control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
      SUBROUTINE MB05OD( BALANC, N, NDIAG, DELTA, A, LDA, MDIG, IDIG,
     $                   IWORK, DWORK, LDWORK, IWARN, INFO )
C
C     PURPOSE
C
C     To compute exp(A*delta) where A is a real N-by-N matrix and delta
C     is a scalar value. The routine also returns the minimal number of
C     accurate digits in the 1-norm of exp(A*delta) and the number of
C     accurate digits in the 1-norm of exp(A*delta) at 95% confidence
C     level.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     BALANC  CHARACTER*1
C             Specifies whether or not a balancing transformation (done
C             by SLICOT Library routine MB04MD) is required, as follows:
C             = 'N', do not use balancing;
C             = 'S', use balancing (scaling).
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrix A.  N >= 0.
C
C     NDIAG   (input) INTEGER
C             The specified order of the diagonal Pade approximant.
C             In the absence of further information NDIAG should
C             be set to 9.  NDIAG should not exceed 15.  NDIAG >= 1.
C
C     DELTA   (input) DOUBLE PRECISION
C             The scalar value delta of the problem.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On input, the leading N-by-N part of this array must
C             contain the matrix A of the problem. (This is not needed
C             if DELTA = 0.)
C             On exit, if INFO = 0, the leading N-by-N part of this
C             array contains the solution matrix exp(A*delta).
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= MAX(1,N).
C
C     MDIG    (output) INTEGER
C             The minimal number of accurate digits in the 1-norm of
C             exp(A*delta).
C
C     IDIG    (output) INTEGER
C             The number of accurate digits in the 1-norm of
C             exp(A*delta) at 95% confidence level.
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (N)
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             LDWORK >= N*(2*N+NDIAG+1)+NDIAG, if N >  1.
C             LDWORK >= 1,                     if N <= 1.
C
C     Warning Indicator
C
C     IWARN   INTEGER
C             = 0:  no warning;
C             = 1:  if MDIG = 0 and IDIG > 0, warning for possible
C                   inaccuracy (the exponential has been computed);
C             = 2:  if MDIG = 0 and IDIG = 0, warning for severe
C                   inaccuracy (the exponential has been computed);
C             = 3:  if balancing has been requested, but it failed to
C                   reduce the matrix norm and was not actually used.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = 1:  if the norm of matrix A*delta (after a possible
C                   balancing) is too large to obtain an accurate
C                   result;
C             = 2:  if the coefficient matrix (the denominator of the
C                   Pade approximant) is exactly singular; try a
C                   different value of NDIAG;
C             = 3:  if the solution exponential would overflow, possibly
C                   due to a too large value DELTA; the calculations
C                   stopped prematurely. This error is not likely to
C                   appear.
C
C     METHOD
C
C     The exponential of the matrix A is evaluated from a diagonal Pade
C     approximant. This routine is a modification of the subroutine
C     PADE, described in reference [1]. The routine implements an
C     algorithm which exploits the identity
C
C         (exp[(2**-m)*A]) ** (2**m) = exp(A),
C
C     where m is an integer determined by the algorithm, to improve the
C     accuracy for matrices with large norms.
C
C     REFERENCES
C
C     [1] Ward, R.C.
C         Numerical computation of the matrix exponential with accuracy
C         estimate.
C         SIAM J. Numer. Anal., 14, pp. 600-610, 1977.
C
C     NUMERICAL ASPECTS
C                               3
C     The algorithm requires 0(N ) operations.
C
C     CONTRIBUTOR
C
C     Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Apr. 1997.
C     Supersedes Release 2.0 routine MB05CD by T.W.C. Williams, Kingston
C     Polytechnic, March 1982.
C
C     REVISIONS
C
C     June 14, 1997, April 25, 2003, December 12, 2004.
