control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
      SUBROUTINE MB02CD( JOB, TYPET, K, N, T, LDT, G, LDG, R, LDR, L,
     $                   LDL, CS, LCS, DWORK, LDWORK, INFO )
C
C     PURPOSE
C
C     To compute the Cholesky factor and the generator and/or the
C     Cholesky factor of the inverse of a symmetric positive definite
C     (s.p.d.) block Toeplitz matrix T, defined by either its first
C     block row, or its first block column, depending on the routine
C     parameter TYPET. Transformation information is stored.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     JOB     CHARACTER*1
C             Specifies the output of the routine, as follows:
C             = 'G':  only computes the generator G of the inverse;
C             = 'R':  computes the generator G of the inverse and the
C                     Cholesky factor R of T, i.e., if TYPET = 'R',
C                     then R'*R = T, and if TYPET = 'C', then R*R' = T;
C             = 'L':  computes the generator G and the Cholesky factor L
C                     of the inverse, i.e., if TYPET = 'R', then
C                     L'*L = inv(T), and if TYPET = 'C', then
C                     L*L' = inv(T);
C             = 'A':  computes the generator G, the Cholesky factor L
C                     of the inverse and the Cholesky factor R of T;
C             = 'O':  only computes the Cholesky factor R of T.
C
C     TYPET   CHARACTER*1
C             Specifies the type of T, as follows:
C             = 'R':  T contains the first block row of an s.p.d. block
C                     Toeplitz matrix; if demanded, the Cholesky factors
C                     R and L are upper and lower triangular,
C                     respectively, and G contains the transposed
C                     generator of the inverse;
C             = 'C':  T contains the first block column of an s.p.d.
C                     block Toeplitz matrix; if demanded, the Cholesky
C                     factors R and L are lower and upper triangular,
C                     respectively, and G contains the generator of the
C                     inverse. This choice results in a column oriented
C                     algorithm which is usually faster.
C             Note:   in the sequel, the notation x / y means that
C                     x corresponds to TYPET = 'R' and y corresponds to
C                     TYPET = 'C'.
C
C     Input/Output Parameters
C
C     K       (input)  INTEGER
C             The number of rows / columns in T, which should be equal
C             to the blocksize.  K >= 0.
C
C     N       (input)  INTEGER
C             The number of blocks in T.  N >= 0.
C
C     T       (input/output)  DOUBLE PRECISION array, dimension
C             (LDT,N*K) / (LDT,K)
C             On entry, the leading K-by-N*K / N*K-by-K part of this
C             array must contain the first block row / column of an
C             s.p.d. block Toeplitz matrix.
C             On exit, if INFO = 0, then the leading K-by-N*K / N*K-by-K
C             part of this array contains, in the first K-by-K block,
C             the upper / lower Cholesky factor of T(1:K,1:K), and in
C             the remaining part, the Householder transformations
C             applied during the process.
C
C     LDT     INTEGER
C             The leading dimension of the array T.
C             LDT >= MAX(1,K),    if TYPET = 'R';
C             LDT >= MAX(1,N*K),  if TYPET = 'C'.
C
C     G       (output)  DOUBLE PRECISION array, dimension
C             (LDG,N*K) / (LDG,2*K)
C             If INFO = 0 and JOB = 'G', 'R', 'L', or 'A', the leading
C             2*K-by-N*K / N*K-by-2*K part of this array contains, in
C             the first K-by-K block of the second block row / column,
C             the lower right block of L (necessary for updating
C             factorizations in SLICOT Library routine MB02DD), and
C             in the remaining part, the generator of the inverse of T.
C             Actually, to obtain a generator one has to set
C                 G(K+1:2*K, 1:K) = 0,    if TYPET = 'R';
C                 G(1:K, K+1:2*K) = 0,    if TYPET = 'C'.
C
C     LDG     INTEGER
C             The leading dimension of the array G.
