control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
      SUBROUTINE MB04BZ( JOB, COMPQ, N, A, LDA, DE, LDDE, B, LDB, FG,
     $                   LDFG, Q, LDQ, ALPHAR, ALPHAI, BETA, IWORK,
     $                   DWORK, LDWORK, ZWORK, LZWORK, BWORK, INFO )
C
C     PURPOSE
C
C     To compute the eigenvalues of a complex N-by-N skew-Hamiltonian/
C     Hamiltonian pencil aS - bH, with
C
C           (  A  D  )         (  B  F  )
C       S = (      H ) and H = (      H ).                           (1)
C           (  E  A  )         (  G -B  )
C
C     This routine computes the eigenvalues using an embedding to a real
C     skew-Hamiltonian/skew-Hamiltonian pencil aB_S - bB_T, defined as
C
C             (  Re(A)  -Im(A)  |  Re(D)  -Im(D)  )
C             (                 |                 )
C             (  Im(A)   Re(A)  |  Im(D)   Re(D)  )
C             (                 |                 )
C       B_S = (-----------------+-----------------) , and
C             (                 |      T       T  )
C             (  Re(E)  -Im(E)  |  Re(A )  Im(A ) )
C             (                 |      T       T  )
C             (  Im(E)   Re(E)  | -Im(A )  Re(A ) )
C                                                                    (2)
C             ( -Im(B)  -Re(B)  | -Im(F)  -Re(F)  )
C             (                 |                 )
C             (  Re(B)  -Im(B)  |  Re(F)  -Im(F)  )
C             (                 |                 )
C       B_T = (-----------------+-----------------) ,  T = i*H.
C             (                 |      T       T  )
C             ( -Im(G)  -Re(G)  | -Im(B )  Re(B ) )
C             (                 |      T       T  )
C             (  Re(G)  -Im(G)  | -Re(B ) -Im(B ) )
C
C     Optionally, if JOB = 'T', the pencil aB_S - bB_H (B_H = -i*B_T) is
C     transformed by a unitary matrix Q to the structured Schur form
C
C                ( BA  BD  )              ( BB  BF  )
C       B_Sout = (       H ) and B_Hout = (       H ),               (3)
C                (  0  BA  )              (  0 -BB  )
C
C     where BA and BB are upper triangular, BD is skew-Hermitian, and
C     BF is Hermitian. The embedding doubles the multiplicities of the
C     eigenvalues of the pencil aS - bH. Optionally, if COMPQ = 'C', the
C     unitary matrix Q is computed.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     JOB     CHARACTER*1
C             Specifies the computation to be performed, as follows:
C             = 'E': compute the eigenvalues only; S and H will not
C                    necessarily be transformed as in (3).
C             = 'T': put S and H into the forms in (3) and return the
C                    eigenvalues in ALPHAR, ALPHAI and BETA.
C
C     COMPQ   CHARACTER*1
C             Specifies whether to compute the unitary transformation
C             matrix Q, as follows:
C             = 'N':  Q is not computed;
C             = 'C':  compute the unitary transformation matrix Q.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the pencil aS - bH.  N >= 0, even.
C
C     A       (input/output) COMPLEX*16 array, dimension (LDA, K)
C             where K = N/2, if JOB = 'E', and K = N, if JOB = 'T'.
C             On entry, the leading N/2-by-N/2 part of this array must
C             contain the matrix A.
C             On exit, if JOB = 'T', the leading N-by-N part of this
C             array contains the upper triangular matrix BA in (3) (see
C             also METHOD). The strictly lower triangular part is not
C             zeroed, but it is preserved.
C             If JOB = 'E', this array is unchanged on exit.
C
C     LDA     INTEGER
C             The leading dimension of the array A.  LDA >= MAX(1, K).
C
C     DE      (input/output) COMPLEX*16 array, dimension
C                            (LDDE, MIN(K+1,N))
C             On entry, the leading N/2-by-N/2 lower triangular part of
C             this array must contain the lower triangular part of the
C             skew-Hermitian matrix E, and the N/2-by-N/2 upper
C             triangular part of the submatrix in the columns 2 to N/2+1
C             of this array must contain the upper triangular part of
C             the skew-Hermitian matrix D.
C             On exit, if JOB = 'T', the leading N-by-N part of this
C             array contains the skew-Hermitian matrix BD in (3) (see
C             also METHOD). The strictly lower triangular part of the
C             input matrix is preserved.
C             If JOB = 'E', this array is unchanged on exit.
C
C     LDDE    INTEGER
C             The leading dimension of the array DE.  LDDE >= MAX(1, K).
C
C     B       (input/output) COMPLEX*16 array, dimension (LDB, K)
C             On entry, the leading N/2-by-N/2 part of this array must
C             contain the matrix B.
C             On exit, if JOB = 'T', the leading N-by-N part of this
C             array contains the upper triangular matrix BB in (3) (see
C             also METHOD). The strictly lower triangular part is not
C             zeroed; the elements below the first subdiagonal of the
C             input matrix are preserved.
C             If JOB = 'E', this array is unchanged on exit.