C
C     KEYWORDS
C
C     Continuous-time system, matrix algebra, matrix exponential,
C     matrix operations, Pade approximation.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, HALF, ONE, TWO, FOUR, EIGHT, TEN, TWELVE,
     $                  NINTEN, TWO4, FOUR7, TWOHND
      PARAMETER         ( ZERO = 0.0D0,    HALF = 0.5D0,   ONE = 1.0D0,
     $                    TWO  = 2.0D0,    FOUR = 4.0D0, EIGHT = 8.0D0,
     $                    TEN  = 10.0D0, TWELVE = 12.0D0,
     $                    NINTEN = 19.0D0, TWO4 = 24.0D0,
     $                    FOUR7  = 47.0D0, TWOHND = 200.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         BALANC
      INTEGER           IDIG, INFO, IWARN, LDA, LDWORK, MDIG, N,
     $                  NDIAG
      DOUBLE PRECISION  DELTA
C     .. Array Arguments ..
      INTEGER           IWORK(*)
      DOUBLE PRECISION  A(LDA,*), DWORK(*)
C     .. Local Scalars ..
      LOGICAL           LBALS
      CHARACTER         ACTBAL
      INTEGER           BASE, I, IFAIL, IJ, IK, IM1, J, JWORA1, JWORA2,
     $                  JWORA3, JWORV1, JWORV2, K, M, MPOWER, NDAGM1,
     $                  NDAGM2, NDEC, NDECM1
      DOUBLE PRECISION  ANORM, AVGEV, BD, BIG, EABS, EAVGEV, EMNORM,
     $                  EPS, FACTOR, FN, GN, MAXRED, OVRTH2, OVRTHR, P,
     $                  RERL, RERR, S, SD2, SIZE, SMALL, SS, SUM2D,
     $                  TEMP, TMP1, TR, U, UNDERF, VAR, VAREPS, XN
C     .. External Functions ..
      LOGICAL           LSAME
      DOUBLE PRECISION  DASUM, DLAMCH, DLANGE, DNRM2
      EXTERNAL          DASUM, DLAMCH, DLANGE, DNRM2, LSAME
C     .. External Subroutines ..
      EXTERNAL          DCOPY, DGEMM, DGEMV, DGETRF, DGETRS, DLACPY,
     $                  DLASCL, DLASET, DSCAL, MB04MD, MB05OY, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         DBLE, EXP, INT, LOG, LOG10, MAX, MIN, MOD, SQRT
C     .. Executable Statements ..
C
      IWARN = 0
      INFO  = 0
      LBALS = LSAME( BALANC, 'S' )
C
C     Test the input scalar arguments.
C
      IF( .NOT.( LSAME( BALANC, 'N' ) .OR. LBALS ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( NDIAG.LT.1 ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -6
      ELSE IF( LDWORK.LT.1 .OR.
     $       ( LDWORK.LT.N*( 2*N + NDIAG + 1 ) + NDIAG .AND. N.GT.1 )
     $       ) THEN
         INFO = -11
      END IF
C
      IF ( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'MB05OD', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      EPS  = DLAMCH( 'Epsilon' )
      NDEC = INT( LOG10( ONE/EPS ) + ONE )
C
      IF ( N.EQ.0 ) THEN
         MDIG = NDEC
         IDIG = NDEC
         RETURN
      END IF
C
C     Set some machine parameters.
C
      BASE = DLAMCH( 'Base' )
      NDECM1 = NDEC - 1
      UNDERF = DLAMCH( 'Underflow' )
      OVRTHR = DLAMCH( 'Overflow' )
      OVRTH2 = SQRT( OVRTHR )
C
      IF ( DELTA.EQ.ZERO ) THEN
C
C        The DELTA = 0 case.
C
         CALL DLASET( 'Full', N, N, ZERO, ONE, A, LDA )
         MDIG = NDECM1
         IDIG = NDECM1
         RETURN
      END IF
C
      IF ( N.EQ.1 ) THEN
C
C        The 1-by-1 case.
C
         A(1,1) = EXP( A(1,1)*DELTA )
         MDIG = NDECM1
         IDIG = NDECM1
         RETURN
      END IF
C
C     Set pointers for the workspace.
C
      JWORA1 = 1
      JWORA2 = JWORA1 + N*N
      JWORA3 = JWORA2 + N*NDIAG
      JWORV1 = JWORA3 + N*N
      JWORV2 = JWORV1 + N
C
C     Compute Pade coefficients in DWORK(JWORV2:JWORV2+NDIAG-1).
