control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
      SUBROUTINE TG01GD( JOBS, L, N, M, P, A, LDA, E, LDE, B, LDB,
     $                   C, LDC, D, LDD, LR, NR, RANKE, INFRED, TOL,
     $                   IWORK, DWORK, LDWORK, INFO )
C
C     PURPOSE
C
C     To find a reduced descriptor representation (Ar-lambda*Er,Br,Cr)
C     without non-dynamic modes for a descriptor representation
C     (A-lambda*E,B,C). Optionally, the reduced descriptor system can
C     be put into a standard form with the leading diagonal block
C     of Er identity.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     JOBS    CHARACTER*1
C             Indicates whether the user wishes to transform the leading
C             diagonal block of Er to an identity matrix, as follows:
C             = 'S':  make Er with leading diagonal identity;
C             = 'D':  keep Er unreduced or upper triangular.
C
C     Input/Output Parameters
C
C     L       (input) INTEGER
C             The number of rows of the matrices A, E, and B;
C             also the number of differential equations.  L >= 0.
C
C     N       (input) INTEGER
C             The number of columns of the matrices A, E, and C;
C             also the dimension of descriptor state vector.  N >= 0.
C
C     M       (input) INTEGER
C             The number of columns of the matrix B;
C             also the dimension of the input vector.  M >= 0.
C
C     P       (input) INTEGER
C             The number of rows of the matrix C.
C             also the dimension of the output vector.  P >= 0.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading L-by-N part of this array must
C             contain the state dynamics matrix A.
C             On exit, if NR < N, the leading LR-by-NR part of this
C             array contains the reduced order state matrix Ar of a
C             descriptor realization without non-dynamic modes.
C             Array A contains the original state dynamics matrix if
C             INFRED < 0.
C
C     LDA     INTEGER
C             The leading dimension of the array A.  LDA >= MAX(1,L).
C
C     E       (input/output) DOUBLE PRECISION array, dimension (LDE,N)
C             On entry, the leading L-by-N part of this array must
C             contain the descriptor matrix E.
C             On exit, if INFRED >= 0, the leading LR-by-NR part of this
C             array contains the reduced order descriptor matrix Er of a
C             descriptor realization without non-dynamic modes.
C             In this case, only the leading RANKE-by-RANKE submatrix
C             of Er is nonzero and this submatrix is nonsingular and
C             upper triangular. Array E contains the original descriptor
C             matrix if INFRED < 0. If JOBS = 'S', then the leading
C             RANKE-by-RANKE submatrix results in an identity matrix.
C
C     LDE     INTEGER
C             The leading dimension of the array E.  LDE >= MAX(1,L).
C
C     B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C             On entry, the leading L-by-M part of this array must
C             contain the input matrix B.
C             On exit, the leading LR-by-M part of this array contains
C             the reduced order input matrix Br of a descriptor
C             realization without non-dynamic modes. Array B contains
C             the original input matrix if INFRED < 0.
C
C     LDB     INTEGER
C             The leading dimension of the array B.  LDB >= MAX(1,L).
C
C     C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C             On entry, the leading P-by-N part of this array must
C             contain the output matrix C.
C             On exit, the leading P-by-NR part of this array contains
C             the reduced order output matrix Cr of a descriptor
C             realization without non-dynamic modes. Array C contains
C             the original output matrix if INFRED < 0.
C
C     LDC     INTEGER
C             The leading dimension of the array C.  LDC >= MAX(1,P).
C
C     D       (input/output) DOUBLE PRECISION array, dimension (LDD,M)
C             On entry, the leading P-by-M part of this array must
C             contain the original feedthrough matrix D.
C             On exit, the leading P-by-M part of this array contains
C             the feedthrough matrix Dr of a reduced descriptor
C             realization without non-dynamic modes.
C
C     LDD     INTEGER
C             The leading dimension of the array D.  LDD >= MAX(1,P).
C
C     LR      (output) INTEGER
C             The number of reduced differential equations.
C
C     NR      (output) INTEGER
C             The dimension of the reduced descriptor state vector.
C
C     RANKE   (output) INTEGER
C             The estimated rank of the matrix E.
C
C     INFRED  (output) INTEGER
C             This parameter contains information on performed reduction
C             and on structure of resulting system matrices, as follows:
C             INFRED >= 0 the reduced system is in an SVD-like
C                         coordinate form with Er upper triangular;
C                         INFRED is the achieved order reduction.
