 1
                     IF( NCUR.GT.NLOW ) THEN
                         IF( A(NCUR,NCUR-1).NE.ZERO ) IB1 = 2
                     END IF
                     NB = IB1 + IB
C
C                    Initialize the local transformation matrix Z.
C
                     CALL DLASET( 'Full', NB, NB, ZERO, ONE, Z, 4 )
                     L = NCUR - IB1 + 1
C
C                    Exchange two adjacent blocks and accumulate the
C                    transformations in Z.
C
                     CALL DLAEXC( .TRUE., NB, A(L,L), LDA, Z, 4, 1, IB1,
     $                            IB, DWORK, INFO )
                     IF( INFO.NE.0 ) THEN
                        INFO = 2
                        RETURN
                     END IF
C
C                    Apply the transformation to the rest of A.
C
                     L1 = L + NB
                     IF( L1.LE.NSUP ) THEN
                        CALL DGEMM( 'Transpose', 'NoTranspose', NB,
     $                              NSUP-L1+1, NB, ONE, Z, 4, A(L,L1),
     $                              LDA, ZERO, DWORK, NB )
                        CALL DLACPY( 'Full', NB, NSUP-L1+1, DWORK, NB,
     $                               A(L,L1), LDA )
                     END IF
                     CALL DGEMM( 'NoTranspose', 'NoTranspose', L-1, NB,
     $                           NB, ONE, A(1,L), LDA, Z, 4, ZERO,
     $                           DWORK, N )
                     CALL DLACPY( 'Full', L-1, NB, DWORK, N, A(1,L),
     $                            LDA )
C
C                    Apply the transformation to B, C and F.
C
                     CALL DGEMM( 'Transpose', 'NoTranspose', NB, M, NB,
     $                           ONE, Z, 4, B(L,1), LDB, ZERO, DWORK,
     $                           NB )
                     CALL DLACPY( 'Full', NB, M, DWORK, NB, B(L,1),
     $                            LDB )
C
                     IF( P.GT.0 ) THEN
                        CALL DGEMM( 'NoTranspose', 'NoTranspose', P, NB,
     $                              NB, ONE, C(1,L), LDC, Z, 4, ZERO,
     $                              DWORK, P )
                        CALL DLACPY( 'Full', P, NB, DWORK, P,
     $                               C(1,L), LDC )
                     END IF
C
                     CALL DGEMM( 'NoTranspose', 'NoTranspose', M, NB,
     $                           NB, ONE, CR(1,L), LDCR, Z, 4, ZERO,
     $                           DWORK, M )
                     CALL DLACPY( 'Full', M, NB, DWORK, M, CR(1,L),
     $                            LDCR )
C
                     NCUR = NCUR - IB1
                     GO TO 50
                  END IF
C                 END WHILE 50
C
               END IF
               NLOW = NLOW + IB
            END IF
            GO TO 10
         END IF
C        END WHILE 10
C
         NQ = NSUP
         NR = NSUP - NFP
C
C        Annihilate the elements below the first subdiagonal of A.
C
         IF( NQ.GT.2 )
     $      CALL DLASET( 'Lower', NQ-2, NQ-2, ZERO, ZERO, A(3,1), LDA )
      END IF
C
C     Compute C <-- CQ = C + D*F and D <-- DQ = D*DR.
C
      CALL DGEMM( 'NoTranspose', 'NoTranspose', P, NQ, M, ONE, D, LDD,
     $            CR, LDCR, ONE, C, LDC )
      IF( DISCR )
     $   CALL DTRMM( 'Right', 'Upper', 'NoTranspose', 'NonUnit', P, M,
     $               ONE, DR, LDDR, D, LDD )
C
      DWORK(1) = MAX( WRKOPT, DBLE( MAX( M*(M+2), 4*M, 4*P ) ) )
C
      RETURN
C *** Last line of SB08DD ***
      END