C             LDG >= MAX(1,2*K),  if TYPET = 'R' and
C                                    JOB = 'G', 'R', 'L', or 'A';
C             LDG >= MAX(1,N*K),  if TYPET = 'C' and
C                                    JOB = 'G', 'R', 'L', or 'A';
C             LDG >= 1,           if JOB = 'O'.
C
C     R       (output)  DOUBLE PRECISION array, dimension (LDR,N*K)
C             If INFO = 0 and JOB = 'R', 'A', or 'O', then the leading
C             N*K-by-N*K part of this array contains the upper / lower
C             Cholesky factor of T.
C             The elements in the strictly lower / upper triangular part
C             are not referenced.
C
C     LDR     INTEGER
C             The leading dimension of the array R.
C             LDR >= MAX(1,N*K),  if JOB = 'R', 'A', or 'O';
C             LDR >= 1,           if JOB = 'G', or 'L'.
C
C     L       (output)  DOUBLE PRECISION array, dimension (LDL,N*K)
C             If INFO = 0 and JOB = 'L', or 'A', then the leading
C             N*K-by-N*K part of this array contains the lower / upper
C             Cholesky factor of the inverse of T.
C             The elements in the strictly upper / lower triangular part
C             are not referenced.
C
C     LDL     INTEGER
C             The leading dimension of the array L.
C             LDL >= MAX(1,N*K),  if JOB = 'L', or 'A';
C             LDL >= 1,           if JOB = 'G', 'R', or 'O'.
C
C     CS      (output)  DOUBLE PRECISION array, dimension (LCS)
C             If INFO = 0, then the leading 3*(N-1)*K part of this
C             array contains information about the hyperbolic rotations
C             and Householder transformations applied during the
C             process. This information is needed for updating the
C             factorizations in SLICOT Library routine MB02DD.
C
C     LCS     INTEGER
C             The length of the array CS.  LCS >= 3*(N-1)*K.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0,  DWORK(1)  returns the optimal
C             value of LDWORK.
C             On exit, if  INFO = -16,  DWORK(1)  returns the minimum
C             value of LDWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             LDWORK >= MAX(1,(N-1)*K).
C             For optimum performance LDWORK should be larger.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = 1:  the reduction algorithm failed. The Toeplitz matrix
C                   associated with T is not (numerically) positive
C                   definite.
C
C     METHOD
C
C     Householder transformations and modified hyperbolic rotations
C     are used in the Schur algorithm [1], [2].
C
C     REFERENCES
C
C     [1] Kailath, T. and Sayed, A.
C         Fast Reliable Algorithms for Matrices with Structure.
C         SIAM Publications, Philadelphia, 1999.
C
C     [2] Kressner, D. and Van Dooren, P.
C         Factorizations and linear system solvers for matrices with
C         Toeplitz structure.
C         SLICOT Working Note 2000-2, 2000.
C
C     NUMERICAL ASPECTS
C
C     The implemented method is numerically stable.
C                               3 2
C     The algorithm requires 0(K N ) floating point operations.
C
C     CONTRIBUTOR
C
C     D. Kressner, Technical Univ. Chemnitz, Germany, June 2000.
C
C     REVISIONS
C
C     V. Sima, Research Institute for Informatics, Bucharest, July 2000,
C     February 2004.
C
C     KEYWORDS
C
C     Elementary matrix operations, Householder transformation, matrix
C     operations, Toeplitz matrix.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         JOB, TYPET
      INTEGER           INFO, K, LCS, LDG, LDL, LDR, LDT, LDWORK, N
C     .. Array Arguments ..
      DOUBLE PRECISION  CS(*), DWORK(*), G(LDG, *), L(LDL,*), R(LDR,*),
     $                  T(LDT,*)
C     .. Local Scalars ..
      INTEGER           I, IERR, MAXWRK, STARTI, STARTR, STARTT
      LOGICAL           COMPG, COMPL, COMPR, ISROW
C     .. External Functions ..
      LOGICAL           LSAME
      EXTERNAL          LSAME
C     .. External Subroutines ..