C             INFRED  < 0 no reduction achieved and the original
C                         system has been restored.
C
C     Tolerances
C
C     TOL     DOUBLE PRECISION
C             The tolerance to be used in rank determinations when
C             transforming (A-lambda*E). If the user sets TOL > 0,
C             then the given value of TOL is used as a lower bound for
C             reciprocal condition numbers in rank determinations; a
C             (sub)matrix whose estimated condition number is less than
C             1/TOL is considered to be of full rank.  If the user sets
C             TOL <= 0, then an implicitly computed, default tolerance,
C             defined by  TOLDEF = L*N*EPS,  is used instead, where EPS
C             is the machine precision (see LAPACK Library routine
C             DLAMCH).  TOL < 1.
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (N)
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) returns the optimal value
C             of LDWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             LDWORK >= 1, if MIN(L,N) = 0; otherwise,
C             LDWORK >= MAX( N+P, MIN(L,N)+MAX(3*N-1,M,L) ).
C             If LDWORK >= 2*L*N+L*M+N*P+
C                          MAX( 1, N+P, MIN(L,N)+MAX(3*N-1,M,L) ) then
C             the original matrices are restored if no order reduction
C             is possible. This is achieved by saving system matrices
C             before reduction and restoring them if no order reduction
C             took place.
C
C             If LDWORK = -1, then a workspace query is assumed; the
C             routine only calculates the optimal size of the DWORK
C             array, returns this value as the first entry of the DWORK
C             array, and no error message related to LDWORK is issued by
C             XERBLA. The optimal size does not necessarily include the 
C             space needed for saving the original system matrices.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     The subroutine elliminates the non-dynamics modes in two steps:
C
C     Step 1: Reduce the system to the SVD-like coordinate form
C     (Q'*A*Z-lambda*Q'*E*Z, Q'*B, C*Z) , where
C
C              ( A11 A12 A13 )           ( E11 0 0 )         ( B1 )
C     Q'*A*Z = ( A21 A22  0  ), Q'*E*Z = (  0  0 0 ), Q'*B = ( B2 ),
C              ( A31  0   0  )           (  0  0 0 )         ( B3 )
C
C        C*Z = ( C1  C2  C3 ),
C
C     where E11 and A22 are upper triangular invertible matrices.
C
C     Step 2: Compute the reduced system as (Ar-lambda*Er,Br,Cr,Dr),
C     where
C          ( A11 - A12*inv(A22)*A21, A13 )        ( E11 0 )
C     Ar = (                             ),  Er = (       ),
C          (     A31                  0  )        (  0  0 )
C
C          ( B1 - A12*inv(A22)*B2 )
C     Br = (                      ),  Cr = ( C1 - C2*inv(A22)*A21, C3 ),
C          (        B3            )
C
C     Dr = D - C2*inv(A22)*B2.
C
C     Step 3: If desired (JOBS = 'S'), reduce the descriptor system to
C     the standard form
C
C     Ar <- diag(inv(E11),I)*Ar;  Br <- diag(inv(E11),I)*Br;
C     Er  = diag(I,0).
C
C     If L = N and LR = NR = RANKE, then if Step 3 is performed,
C     the resulting system is a standard state space system.
C
C     NUMERICAL ASPECTS
C
C     If L = N, the algorithm requires 0( N**3 ) floating point
C     operations.
C
C     CONTRIBUTOR
C
C     A. Varga, German Aerospace Center, DLR Oberpfaffenhofen.
C     May 1999.
C
C     REVISIONS
C
C     July 1999, V. Sima, Research Institute for Informatics, Bucharest.
C     A. Varga, DLR Oberpfaffenhofen, March 2002.
C     V. Sima, Dec. 2016, Feb. 2017.
C
C     KEYWORDS
C
C     Minimal realization, orthogonal transformation.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D0, ZERO = 0.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         JOBS
      INTEGER           INFO, INFRED, L, LDA, LDB, LDC, LDD, LDE,
     $                  LDWORK, LR, M, N, NR, P, RANKE
      DOUBLE PRECISION  TOL
C     .. Array Arguments ..
      INTEGER           IWORK(*)
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*),
     $                  DWORK(*), E(LDE,*)
C     .. Local Scalars ..