C
C     LDB     INTEGER
C             The leading dimension of the array B.  LDB >= MAX(1, K).
C
C     FG      (input/output) COMPLEX*16 array, dimension
C                            (LDFG, MIN(K+1,N))
C             On entry, the leading N/2-by-N/2 lower triangular part of
C             this array must contain the lower triangular part of the
C             Hermitian matrix G, and the N/2-by-N/2 upper triangular
C             part of the submatrix in the columns 2 to N/2+1 of this
C             array must contain the upper triangular part of the
C             Hermitian matrix F.
C             On exit, if JOB = 'T', the leading N-by-N part of this
C             array contains the Hermitian matrix BF in (3) (see also
C             METHOD). The strictly lower triangular part of the input
C             matrix is preserved. The diagonal elements might have tiny
C             imaginary parts.
C             If JOB = 'E', this array is unchanged on exit.
C
C     LDFG    INTEGER
C             The leading dimension of the array FG.  LDFG >= MAX(1, K).
C
C     Q       (output) COMPLEX*16 array, dimension (LDQ, 2*N)
C             On exit, if COMPQ = 'C', the leading 2*N-by-2*N part of
C             this array contains the unitary transformation matrix Q
C             that reduced the matrices B_S and B_H to the form in (3).
C             However, if JOB = 'E', the reduction was possibly not
C             completed: the matrix B_H may have 2-by-2 diagonal blocks,
C             and the array Q returns the orthogonal matrix that
C             performed the partial reduction.
C             If COMPQ = 'N', this array is not referenced.
C
C     LDQ     INTEGER
C             The leading dimension of the array Q.
C             LDQ >= 1,           if COMPQ = 'N';
C             LDQ >= MAX(1, 2*N), if COMPQ = 'C'.
C
C     ALPHAR  (output) DOUBLE PRECISION array, dimension (N)
C             The real parts of each scalar alpha defining an eigenvalue
C             of the pencil aS - bH.
C
C     ALPHAI  (output) DOUBLE PRECISION array, dimension (N)
C             The imaginary parts of each scalar alpha defining an
C             eigenvalue of the pencil aS - bH.
C             If ALPHAI(j) is zero, then the j-th eigenvalue is real.
C
C     BETA    (output) DOUBLE PRECISION array, dimension (N)
C             The scalars beta that define the eigenvalues of the pencil
C             aS - bH.
C             Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
C             beta = BETA(j) represent the j-th eigenvalue of the pencil
C             aS - bH, in the form lambda = alpha/beta. Since lambda may
C             overflow, the ratios should not, in general, be computed.
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (2*N+4)
C             On exit, IWORK(1) contains the number, q, of unreliable,
C             possibly inaccurate (pairs of) eigenvalues, and the
C             absolute values in IWORK(2), ..., IWORK(q+1) are their
C             indices, as well as of the corresponding 1-by-1 and 2-by-2
C             diagonal blocks of the arrays B and A on exit, if
C             JOB = 'T'. Specifically, a positive value is an index of
C             a real or purely imaginary eigenvalue, corresponding to a
C             1-by-1 block, while the absolute value of a negative entry
C             in IWORK is an index to the first eigenvalue in a pair of
C             consecutively stored eigenvalues, corresponding to a
C             2-by-2 block. Moreover, IWORK(q+2),..., IWORK(2*q+1)
C             contain pointers to the starting elements in DWORK where
C             each block pair is stored. Specifically, if IWORK(i+1) > 0
C             then DWORK(r) and DWORK(r+1) store corresponding diagonal
C             elements of T11 and S11, respectively, and if
C             IWORK(i+1) < 0, then DWORK(r:r+3) and DWORK(r+4:r+7) store
C             the elements of the block in T11 and S11, respectively
C             (see Section METHOD), where r = IWORK(q+1+i). Moreover,
C             IWORK(2*q+2) contains the number of the 1-by-1 blocks, and
C             IWORK(2*q+3) contains the number of the 2-by-2 blocks,
C             corresponding to unreliable eigenvalues. IWORK(2*q+4)
C             contains the total number t of the 2-by-2 blocks.
C             If INFO = 0, then q = 0, therefore IWORK(1) = 0.
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0 or INFO = 3, DWORK(1) returns the
C             optimal LDWORK, and DWORK(2) and DWORK(3) contain the
C             Frobenius norms of the matrices B_S and B_T. These norms
C             are used in the tests to decide that some eigenvalues are
C             considered as numerically unreliable. Moreover, DWORK(4),
C             ..., DWORK(3+2*s) contain the s pairs of values of the
C             1-by-1 diagonal elements of T11 and S11. The eigenvalue of
C             such a block pair is obtained from -i*T11(i,i)/S11(i,i).
C             Similarly, DWORK(4+2*s), ..., DWORK(3+2*s+8*t) contain the
C             t groups of pairs of 2-by-2 diagonal submatrices of T11
C             and S11, stored column-wise. The spectrum of such a block
C             pair is obtained from -i*ev, where ev are the eigenvalues
C             of (T11(i:i+1,i:i+1),S11(i:i+1,i:i+1)).