      EXTERNAL          DLACPY, DLASET, DPOTRF, DTRSM, MB02CX, MB02CY,
     $                  XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         INT, MAX, MIN
C
C     .. Executable Statements ..
C
C     Decode the scalar input parameters.
C
      INFO  = 0
      COMPL = LSAME( JOB, 'L' ) .OR. LSAME( JOB, 'A' )
      COMPG = LSAME( JOB, 'G' ) .OR. LSAME( JOB, 'R' ) .OR. COMPL
      COMPR = LSAME( JOB, 'R' ) .OR. LSAME( JOB, 'A' ) .OR.
     $        LSAME( JOB, 'O' )
      ISROW = LSAME( TYPET, 'R' )
C
C     Check the scalar input parameters.
C
      IF ( .NOT.( COMPG .OR. COMPR ) ) THEN
         INFO = -1
      ELSE IF ( .NOT.( ISROW .OR. LSAME( TYPET, 'C' ) ) ) THEN
         INFO = -2
      ELSE IF ( K.LT.0 ) THEN
         INFO = -3
      ELSE IF ( N.LT.0 ) THEN
         INFO = -4
      ELSE IF ( LDT.LT.1 .OR. ( ISROW .AND. LDT.LT.K ) .OR.
     $                   ( .NOT.ISROW .AND. LDT.LT.N*K ) ) THEN
         INFO = -6
      ELSE IF ( LDG.LT.1 .OR.
     $           ( COMPG .AND. ( ( ISROW .AND. LDG.LT.2*K )
     $                 .OR. ( .NOT.ISROW .AND. LDG.LT.N*K ) ) ) ) THEN
         INFO = -8
      ELSE IF ( LDR.LT.1 .OR. ( COMPR .AND. ( LDR.LT.N*K ) ) ) THEN
         INFO = -10
      ELSE IF ( LDL.LT.1 .OR. ( COMPL .AND. ( LDL.LT.N*K ) ) ) THEN
         INFO = -12
      ELSE IF ( LCS.LT.3*( N - 1 )*K ) THEN
         INFO = -14
      ELSE IF ( LDWORK.LT.MAX( 1, ( N - 1 )*K ) ) THEN
         DWORK(1) = MAX( 1, ( N - 1 )*K )
         INFO = -16
      END IF
C
C     Return if there were illegal values.
C
      IF ( INFO.NE.0 ) THEN
         CALL XERBLA( 'MB02CD', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF ( MIN( K, N ).EQ.0 ) THEN
         DWORK(1) = ONE
         RETURN
      END IF
C
      MAXWRK = 1
      IF ( ISROW ) THEN
C
C        T is the first block row of a block Toeplitz matrix.
C        Bring T to proper form by triangularizing its first block.
C
         CALL DPOTRF( 'Upper', K, T, LDT, IERR )
         IF ( IERR.NE.0 )  THEN
C
C           Error return:  The matrix is not positive definite.
C
            INFO = 1
            RETURN
         END IF
C
         IF ( N.GT.1 )
     $      CALL DTRSM( 'Left', 'Upper', 'Transpose', 'NonUnit', K,
     $                  (N-1)*K, ONE, T, LDT, T(1,K+1), LDT )
C
C        Initialize the output matrices.
C
         IF ( COMPG ) THEN
            CALL DLASET( 'All', 2*K, N*K, ZERO, ZERO, G, LDG )
            CALL DLASET( 'All', 1, K, ONE, ONE, G(K+1,1), LDG+1 )
            CALL DTRSM(  'Left', 'Upper', 'Transpose', 'NonUnit', K, K,
     $                   ONE, T, LDT, G(K+1,1), LDG )
            IF ( N.GT.1 )
     $         CALL DLACPY( 'Upper', K, (N-1)*K, T, LDT, G(K+1,K+1),
     $                      LDG )
            CALL DLACPY( 'Lower', K, K, G(K+1,1), LDG, G, LDG )
         END IF
C
         IF ( COMPL ) THEN
            CALL DLACPY( 'Lower', K, K, G(K+1,1), LDG, L, LDL )
         END IF
C
         IF ( COMPR ) THEN
            CALL DLACPY( 'Upper', K, N*K, T, LDT, R, LDR )
         END IF
C
C        Processing the generator.