C
      DWORK(JWORV2) = HALF
C
      DO 20 I = 2, NDIAG
         IM1 = I - 1
         DWORK(JWORV2+IM1) = DWORK(JWORV2+I-2)*DBLE( NDIAG - IM1 )/
     $                                   DBLE( I*( 2*NDIAG - IM1 ) )
   20 CONTINUE
C
      VAREPS = EPS**2*( ( DBLE( BASE )**2 - ONE )/
     $        ( TWO4*LOG( DBLE( BASE ) ) ) )
      XN = DBLE( N )
      TR = ZERO
C
C     Apply a translation with the mean of the eigenvalues of A*DELTA.
C
      DO 40 I = 1, N
         CALL DSCAL( N, DELTA, A(1,I), 1 )
         TR = TR + A(I,I)
   40 CONTINUE
C
      AVGEV = TR/XN
      IF ( AVGEV.GT.LOG( OVRTHR ) .OR. AVGEV.LT.LOG( UNDERF ) )
     $   AVGEV = ZERO
      IF ( AVGEV.NE.ZERO ) THEN
         ANORM = DLANGE( '1-norm', N, N, A, LDA, DWORK(JWORA1) )
C
         DO 60 I = 1, N
            A(I,I) = A(I,I) - AVGEV
   60    CONTINUE
C
         TEMP = DLANGE( '1-norm', N, N, A, LDA, DWORK(JWORA1) )
         IF ( TEMP.GT.HALF*ANORM ) THEN
C
            DO 80 I = 1, N
               A(I,I) = A(I,I) + AVGEV
   80       CONTINUE
C
            AVGEV = ZERO
         END IF
      END IF
      ACTBAL = BALANC
      IF ( LBALS ) THEN
C
C        Balancing (scaling) has been requested.  First, save A.
C
         CALL DLACPY( 'Full', N, N, A, LDA, DWORK(JWORA1), N )
         MAXRED = TWOHND
         CALL MB04MD( N, MAXRED, A, LDA, DWORK(JWORV1), INFO )
         IF ( MAXRED.LT.ONE ) THEN
C
C           Recover the matrix and reset DWORK(JWORV1,...,JWORV1+N-1)
C           to 1, as no reduction of the norm occured (unlikely event).
C
            CALL DLACPY( 'Full', N, N, DWORK(JWORA1), N, A, LDA )
            ACTBAL = 'N'
            DWORK(JWORV1) = ONE
            CALL DCOPY( N-1, DWORK(JWORV1), 0, DWORK(JWORV1+1), 1 )
            IWARN = 3
         END IF
      END IF
C
C     Scale the matrix by 2**(-M), where M is the minimum integer
C     so that the resulted matrix has the 1-norm less than 0.5.
C
      ANORM = DLANGE( '1-norm', N, N, A, LDA, DWORK(JWORA1) )
      M = 0
      IF ( ANORM.GE.HALF ) THEN
         MPOWER = INT( LOG( OVRTHR )/LOG( TWO ) )
         M = INT( LOG( ANORM )/LOG( TWO ) ) + 1
         IF ( M.GT.MPOWER ) THEN
C
C           Error return: The norm of A*DELTA is too large.
C
            INFO = 1
            RETURN
         END IF
         FACTOR = TWO**M
         IF ( M+1.LT.MPOWER ) THEN
            M = M + 1
            FACTOR = FACTOR*TWO
         END IF
C
         DO 120 I = 1, N
            CALL DSCAL( N, ONE/FACTOR, A(1,I), 1 )
  120    CONTINUE
C
      END IF
      NDAGM1 = NDIAG - 1
      NDAGM2 = NDAGM1 - 1
      IJ = 0
C
C     Compute the factors of the diagonal Pade approximant.
C     The loop 200 takes the accuracy requirements into account:
C     Pade coefficients decrease with K, so the calculations should
C     be performed in backward order, one column at a time.
C     (A BLAS 3 implementation in forward order, using DGEMM, could
C     possibly be less accurate.)