C             On exit, if INFO = -19, DWORK(1) returns the minimum value
C             of LDWORK.
C
C     LDWORK  INTEGER
C             The dimension of the array DWORK. If COMPQ = 'N',
C             LDWORK >= MAX( 3,  4*N*N + 3*N ), if   JOB = 'E';
C             LDWORK >= MAX( 3,  5*N*N + 3*N ), if   JOB = 'T';
C             LDWORK >= MAX( 3, 11*N*N + 2*N ), if COMPQ = 'C'.
C             For good performance LDWORK should be generally larger.
C
C             If LDWORK = -1, then a workspace query is assumed;
C             the routine only calculates the optimal size of the
C             DWORK array, returns this value as the first entry of
C             the DWORK array, and no error message related to LDWORK
C             is issued by XERBLA.
C
C     ZWORK   COMPLEX*16 array, dimension (LZWORK)
C             On exit, if INFO = 0, ZWORK(1) returns the optimal LZWORK.
C             On exit, if INFO = -21, ZWORK(1) returns the minimum value
C             of LZWORK.
C
C     LZWORK  INTEGER
C             The dimension of the array ZWORK.
C             LZWORK >= 1,       if JOB = 'E'; otherwise,
C             LZWORK >= 6*N + 4, if COMPQ = 'N';
C             LZWORK >= 8*N + 4, if COMPQ = 'C'.
C
C             If LZWORK = -1, then a workspace query is assumed;
C             the routine only calculates the optimal size of the
C             ZWORK array, returns this value as the first entry of
C             the ZWORK array, and no error message related to LZWORK
C             is issued by XERBLA.
C
C     BWORK   LOGICAL array, dimension (LBWORK)
C             LBWORK >= 0, if JOB = 'E';
C             LBWORK >= N, if JOB = 'T'.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0: succesful exit;
C             < 0: if INFO = -i, the i-th argument had an illegal value;
C             = 1: QZ iteration failed in the SLICOT Library routine
C                  MB04FD (QZ iteration did not converge or computation
C                  of the shifts failed);
C             = 2: QZ iteration failed in the LAPACK routine ZHGEQZ when
C                  trying to triangularize the 2-by-2 blocks;
C             = 3: warning: the pencil is numerically singular.
C
C     METHOD
C
C     First, T = i*H is set. Then, the embeddings, B_S and B_T, of the
C     matrices S and T, are determined and, subsequently, the SLICOT
C     Library routine MB04FD is applied to compute the structured Schur
C     form, i.e., the factorizations
C
C     ~        T  T         (  S11  S12  )
C     B_S = J Q  J  B_S Q = (          T ) and
C                           (   0   S11  )
C
C     ~        T  T         (  T11  T12  )
C     B_T = J Q  J  B_T Q = (          T ),
C                           (   0   T11  )
C
C     where Q is real orthogonal, S11 is upper triangular, and T11 is
C     upper quasi-triangular. If JOB = 'T', then the matrices above are
C                                                        ~
C     further transformed so that the 2-by-2 blocks in i*B_T are split
C     into 1-by-1 blocks.  If COMPQ = 'C', the transformations are
C     accumulated in the unitary matrix Q.
C     See also page 22 in [1] for more details.
C
C     REFERENCES
C
C     [1] Benner, P., Byers, R., Mehrmann, V. and Xu, H.
C         Numerical Computation of Deflating Subspaces of Embedded
C         Hamiltonian Pencils.
C         Tech. Rep. SFB393/99-15, Technical University Chemnitz,
C         Germany, June 1999.
C
C     NUMERICAL ASPECTS
C                                                               3
C     The algorithm is numerically backward stable and needs O(N )
C     complex floating point operations.
C
C     FURTHER COMMENTS
C
C     The returned eigenvalues are those of the pencil (-i*T11,S11),
C     where i is the purely imaginary unit.
C
C     If JOB = 'E', the returned matrix T11 is quasi-triangular. Note
C     that the off-diagonal elements of the 2-by-2 blocks of S11 are
C     zero by construction.
C
C     If JOB = 'T', the returned eigenvalues correspond to the diagonal
C     elements of BB and BA.
C
C     This routine does not perform any scaling of the matrices. Scaling
C     might sometimes be useful, and it should be done externally.
C
C     CONTRIBUTOR
C
C     V. Sima, Research Institute for Informatics, Bucharest, Romania,
C     Nov. 2011.
C
C     REVISIONS
C
C     V. Sima, July 2012, Sep. 2016, Nov. 2016, Apr. 2020.
C
C     KEYWORDS
C
C     Deflating subspace, embedded pencil, skew-Hamiltonian/Hamiltonian
C     pencil, structured Schur form.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION   ONE, THREE, ZERO
      PARAMETER          ( ONE = 1.0D+0, THREE = 3.0D+0, ZERO = 0.0D+0 )
      COMPLEX*16         CZERO, CONE, CIMAG
      PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
     $                      CONE = ( 1.0D+0, 0.0D+0 ),
     $                     CIMAG = ( 0.0D+0, 1.0D+0 ) )
C
C     .. Scalar Arguments ..