C
         IF ( COMPG ) THEN
C
C           Here we use G as working array for holding the generator.
C           T contains the second row of the generator.
C           G contains in its first block row the second row of the
C           inverse generator.
C           The second block row of G is partitioned as follows:
C
C           [ First block of the inverse generator, ...
C             First row of the generator, ...
C             The rest of the blocks of the inverse generator ]
C
C           The reason for the odd partitioning is that the first block
C           of the inverse generator will be thrown out at the end and
C           we want to avoid reordering.
C
C           (N-1)*K locations of DWORK are used by SLICOT Library
C           routine MB02CY.
C
            DO 10  I = 2, N
               STARTR = ( I - 1 )*K + 1
               STARTI = ( N - I + 1 )*K + 1
               STARTT = 3*( I - 2 )*K + 1
C
C              Transformations acting on the generator:
C
               CALL MB02CX( 'Row', K, K, K, G(K+1,K+1), LDG,
     $                      T(1,STARTR), LDT, CS(STARTT), 3*K, DWORK,
     $                      LDWORK, IERR )
C
               IF ( IERR.NE.0 )  THEN
C
C                 Error return:  The matrix is not positive definite.
C
                  INFO = 1
                  RETURN
               END IF
C
               MAXWRK = MAX( MAXWRK, INT( DWORK(1) ) )
               IF ( N.GT.I )  THEN
                  CALL MB02CY( 'Row', 'NoStructure', K, K, (N-I)*K, K,
     $                         G(K+1,2*K+1), LDG, T(1,STARTR+K), LDT,
     $                         T(1,STARTR), LDT, CS(STARTT), 3*K, DWORK,
     $                         LDWORK, IERR )
                  MAXWRK = MAX( MAXWRK, INT( DWORK(1) ) )
               END IF
C
               IF ( COMPR ) THEN
                  CALL DLACPY( 'Upper', K, (N-I+1)*K, G(K+1,K+1), LDG,
     $                         R(STARTR,STARTR), LDR)
               END IF
C
C              Transformations acting on the inverse generator:
C
               CALL DLASET( 'All', K, K, ZERO, ZERO, G(K+1,STARTI),
     $                      LDG )
               CALL MB02CY( 'Row', 'Triangular', K, K, K, K, G(K+1,1),
     $                      LDG, G(1,STARTR), LDG, T(1,STARTR), LDT,
     $                      CS(STARTT), 3*K, DWORK, LDWORK, IERR )
               MAXWRK = MAX( MAXWRK, INT( DWORK(1) ) )
C
               CALL MB02CY( 'Row', 'NoStructure', K, K, (I-1)*K, K,
     $                      G(K+1,STARTI), LDG, G, LDG, T(1,STARTR),
     $                      LDT, CS(STARTT), 3*K, DWORK, LDWORK, IERR )
               MAXWRK = MAX( MAXWRK, INT( DWORK(1) ) )
C
               IF ( COMPL ) THEN
                  CALL DLACPY( 'All', K, (I-1)*K, G(K+1,STARTI), LDG,
     $                         L(STARTR,1), LDL )
                  CALL DLACPY( 'Lower', K, K, G(K+1,1), LDG,
     $                         L(STARTR,(I-1)*K+1), LDL )
               END IF
   10       CONTINUE
C
         ELSE
C
C           Here R is used as working array for holding the generator.
C           Again, T contains the second row of the generator.
C           The current row of R contains the first row of the
C           generator.