C
      DO 200 J = 1, N
         CALL DGEMV( 'No transpose', N, N, ONE, A, LDA, A(1,J), 1, ZERO,
     $               DWORK(JWORA2), 1 )
         IK = 0
C
         DO 140 K = 1, NDAGM2
            CALL DGEMV( 'No transpose', N, N, ONE, A, LDA,
     $                  DWORK(JWORA2+IK), 1, ZERO, DWORK(JWORA2+IK+N),
     $                  1 )
            IK = IK + N
  140    CONTINUE
C
         DO 180 I = 1, N
            S = ZERO
            U = ZERO
            IK = NDAGM2*N + I - 1
C
            DO 160 K = NDAGM1, 1, -1
               P = DWORK(JWORV2+K)*DWORK(JWORA2+IK)
               IK = IK - N
               S = S + P
               IF ( MOD( K+1, 2 ).EQ.0 ) THEN
                  U = U + P
               ELSE
                  U = U - P
               END IF
  160       CONTINUE
C
            P = DWORK(JWORV2)*A(I,J)
            S = S + P
            U = U - P
            IF ( I.EQ.J ) THEN
               S = S + ONE
               U = U + ONE
            END IF
            DWORK(JWORA3+IJ) = S
            DWORK(JWORA1+IJ) = U
            IJ = IJ + 1
  180    CONTINUE
C
  200 CONTINUE
C
C     Compute the exponential of the scaled matrix, using diagonal Pade
C     approximants.  As, in theory [1], the denominator of the Pade
C     approximant should be very well conditioned, no condition estimate
C     is computed.
C
      CALL DGETRF( N, N, DWORK(JWORA1), N, IWORK, IFAIL )
      IF ( IFAIL.GT.0 ) THEN
C
C        Error return: The matrix is exactly singular.
C
         INFO = 2
         RETURN
      END IF
C
      CALL DLACPY( 'Full', N, N, DWORK(JWORA3), N, A, LDA )
      CALL DGETRS( 'No transpose', N, N, DWORK(JWORA1), N, IWORK, A,
     $             LDA, IFAIL )
C
C     Prepare for the calculation of the accuracy estimates.
C     Note that ANORM here is in the range [1, e].
C
      ANORM = DLANGE( '1-norm', N, N, A, LDA, DWORK(JWORA1) )
      IF ( ANORM.GE.ONE ) THEN
         EABS = ( NINTEN*XN + FOUR7 )*( EPS*ANORM )
      ELSE
         EABS = ( ( NINTEN*XN + FOUR7 )*EPS )*ANORM
      END IF
      IF ( M.NE.0 ) THEN
         VAR = XN*VAREPS
         FN = ( FOUR*XN )/( ( XN + TWO )*( XN + ONE ) )
         GN = ( ( TWO*XN + TEN )*XN - FOUR )/( ( ( XN + TWO )**2 )
     $                                        *( ( XN + ONE )**2 ) )
C
C        Square-up the computed exponential matrix M times, with caution
C        for avoiding overflows.
C
         DO 220 K = 1, M
            IF ( ANORM.GT.OVRTH2 ) THEN
C
C              The solution could overflow.
C
               CALL DGEMM( 'No transpose', 'No transpose', N, N, N,
     $                     ONE/ANORM, A, LDA, A, LDA, ZERO,
     $                     DWORK(JWORA1), N )
               S = DLANGE( '1-norm', N, N, DWORK(JWORA1), N,
     $                     DWORK(JWORA1) )
               IF ( ANORM.LE.OVRTHR/S ) THEN
                  CALL DLASCL( 'General', N, N, ONE, ANORM, N, N,
     $                         DWORK(JWORA1), N, INFO )
                  TEMP = OVRTHR
               ELSE
C
C                 Error return: The solution would overflow.
C                 This will not happen on most machines, due to the
C                 selection of M.