      CHARACTER          COMPQ, JOB
      INTEGER            INFO, LDA, LDB, LDDE, LDFG, LDQ, LDWORK,
     $                   LZWORK, N
C
C     .. Array Arguments ..
      LOGICAL            BWORK( * )
      INTEGER            IWORK( * )
      DOUBLE PRECISION   ALPHAI( * ), ALPHAR( * ), BETA( * ), DWORK( * )
      COMPLEX*16         A( LDA, * ), B( LDB, * ), DE( LDDE, * ),
     $                   FG( LDFG, * ), Q( LDQ, * ), ZWORK( * )
C
C     .. Local Scalars ..
      LOGICAL            LCMPQ, LQUERY, LTRI, UNREL
      CHARACTER*14       CMPQ, JOBF
      INTEGER            I, I1, IA, IB, IDE, IEV, IFG, IQ, IQ2, IQB, IS,
     $                   IW, IW1, IWRK, J, J1, J2, JM1, JP2, K, L, M,
     $                   MINDB, MINDW, MINZW, N2, NB, NC, NN, OPTDW,
     $                   OPTZW
      DOUBLE PRECISION   NRMBS, NRMBT
      COMPLEX*16         TMP
C
C     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
C
C     .. External Subroutines ..
      EXTERNAL           DCOPY, DLACPY, DSCAL, MB04FD, XERBLA, ZGEMM,
     $                   ZGEQRF, ZHGEQZ, ZLACPY, ZSCAL
C
C     .. Intrinsic Functions ..
      INTRINSIC          DBLE, DCMPLX, DIMAG, INT, MAX, MIN, MOD
C
C     .. Executable Statements ..
C
C     Decode the input arguments.
C
      M     = N/2
      NN    = N*N
      N2    = 2*N
      LTRI  = LSAME( JOB,   'T' )
      LCMPQ = LSAME( COMPQ, 'C' )
C
      IF( LTRI ) THEN
         K = N
      ELSE
         K = M
      END IF
C
      IF( N.EQ.0 ) THEN
         MINDW = 3
         MINZW = 1
      ELSE IF( LCMPQ ) THEN
         MINDB =  8*NN + N2
         MINDW = 11*NN + N2
         MINZW =  8*N  + 4
      ELSE
         MINDB =  4*NN + N2
         IF( LTRI ) THEN
            MINDW = 5*NN + 3*N
         ELSE
            MINDW = 4*NN + 3*N
         END IF
         MINZW = 6*N + 4
      END IF
C
      LQUERY = LDWORK.EQ.-1 .OR. LZWORK.EQ.-1
C
C     Test the input arguments.
C
      INFO = 0
      IF( .NOT.( LSAME( JOB, 'E' ) .OR. LTRI ) ) THEN
         INFO = -1
      ELSE IF( .NOT.( LSAME( COMPQ, 'N' ) .OR. LCMPQ ) ) THEN
         INFO = -2
      ELSE IF( N.LT.0 .OR. MOD( N, 2 ).NE.0 ) THEN
         INFO = -3
      ELSE IF(  LDA.LT.MAX( 1, K ) ) THEN
         INFO = -5
      ELSE IF( LDDE.LT.MAX( 1, K ) ) THEN
         INFO = -7
      ELSE IF(  LDB.LT.MAX( 1, K ) ) THEN
         INFO = -9
      ELSE IF( LDFG.LT.MAX( 1, K ) ) THEN
         INFO = -11
      ELSE IF( LDQ.LT.1 .OR. ( LCMPQ .AND. LDQ.LT.N2 ) ) THEN
         INFO = -13
      ELSE IF( .NOT. LQUERY ) THEN
         IF( LDWORK.LT.MINDW ) THEN
            DWORK( 1 ) = MINDW
            INFO = -19
         ELSE IF( LZWORK.LT.MINZW ) THEN
            ZWORK( 1 ) = MINZW
            INFO = -21
         END IF
      END IF
C
      IF( INFO.NE.0) THEN
         CALL XERBLA( 'MB04BZ', -INFO )
         RETURN
      ELSE IF( N.GT.0 ) THEN
C
C        Compute optimal workspace.
C
         OPTZW = MINZW
         IF( LCMPQ ) THEN
            CMPQ = 'Initialize'
         ELSE
            CMPQ = 'No Computation'
         END IF
C
         IF( LTRI ) THEN
            JOBF = 'Triangularize'
            CALL ZGEQRF( N, N, ZWORK, N, ZWORK, ZWORK, -1, INFO )
            I  = INT( ZWORK( 1 ) )
            NB = MAX( I/N, 2 )
         ELSE
            JOBF = 'Eigenvalues'
         END IF
C
         IF( LQUERY ) THEN
            CALL MB04FD( JOBF, CMPQ, N2, DWORK, N, DWORK, N, DWORK, N,
     $                   DWORK, N, DWORK, N2, ALPHAI, ALPHAR, BETA,
     $                   IWORK, DWORK, -1, INFO )
            OPTDW = MAX( MINDW, MINDB + INT( DWORK( 1 ) ) )
            DWORK( 1 ) = OPTDW
            ZWORK( 1 ) = OPTZW
            RETURN
         END IF
      ELSE IF( LQUERY ) THEN
         DWORK( 1 ) = MINDW
         ZWORK( 1 ) = MINZW
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF( N.EQ.0 ) THEN
         IWORK( 1 ) = 0
         DWORK( 1 ) = THREE
         DWORK( 2 ) = ZERO
         DWORK( 3 ) = ZERO
         ZWORK( 1 ) = CONE
         RETURN
      END IF
C
C     Set up the embeddings of the matrices S and H.