      LOGICAL           LQUERY, LSPACE, SSTYPE
      INTEGER           K, K1, KWA, KWB, KWC, KWE, KWR, LS, LWRMIN, NS,
     $                  RNKA22, WRKOPT
C     .. Local Arrays ..
      DOUBLE PRECISION  DUM(1)
C     .. External Functions ..
      LOGICAL           LSAME
      EXTERNAL          LSAME
C     .. External Subroutines ..
      EXTERNAL          DGEMM, DLACPY, DLASET, DTRSM, TG01FD, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         INT, MAX, MIN
C     .. Executable Statements ..
C
C     Decode JOBS.
C
      SSTYPE = LSAME( JOBS, 'S' )
C
      INFO = 0
C
C     Test the input scalar arguments.
C
      IF( .NOT.SSTYPE .AND. .NOT.LSAME( JOBS, 'D' )  ) THEN
         INFO = -1
      ELSE IF( L.LT.0 ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( M.LT.0 ) THEN
         INFO = -4
      ELSE IF( P.LT.0 ) THEN
         INFO = -5
      ELSE IF( LDA.LT.MAX( 1, L) ) THEN
         INFO = -7
      ELSE IF( LDE.LT.MAX( 1, L ) ) THEN
         INFO = -9
      ELSE IF( LDB.LT.MAX( 1, L ) ) THEN
         INFO = -11
      ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
         INFO = -13
      ELSE IF( LDD.LT.MAX( 1, P ) ) THEN
         INFO = -15
      ELSE IF( TOL.GE.ONE ) THEN
         INFO = -20
      ELSE
         IF( MIN( L, N ).EQ.0 ) THEN
            LWRMIN = 1
         ELSE
            LWRMIN = MAX( N + P, MIN( L, N ) + MAX( 3*N - 1, M, L ) )
         END IF
         LQUERY = LDWORK.EQ.-1
C
         IF( LQUERY ) THEN
            CALL TG01FD( 'Not Q', 'Not Z', 'Reduce A', L, N, M, P, A,
     $                   LDA, E, LDE, B, LDB, C, LDC, DUM, 1, DUM, 1,
     $                   RANKE, RNKA22, TOL, IWORK, DWORK, -1, INFO )
            WRKOPT = MAX( LWRMIN, INT( DWORK(1) ) )
         ELSE IF( LDWORK.LT.LWRMIN ) THEN
            INFO = -23
         END IF
      END IF
C
      IF ( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'TG01GD', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         DWORK(1) = WRKOPT
         RETURN
       END IF
C
C     Quick return if possible.
C
      LR = L
      NR = N
      IF( MIN( L, N ).EQ.0 ) THEN
         DWORK(1) = ONE
         RANKE    =  0
         INFRED   = -1
         RETURN
      END IF
C
C     Set large workspace option.
C
      LSPACE = LDWORK.GE.( LWRMIN + L*( 2*N + M) + P*N ) .AND.
     $         .NOT.SSTYPE
C
      IF( LSPACE) THEN
C
C        Determine offsets and save system matrices.
C
         KWA = 1
         KWE = KWA + L*N
         KWB = KWE + L*N
         KWC = KWB + L*M
         KWR = KWC + P*N
         CALL DLACPY( 'Full', L, N, A, LDA, DWORK(KWA), L )
         CALL DLACPY( 'Full', L, N, E, LDE, DWORK(KWE), L )
         CALL DLACPY( 'Full', L, M, B, LDB, DWORK(KWB), L )
         CALL DLACPY( 'Full', P, N, C, LDC, DWORK(KWC), MAX( 1, P ) )
      ELSE
         KWR = 1
      END IF
C
C     Reduce the descriptor system to the SVD-like coordinate form
C     (At-lambda*Et, Bt, Ct) , where
C
C             ( A11 A12 A13 )       ( E11 0 0 )       ( B1 )
C        At = ( A21 A22  0  ), Et = (  0  0 0 ), Bt = ( B2 ),
C             ( A31  0   0  )       (  0  0 0 )       ( B3 )
C
C        Ct = ( C1  C2  C3  ),
C
C     and E11 and A22 are RANKE-by-RANKE and RNKA22-by-RNKA22
C     upper triangular invertible matrices, respectively.
C     Workspace: needed real MAX( N+P, MIN(L,N)+MAX(3*N-1,M,L) );
C                needed integer N.