C
                  INFO = 3
                  RETURN
               END IF
            ELSE
               CALL DGEMM( 'No transpose', 'No transpose', N, N, N, ONE,
     $                     A, LDA, A, LDA, ZERO, DWORK(JWORA1), N )
               TEMP = ANORM**2
            END IF
            IF ( EABS.LT.ONE ) THEN
               EABS = ( TWO*ANORM + EABS )*EABS  + XN*( EPS*TEMP )
            ELSE IF ( EABS.LT.SQRT( ONE - XN*EPS + OVRTHR/TEMP )*ANORM -
     $                        ANORM ) THEN
               EABS = XN*( EPS*TEMP ) + TWO*( ANORM*EABS ) + EABS**2
            ELSE
               EABS = OVRTHR
            END IF
C
            TMP1 = FN*VAR + GN*( TEMP*VAREPS )
            IF ( TMP1.GT.OVRTHR/TEMP ) THEN
               VAR = OVRTHR
            ELSE
               VAR = TMP1*TEMP
            END IF
C
            CALL DLACPY( 'Full', N, N, DWORK(JWORA1), N, A, LDA )
            ANORM = DLANGE( '1-norm', N, N, A, LDA, DWORK(JWORA1) )
  220    CONTINUE
C
      ELSE
         VAR = ( TWELVE*XN )*VAREPS
      END IF
C
C     Apply back transformations, if balancing was effectively used.
C
      CALL MB05OY( ACTBAL, N, 1, N, A, LDA, DWORK(JWORV1), INFO )
      EAVGEV = EXP( AVGEV )
      EMNORM = DLANGE( '1-norm', N, N, A, LDA, DWORK(JWORA1) )
C
C     Compute auxiliary quantities needed for the accuracy estimates.
C
      BIG = ONE
      SMALL = ONE
      IF ( LBALS ) THEN
C
C        Compute norms of the diagonal scaling matrix and its inverse.
C
         DO 240 I = 1, N
            U = DWORK(JWORV1+I-1)
            IF (   BIG.LT.U )   BIG = U
            IF ( SMALL.GT.U ) SMALL = U
  240    CONTINUE
C
         SUM2D = DNRM2( N, DWORK(JWORV1), 1 )
      ELSE
         SUM2D = SQRT( XN )
      END IF
C
C     Update the exponential for the initial translation, and update the
C     auxiliary quantities needed for the accuracy estimates.
C
      SD2 = SQRT( EIGHT*XN*VAREPS )*ANORM
      BD  = SQRT( VAR )
      SS  = MAX( BD, SD2 )
      BD  = MIN( BD, SD2 )
      SD2 = SS*SQRT( ONE + ( BD/SS )**2 )
      IF ( SD2.LE.ONE ) THEN
         SD2 = ( TWO/XN )*SUM2D*SD2
      ELSE IF ( SUM2D/XN.LT.OVRTHR/TWO/SD2 ) THEN
         SD2 = ( TWO/XN )*SUM2D*SD2
      ELSE
         SD2 = OVRTHR
      END IF
      IF ( LBALS ) THEN
         SIZE = ZERO
      ELSE
         IF ( SD2.LT.OVRTHR - EMNORM ) THEN
            SIZE = EMNORM + SD2
         ELSE
            SIZE = OVRTHR
         END IF
      END IF
C
      DO 260 J = 1, N
         SS = DASUM( N, A(1,J), 1 )
         CALL DSCAL( N, EAVGEV, A(1,J), 1 )
         IF ( LBALS ) THEN
            BD = DWORK(JWORV1+J-1)
            SIZE = MAX( SIZE, SS + SD2/BD )
         END IF
  260 CONTINUE
C
C     Set the accuracy estimates and warning errors, if any.
C
      RERR = LOG10( BIG ) + LOG10( EABS ) - LOG10( SMALL ) -
     $       LOG10( EMNORM ) - LOG10( EPS )
      IF ( SIZE.GT.EMNORM ) THEN
         RERL = LOG10( ( SIZE/EMNORM - ONE )/EPS )
      ELSE
         RERL = ZERO
      END IF
      MDIG = MIN( NDEC - INT( RERR + HALF ), NDECM1 )
      IDIG = MIN( NDEC - INT( RERL + HALF ), NDECM1 )
C
      IF ( MDIG.LE.0 ) THEN
         MDIG = 0
         IWARN = 1
      END IF
      IF ( IDIG.LE.0 ) THEN
         IDIG = 0
         IWARN = 2
      END IF
C
      RETURN
C *** Last line of MB05OD ***
      END