C
            IF ( N.GT.1 )
     $         CALL DLACPY( 'Upper', K, (N-1)*K, T, LDT, R(K+1,K+1),
     $                      LDR )
C
            DO 20  I = 2, N
               STARTR = ( I - 1 )*K + 1
               STARTT = 3*( I - 2 )*K + 1
               CALL MB02CX( 'Row', K, K, K, R(STARTR,STARTR), LDR,
     $                      T(1,STARTR), LDT, CS(STARTT), 3*K, DWORK,
     $                      LDWORK, IERR )
               IF ( IERR.NE.0 )  THEN
C
C                 Error return:  The matrix is not positive definite.
C
                  INFO = 1
                  RETURN
               END IF
C
               MAXWRK = MAX( MAXWRK, INT( DWORK(1) ) )
               IF ( N.GT.I ) THEN
                  CALL MB02CY( 'Row', 'NoStructure', K, K, (N-I)*K, K,
     $                         R(STARTR,STARTR+K), LDR, T(1,STARTR+K),
     $                         LDT, T(1,STARTR), LDT, CS(STARTT), 3*K,
     $                         DWORK, LDWORK, IERR )
                  MAXWRK = MAX( MAXWRK, INT( DWORK(1) ) )
C
                  CALL DLACPY( 'Upper', K, (N-I)*K, R(STARTR,STARTR),
     $                          LDR, R(STARTR+K,STARTR+K), LDR )
               END IF
   20       CONTINUE
C
         END IF
C
      ELSE
C
C        T is the first block column of a block Toeplitz matrix.
C        Bring T to proper form by triangularizing its first block.
C
         CALL DPOTRF( 'Lower', K, T, LDT, IERR )
         IF ( IERR.NE.0 )  THEN
C
C           Error return:  The matrix is not positive definite.
C
            INFO = 1
            RETURN
         END IF
C
         IF ( N.GT.1 )
     $      CALL DTRSM( 'Right', 'Lower', 'Transpose', 'NonUnit',
     $                  (N-1)*K, K, ONE, T, LDT, T(K+1,1), LDT )
C
C        Initialize the output matrices.
C
         IF ( COMPG ) THEN
            CALL DLASET( 'All', N*K, 2*K, ZERO, ZERO, G, LDG )
            CALL DLASET( 'All', 1, K, ONE, ONE, G(1,K+1), LDG+1 )
            CALL DTRSM(  'Right', 'Lower', 'Transpose', 'NonUnit', K, K,
     $                   ONE, T, LDT, G(1,K+1), LDG )
            IF ( N.GT.1 )
     $         CALL DLACPY( 'Lower', (N-1)*K, K, T, LDT, G(K+1,K+1),
     $                      LDG )
            CALL DLACPY( 'Upper', K, K, G(1,K+1), LDG, G, LDG )
         END IF
C
         IF ( COMPL ) THEN
            CALL DLACPY( 'Upper', K, K, G(1,K+1), LDG, L, LDL )
         END IF
C
         IF ( COMPR ) THEN
            CALL DLACPY( 'Lower', N*K, K, T, LDT, R, LDR )
         END IF
C
C        Processing the generator.
C
         IF ( COMPG ) THEN
C
C           Here we use G as working array for holding the generator.
C           T contains the second column of the generator.
C           G contains in its first block column the second column of
C           the inverse generator.
C           The second block column of G is partitioned as follows:
C
C           [ First block of the inverse generator; ...
C             First column of the generator; ...
C             The rest of the blocks of the inverse generator ]
C
C           The reason for the odd partitioning is that the first block
C           of the inverse generator will be thrown out at the end and
C           we want to avoid reordering.
C
C           (N-1)*K locations of DWORK are used by SLICOT Library
C           routine MB02CY.
C
            DO 30  I = 2, N	
               STARTR = ( I - 1 )*K + 1
               STARTI = ( N - I + 1 )*K + 1
               STARTT = 3*( I - 2 )*K + 1
C
C              Transformations acting on the generator:
C
               CALL MB02CX( 'Column', K, K, K, G(K+1,K+1), LDG,
     $                      T(STARTR,1), LDT, CS(STARTT), 3*K, DWORK,
     $                      LDWORK, IERR )
C
               IF ( IERR.NE.0 )  THEN
C
C                 Error return:  The matrix is not positive definite.