C
C     Set the pointers for the inputs and outputs of MB04FD.
C     Real workspace:    need   4*N**2 + 2*N, if COMPQ = 'N';
C                               8*N**2 + 2*N, if COMPQ = 'C'.
C
      IQ = 1
      IF( LCMPQ ) THEN
         IA = IQ + N2*N2
      ELSE
         IA = 1
      END IF
C
      IDE  = IA  + NN
      IB   = IDE + NN + N
      IFG  = IB  + NN
      IWRK = IFG + NN + N
C
C     Build the embedding of A.
C
      IW = IA
      IS = IW + N*M
      DO 30 J = 1, M
         IW1 = IW
         DO 10 I = 1, M
            DWORK( IW ) = DBLE( A( I, J ) )
            IW = IW + 1
   10    CONTINUE
C
         DO 20 I = 1, M
            DWORK( IW ) =  DIMAG( A( I, J ) )
            DWORK( IS ) = -DWORK( IW )
            IW = IW + 1
            IS = IS + 1
   20    CONTINUE
         CALL DCOPY( M, DWORK( IW1 ), 1, DWORK( IS ), 1 )
         IS = IS + M
   30 CONTINUE
C
C     Build the embedding of D and E.
C
      IW = IDE
      DO 60 J = 1, M + 1
         DO 40 I = 1, M
            DWORK( IW ) = DBLE( DE( I, J ) )
            IW = IW + 1
   40    CONTINUE
C
         IW = IW + J - 1
         IS = IW
         DO 50 I = J, M
            DWORK( IW ) = DIMAG( DE( I, J ) )
            DWORK( IS ) = DWORK( IW )
            IW = IW + 1
            IS = IS + N
   50    CONTINUE
   60 CONTINUE
C
      IW1 = IW
      I1  = IW
      DO 80 J = 2, M + 1
         IS = I1
         I1 = I1 + 1
         DO 70 I = 1, J - 1
            DWORK( IW ) = -DIMAG( DE( I, J ) )
            DWORK( IS ) =  DWORK( IW )
            IW = IW + 1
            IS = IS + N
   70    CONTINUE
         IW = IW + N - J + 1
   80 CONTINUE
      CALL DLACPY( 'Full', M, M+1, DWORK( IDE ), N, DWORK( IW1-M ), N )
C
C     Build the embedding of B.
C
      IW = IB
      IS = IW + N*M
      DO 110 J = 1, M
         IW1 = IW
         DO 90 I = 1, M
            DWORK( IW ) = -DIMAG( B( I, J ) )
            IW = IW + 1
   90    CONTINUE
C
         DO 100 I = 1, M
            DWORK( IW ) =   DBLE( B( I, J ) )
            DWORK( IS ) = -DWORK( IW )
            IW = IW + 1
            IS = IS + 1
  100    CONTINUE
         CALL DCOPY( M, DWORK( IW1 ), 1, DWORK( IS ), 1 )
         IS = IS + M
  110 CONTINUE
C
C     Build the embedding of F and G.
C
      IW = IFG
      DO 140 J = 1, M + 1
         DO 120 I = 1, M
            DWORK( IW ) = -DIMAG( FG( I, J ) )
            IW = IW + 1
  120    CONTINUE
C
         IW = IW + J - 1
         IS = IW
         DO 130 I = J, M
            DWORK( IW ) =  DBLE( FG( I, J ) )
            DWORK( IS ) = DWORK( IW )
            IW = IW + 1
            IS = IS + N
  130    CONTINUE
  140 CONTINUE
C
      IW1 = IW
      I1  = IW
      DO 160 J = 2, M + 1
         IS = I1
         I1 = I1 + 1
         DO 150 I = 1, J - 1
            DWORK( IW ) = -DBLE( FG( I, J ) )
            DWORK( IS ) = DWORK( IW )
            IW = IW + 1
            IS = IS + N
  150    CONTINUE
         IW = IW + N - J + 1
  160 CONTINUE
      CALL DLACPY( 'Full', M, M+1, DWORK( IFG ), N, DWORK( IW1-M ), N )
C
C     STEP 1: Apply MB04FD to transform the extended pencil to real
C             skew-Hamiltonian/skew-Hamiltonian Schur form.
C
C     Real workspace:
C     need    4*N*N + 2*N + max(3,N),     if JOB = 'E' and COMPQ = 'N';
C             4*N*N + 2*N + max(3,N*N+N), if JOB = 'T' and COMPQ = 'N';
C            11*N*N + 2*N,                if               COMPQ = 'C'.