C
      CALL TG01FD( 'Not Q', 'Not Z', 'Reduce A', L, N, M, P, A, LDA,
     $              E, LDE, B, LDB, C, LDC, DUM, 1, DUM, 1, RANKE,
     $              RNKA22, TOL, IWORK, DWORK(KWR), LDWORK-KWR+1, INFO )
C
      IF( INFO.EQ.0 ) THEN
         INFRED = RNKA22
         IF( RNKA22.GT.0 ) THEN
C
C           Apply residualization formulas.
C
            K  = RANKE + 1
            K1 = MIN( L, N, K + RNKA22 )
            LR = L  - RNKA22
            NR = N  - RNKA22
            LS = LR - RANKE
            NS = NR - RANKE
C
C           Compute A21 <- INV(A22)*A21.
C
            CALL DTRSM( 'Left', 'Upper', 'No Transpose', 'Non-unit',
     $                  RNKA22, RANKE, ONE, A(K,K), LDA, A(K,1), LDA )
C
C           Compute B2 <- INV(A22)*B2.
C
            CALL DTRSM( 'Left', 'Upper', 'No Transpose', 'Non-unit',
     $                  RNKA22, M, ONE, A(K,K), LDA, B(K,1), LDB )
C
C           Compute the residualized systems matrices.
C
C           Dr = D - C2*INV(A22)*B2.
C
            CALL DGEMM( 'No Transpose', 'No Transpose', P, M, RNKA22,
     $                  -ONE, C(1,K), LDC, B(K,1), LDB, ONE, D, LDD )
C
C           Br = ( B1 - A12*INV(A22)*B2 ).
C                (         B3           )
C
            CALL DGEMM( 'No Transpose', 'No Transpose', RANKE, M,
     $                  RNKA22, -ONE, A(1,K), LDA, B(K,1), LDB, ONE,
     $                  B, LDB )
            CALL DLACPY( 'Full', LS, M, B(K1,1), LDB, B(K,1), LDB )
C
C           Cr = ( C1 - C2*INV(A22)*A21 C3 ).
C
            CALL DGEMM( 'NoTranspose', 'NoTranspose', P, RANKE, RNKA22,
     $                  -ONE, C(1,K), LDC, A(K,1), LDA, ONE, C, LDC )
            CALL DLACPY( 'Full', P, NS, C(1,K1), LDC, C(1,K), LDC )
C
C           Ar = ( A11 - A12*INV(A22)*A21  A13 ).
C                (       A31                0  )
C
            CALL DGEMM( 'No Transpose', 'No Transpose', RANKE, RANKE,
     $                  RNKA22, -ONE, A(1,K), LDA, A(K,1), LDA, ONE, A,
     $                  LDA )
C
            CALL DLACPY( 'Full', LS,    NR, A(K1,1), LDA, A(K,1), LDA )
            CALL DLACPY( 'Full', RANKE, NS, A(1,K1), LDA, A(1,K), LDA )
         ELSE
            IF( LSPACE ) THEN
C
C              Restore system matrices.
C
               CALL DLACPY( 'Full', L, N, DWORK(KWA), L, A, LDA )
               CALL DLACPY( 'Full', L, N, DWORK(KWE), L, E, LDE )
               CALL DLACPY( 'Full', L, M, DWORK(KWB), L, B, LDB )
               CALL DLACPY( 'Full', P, N, DWORK(KWC), MAX( 1, P ), C,
     $                      LDC )
               INFRED = -1
            END IF
         END IF
C
         IF( SSTYPE ) THEN
C
C           Ar <- diag(inv(E11),I)*Ar.
C
            CALL DTRSM( 'Left', 'Upper', 'No Transpose', 'Non-unit',
     $                  RANKE, NR, ONE, E, LDE, A, LDA )
C
C           Br <- diag(inv(E11),I)*Br.
C
            CALL DTRSM( 'Left', 'Upper', 'No Transpose', 'Non-unit',
     $                  RANKE, M, ONE, E, LDE, B, LDB )
C
C           E11 = I.
C
            CALL DLASET( 'Full', RANKE, RANKE, ZERO, ONE, E, LDE )
         END IF
         DWORK(1) = DWORK(KWR)
      END IF
C
      RETURN
C *** Last line of TG01GD ***
      END