C
                  INFO = 1
                  RETURN
               END IF
C
               MAXWRK = MAX( MAXWRK, INT( DWORK(1) ) )
               IF ( N.GT.I ) THEN
                  CALL MB02CY( 'Column', 'NoStructure', K, K, (N-I)*K,
     $                         K, G(2*K+1,K+1), LDG, T(STARTR+K,1), LDT,
     $                         T(STARTR,1), LDT, CS(STARTT), 3*K, DWORK,
     $                         LDWORK, IERR )
                  MAXWRK = MAX( MAXWRK, INT( DWORK(1) ) )
               END IF
C
               IF ( COMPR ) THEN
                  CALL DLACPY( 'Lower', (N-I+1)*K, K, G(K+1,K+1), LDG,
     $                         R(STARTR,STARTR), LDR)
               END IF
C
C              Transformations acting on the inverse generator:
C
               CALL DLASET( 'All', K, K, ZERO, ZERO, G(STARTI,K+1),
     $                      LDG )
               CALL MB02CY( 'Column', 'Triangular', K, K, K, K,
     $                      G(1,K+1), LDG, G(STARTR,1), LDG,
     $                      T(STARTR,1), LDT, CS(STARTT), 3*K, DWORK,
     $                      LDWORK, IERR )
               MAXWRK = MAX( MAXWRK, INT( DWORK(1) ) )
C
               CALL MB02CY( 'Column', 'NoStructure', K, K, (I-1)*K, K,
     $                      G(STARTI,K+1), LDG, G, LDG, T(STARTR,1),
     $                      LDT, CS(STARTT), 3*K, DWORK, LDWORK, IERR )
               MAXWRK = MAX( MAXWRK, INT( DWORK(1) ) )
C
               IF ( COMPL ) THEN
                  CALL DLACPY( 'All', (I-1)*K, K, G(STARTI,K+1), LDG,
     $                         L(1,STARTR), LDL )
                  CALL DLACPY( 'Upper', K, K, G(1,K+1), LDG,
     $                         L((I-1)*K+1,STARTR), LDL )
               END IF
   30       CONTINUE
C
         ELSE
C
C           Here R is used as working array for holding the generator.
C           Again, T contains the second column of the generator.
C           The current column of R contains the first column of the
C           generator.
C
            IF ( N.GT.1 )
     $         CALL DLACPY( 'Lower', (N-1)*K, K, T, LDT, R(K+1,K+1),
     $                      LDR )
C
            DO 40  I = 2, N
               STARTR = ( I - 1 )*K + 1
               STARTT = 3*( I - 2 )*K + 1
               CALL MB02CX( 'Column', K, K, K, R(STARTR,STARTR), LDR,
     $                      T(STARTR,1), LDT, CS(STARTT), 3*K, DWORK,
     $                      LDWORK, IERR )
               IF ( IERR.NE.0 )  THEN
C
C                 Error return:  The matrix is not positive definite.
C
                  INFO = 1
                  RETURN
               END IF
C
               MAXWRK = MAX( MAXWRK, INT( DWORK(1) ) )
               IF ( N.GT.I ) THEN
                  CALL MB02CY( 'Column', 'NoStructure', K, K, (N-I)*K,
     $                         K, R(STARTR+K,STARTR), LDR,
     $                         T(STARTR+K,1), LDT, T(STARTR,1), LDT,
     $                         CS(STARTT), 3*K, DWORK, LDWORK, IERR )
                  MAXWRK = MAX( MAXWRK, INT( DWORK(1) ) )
C
                  CALL DLACPY( 'Lower', (N-I)*K, K, R(STARTR,STARTR),
     $                         LDR, R(STARTR+K,STARTR+K), LDR )
               END IF
   40       CONTINUE
C
         END IF
      END IF
C
      DWORK(1) = MAXWRK
C
      RETURN
C
C *** Last line of MB02CD ***
      END