C     prefer larger.
C
      CALL MB04FD( JOBF, CMPQ, N2, DWORK( IA ), N, DWORK( IDE ), N,
     $             DWORK( IB ), N, DWORK( IFG ), N, DWORK( IQ ), N2,
     $             ALPHAI, ALPHAR, BETA, IWORK, DWORK( IWRK ),
     $             LDWORK-IWRK+1, INFO )
      IF( INFO.EQ.1 ) THEN
         RETURN
      ELSE IF( INFO.EQ.2 ) THEN
         INFO = 3
      END IF
      OPTDW = MAX( MINDW, MINDB + INT( DWORK( IWRK ) ) )
      NRMBS = DWORK( IWRK+1 )
      NRMBT = DWORK( IWRK+2 )
C
C     Scale the eigenvalues.
C
      CALL DSCAL( N, -ONE, ALPHAI, 1 )
C
      IF( LCMPQ ) THEN
C
C        Set the transformation matrix.
C
         IW = IQ
         DO 180 J = 1, N2
            DO 170 I = 1, N2
               Q( I, J ) = DCMPLX( DWORK( IW ) )
               IW = IW + 1
  170       CONTINUE
  180    CONTINUE
      END IF
C
C     Count the numbers of pairs of diagonal 1-by-1 and 2-by-2 blocks of
C     B and A with possibly unreliable eigenvalues.
C
      I  = IWORK( 1 )
      IS = 0
      IW = 0
      DO 190 J = 1, I
         IF( IWORK( J+1 ).GT.0 ) THEN
            IS = IS + 1
         ELSE IF( IWORK( J+1 ).LT.0 ) THEN
            IW = IW + 1
         END IF
  190 CONTINUE
C
      I = 2*I + 2
      IWORK( I )   = IS
      IWORK( I+1 ) = IW
C
      IF( LTRI ) THEN
C
C        Convert the results to complex datatype. D and F start in the
C        first column of DE and FG, respectively.
C
         IW = IA
         DO 210 J = 1, N
            DO 200 I = 1, J
               A( I, J ) = DCMPLX( DWORK( IW ) )
               IW = IW + 1
  200       CONTINUE
            IW = IW + N - J
  210    CONTINUE
C
         IW = IDE + N
         DO 230 J = 1, N
            DO 220 I = 1, J - 1
               DE( I, J ) = DCMPLX( DWORK( IW ) )
               IW = IW + 1
  220       CONTINUE
            DE( J, J ) = CZERO
            IW = IW + N - J + 1
  230    CONTINUE
C
         IW = IB
         DO 250 J = 1, N
            DO 240 I = 1, MIN( J + 1, N )
               B( I, J ) = DCMPLX( DWORK( IW ) )
               IW = IW + 1
  240       CONTINUE
            IW = IW + N - J - 1
  250    CONTINUE
C
         IW = IFG + N
         DO 270 J = 1, N
            DO 260 I = 1, J - 1
               FG( I, J ) = DCMPLX( DWORK( IW ) )
               IW = IW + 1
  260       CONTINUE
            FG( J, J ) = CZERO
            IW = IW + N - J + 1
  270    CONTINUE
C
      END IF
C
C     Count the number of diagonal 2-by-2 blocks of B and A.
C
      I1 = 0
      I  = 1
C     WHILE( I.LT.N ) DO
  280 CONTINUE
      IF ( I.LT.N ) THEN
         IF( ALPHAR( I ).NE.ZERO .AND. BETA( I ).NE.ZERO .AND.
     $       ALPHAR( I ).NE.ZERO ) THEN
            I1 = I1 + 1
            I  = I  + 2
         ELSE
            I  = I  + 1
         END IF
         GO TO 280
      END IF
C     END WHILE 280
C
      I = 2*IWORK( 1 ) + 4
      IWORK( I ) = I1
C
C     Save in DWORK the pairs of diagonal 1-by-1 and 2-by-2 blocks of
C     B and A. Also, save in IWORK the pointers to the starting element
C     of each pair corresponding to unreliable eigenvalues.
C
      CALL DCOPY( N, DWORK( IA ), N+1, DWORK( IFG ), 1 )
      DWORK( 1 ) = OPTDW
      DWORK( 2 ) = NRMBS
      DWORK( 3 ) = NRMBT
C
      K  = 4
      I  = 1
      IW = IWORK( 1 )
      J  = 1
      L  = ( N - 2*I1 )*2 + K
C     WHILE( I.LE.N ) DO
  290 CONTINUE
      IF ( I.LE.N ) THEN
         IF ( J.LE.IW )
     $      UNREL = I.EQ.ABS( IWORK( J+1 ) )
         IF( ALPHAR( I ).NE.ZERO .AND. BETA( I ).NE.ZERO .AND.
     $       ALPHAI( I ).NE.ZERO ) THEN
            IF ( UNREL ) THEN
               J = J + 1
               IWORK( J+IW ) = L
               UNREL = .FALSE.
            END IF
            CALL DLACPY( 'Full', 2, 2, DWORK( IB+(I-1)*(N+1) ), N,
     $                   DWORK( L ), 2 )
            L = L + 4
            CALL DCOPY( 2, DWORK( IFG+I-1 ), 1, DWORK( L ), 3 )
            DWORK( L+1 ) = ZERO
            DWORK( L+2 ) = ZERO
            L = L + 4
            I = I + 2
         ELSE
            IF ( UNREL ) THEN
               J = J + 1
               IWORK( J+IW ) = K
               UNREL = .FALSE.
            END IF
            DWORK( K   ) = DWORK( IB+(I-1)*(N+1) )
            DWORK( K+1 ) = DWORK( IFG+I-1 )
            K = K + 2
            I = I + 1
         END IF
         GO TO 290
      END IF
C     END WHILE 290
C
      IF( .NOT.LTRI ) THEN
C
C        Return.
C
         ZWORK( 1 ) = OPTZW
         RETURN
      END IF
C
C     Triangularize the 2-by-2 diagonal blocks in B using the complex
C     version of the QZ algorithm.
C
C     Set up pointers on the outputs of ZHGEQZ.
C     A block algorithm is used for large N.
C
      IQ2  = 1
      IEV  = 5
      IQ   = 9
      IWRK = IQ + 4*( N - 1 )
C
      J  = 1
      J1 = 1
      J2 = MIN( N, NB )
C     WHILE( J.LT.N ) DO
  300 CONTINUE
      IF( J.LT.N ) THEN
         IF( B( J+1, J ).NE.CZERO ) THEN
C
C           Triangularization step.
C           Complex workspace:    need   4*N + 6.
C           Real    workspace:    need   4*N + 5.
C
            NC  = MAX( J2-J-1, 0 )
            JM1 = MAX( J-1, 1 )
            JP2 = MIN( J+2, N )
            TMP         =  A( J+1, J )
            A( J+1, J ) = CZERO
            CALL ZHGEQZ( 'Schur Form', 'Initialize', 'Initialize', 2, 1,
     $                   2, B( J, J ), LDB, A( J, J ), LDA,
     $                   ZWORK( IEV ), ZWORK( IEV+2 ), ZWORK( IQ ), 2,
     $                   ZWORK( IQ2 ), 2, ZWORK( IWRK ), LZWORK-IWRK+1,
     $                   DWORK( 4*N+4 ), IW )
            A( J+1, J ) = TMP
            IF( IW.GT.0 ) THEN
               INFO = 2
               RETURN
            END IF
C
C           Update A, DE, B, and FG.
C           Complex workspace:    need   6*N + 4.
C
C           Update A.
C
            CALL ZGEMM(  'No Transpose', 'No Transpose', J-1, 2, 2,
     $                   CONE, A( 1, J ), LDA, ZWORK( IQ2 ), 2, CZERO,
     $                   ZWORK( IWRK ), JM1 )
            CALL ZLACPY( 'Full', J-1, 2, ZWORK( IWRK ), JM1, A( 1, J ),
     $                   LDA )
            CALL ZGEMM(  'Conjugate Transpose', 'No Transpose', 2, NC,
     $                   2, CONE, ZWORK( IQ ), 2, A( J, JP2 ), LDA,
     $                   CZERO, ZWORK( IWRK ), 2 )
            CALL ZLACPY( 'Full', 2, NC, ZWORK( IWRK ), 2, A( J, JP2 ),
     $                   LDA )
C
C           Update DE.
C
            TMP          =  DE( J+1, J )
            DE( J+1, J ) = -DE( J, J+1 )
            CALL ZGEMM(  'No Transpose', 'No Transpose', J+1, 2, 2,
     $                   CONE, DE( 1, J ), LDDE, ZWORK( IQ ), 2, CZERO,
     $                   ZWORK( IWRK ), J+1 )
            CALL ZLACPY( 'Full', J+1, 2, ZWORK( IWRK ), J+1, DE( 1, J ),
     $                   LDDE )
            CALL ZGEMM(  'Conjugate Transpose', 'No Transpose', 2,
     $                   J2-J+1, 2, CONE, ZWORK( IQ ), 2, DE( J, J ),
     $                   LDDE, CZERO, ZWORK( IWRK ), 2 )
            CALL ZLACPY( 'Full', 2, J2-J+1, ZWORK( IWRK ), 2,
     $                   DE( J, J ), LDDE )
            DE( J+1, J ) = TMP
C
C           Update B.
C
            CALL ZGEMM(  'No Transpose', 'No Transpose', J-1, 2, 2,
     $                   CONE, B( 1, J ), LDB, ZWORK( IQ2 ), 2, CZERO,
     $                   ZWORK( IWRK ), JM1 )
            CALL ZLACPY( 'Full', J-1, 2, ZWORK( IWRK ), JM1, B( 1, J ),
     $                   LDB )
            CALL ZGEMM(  'Conjugate Transpose', 'No Transpose', 2, NC,
     $                   2, CONE, ZWORK( IQ ), 2, B( J, JP2 ), LDB,
     $                   CZERO, ZWORK( IWRK ), 2 )
            CALL ZLACPY( 'Full', 2, NC, ZWORK( IWRK ), 2, B( J, JP2 ),
     $                   LDB )
C
C           Update FG.
C
            TMP          =  FG( J+1, J )
            FG( J+1, J ) = -FG( J, J+1 )
            CALL ZGEMM(  'No Transpose', 'No Transpose', J+1, 2, 2,
     $                   CONE, FG( 1, J ), LDFG, ZWORK( IQ ), 2, CZERO,
     $                   ZWORK( IWRK ), J+1 )
            CALL ZLACPY( 'Full', J+1, 2, ZWORK( IWRK ), J+1, FG( 1, J ),
     $                   LDFG )
            CALL ZGEMM(  'Conjugate Transpose', 'No Transpose', 2,
     $                   J2-J+1, 2, CONE, ZWORK( IQ ), 2, FG( J, J ),
     $                   LDFG, CZERO, ZWORK( IWRK ), 2 )
            CALL ZLACPY( 'Full', 2, J2-J+1, ZWORK( IWRK ), 2,
     $                   FG( J, J ), LDFG )
            FG( J+1, J ) = TMP
C
            IF( LCMPQ ) THEN
C
C              Update Q.
C              Complex workspace:    need   8*N + 4.
C
               CALL ZGEMM(  'No Transpose', 'No Transpose', N2, 2, 2,
     $                      CONE, Q( 1, J ), LDQ, ZWORK( IQ2 ), 2,
     $                      CZERO, ZWORK( IWRK ), N2 )
               CALL ZLACPY( 'Full', N2, 2, ZWORK( IWRK ), N2, Q( 1, J ),
     $                      LDQ )
               CALL ZGEMM(  'No Transpose', 'No Transpose', N2, 2, 2,
     $                      CONE, Q( 1, N+J ), LDQ, ZWORK( IQ ), 2,
     $                      CZERO, ZWORK( IWRK ), N2 )
               CALL ZLACPY( 'Full', N2, 2, ZWORK( IWRK ), N2,
     $                      Q( 1, N+J ), LDQ )
            END IF
C
            BWORK( J ) = .TRUE.
            J  = J  + 2
            IQ = IQ + 4
         ELSE
            BWORK( J )  = .FALSE.
            B( J+1, J ) = CZERO
            J = J + 1
         END IF
C
         IF( J.GE.J2 ) THEN
            J1 = J2 + 1
            J2 = MIN( N, J1 + NB - 1 )
            NC = J2 - J1 + 1
C
C           Update the columns J1 to J2 of A, DE, B, and FG for previous
C           transformations.
C
            I   = 1
            IQB = 9
C           WHILE( I.LT.J ) DO
  310       CONTINUE
            IF( I.LT.J ) THEN
               IF( BWORK( I ) ) THEN
                  CALL ZGEMM(  'Conjugate Transpose', 'No Transpose', 2,
     $                         NC, 2, CONE, ZWORK( IQB ), 2, A( I, J1 ),
     $                         LDA, CZERO, ZWORK( IWRK ), 2 )
                  CALL ZLACPY( 'Full', 2, NC, ZWORK( IWRK ), 2,
     $                         A( I, J1 ), LDA )
C
                  CALL ZGEMM(  'Conjugate Transpose', 'No Transpose', 2,
     $                         NC, 2, CONE, ZWORK( IQB ), 2,
     $                         DE( I, J1 ), LDDE, CZERO, ZWORK( IWRK ),
     $                         2 )
                  CALL ZLACPY( 'Full', 2, NC, ZWORK( IWRK ), 2,
     $                         DE( I, J1 ), LDDE )
C
                  CALL ZGEMM(  'Conjugate Transpose', 'No Transpose', 2,
     $                         NC, 2, CONE, ZWORK( IQB ), 2, B( I, J1 ),
     $                         LDB, CZERO, ZWORK( IWRK ), 2 )
                  CALL ZLACPY( 'Full', 2, NC, ZWORK( IWRK ), 2,
     $                         B( I, J1 ), LDB )
C
                  CALL ZGEMM(  'Conjugate Transpose', 'No Transpose', 2,
     $                         NC, 2, CONE, ZWORK( IQB ), 2,
     $                         FG( I, J1 ), LDFG, CZERO, ZWORK( IWRK ),
     $                         2 )
                  CALL ZLACPY( 'Full', 2, NC, ZWORK( IWRK ), 2,
     $                         FG( I, J1 ), LDFG )
                  IQB = IQB + 4
C
                  I = I + 2
               ELSE
                  I = I + 1
               END IF
               GO TO 310
            END IF
C           END WHILE 310
         END IF
         GO TO 300
      END IF
C     END WHILE 300
C
C     Scale B and FG by -i.
C
      DO 320 I = 1, N
         CALL ZSCAL( I, -CIMAG, B( 1, I ), 1 )
  320 CONTINUE
C
      DO 330 I = 1, N
         CALL ZSCAL( I, -CIMAG, FG( 1, I ), 1 )
  330 CONTINUE
C
      ZWORK( 1 ) = OPTZW
      RETURN
C *** Last line of MB04BZ ***
      END