control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
      SUBROUTINE MB02KD( LDBLK, TRANS, K, L, M, N, R, ALPHA, BETA,
     $                   TC, LDTC, TR, LDTR, B, LDB, C, LDC, DWORK,
     $                   LDWORK, INFO )
C
C     PURPOSE
C
C     To compute the matrix product
C
C               C = alpha*op( T )*B + beta*C,
C
C     where alpha and beta are scalars and T is a block Toeplitz matrix
C     specified by its first block column TC and first block row TR;
C     B and C are general matrices of appropriate dimensions.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     LDBLK   CHARACTER*1
C             Specifies where the (1,1)-block of T is stored, as
C             follows:
C             = 'C':  in the first block of TC;
C             = 'R':  in the first block of TR.
C
C     TRANS   CHARACTER*1
C             Specifies the form of op( T ) to be used in the matrix
C             multiplication as follows:
C             = 'N':  op( T ) = T;
C             = 'T':  op( T ) = T';
C             = 'C':  op( T ) = T'.
C
C     Input/Output Parameters
C
C     K       (input) INTEGER
C             The number of rows in the blocks of T.  K >= 0.
C
C     L       (input) INTEGER
C             The number of columns in the blocks of T.  L >= 0.
C
C     M       (input) INTEGER
C             The number of blocks in the first block column of T.
C             M >= 0.
C
C     N       (input) INTEGER
C             The number of blocks in the first block row of T.  N >= 0.
C
C     R       (input) INTEGER
C             The number of columns in B and C.  R >= 0.
C
C     ALPHA   (input) DOUBLE PRECISION
C             The scalar alpha. When alpha is zero then TC, TR and B
C             are not referenced.
C
C     BETA    (input) DOUBLE PRECISION
C             The scalar beta. When beta is zero then C need not be set
C             before entry.
C
C     TC      (input)  DOUBLE PRECISION array, dimension (LDTC,L)
C             On entry with LDBLK = 'C', the leading M*K-by-L part of
C             this array must contain the first block column of T.
C             On entry with LDBLK = 'R', the leading (M-1)*K-by-L part
C             of this array must contain the 2nd to the M-th blocks of
C             the first block column of T.
C
C     LDTC    INTEGER
C             The leading dimension of the array TC.
C             LDTC >= MAX(1,M*K),      if LDBLK = 'C';
C             LDTC >= MAX(1,(M-1)*K),  if LDBLK = 'R'.
C
C     TR      (input)  DOUBLE PRECISION array, dimension (LDTR,k)
C             where k is (N-1)*L when LDBLK = 'C' and is N*L when
C             LDBLK = 'R'.
C             On entry with LDBLK = 'C', the leading K-by-(N-1)*L part
C             of this array must contain the 2nd to the N-th blocks of
C             the first block row of T.
C             On entry with LDBLK = 'R', the leading K-by-N*L part of
C             this array must contain the first block row of T.
C
C     LDTR    INTEGER
C             The leading dimension of the array TR.  LDTR >= MAX(1,K).
C
C     B       (input)  DOUBLE PRECISION array, dimension (LDB,R)
C             On entry with TRANS = 'N', the leading N*L-by-R part of
C             this array must contain the matrix B.
C             On entry with TRANS = 'T' or TRANS = 'C', the leading
C             M*K-by-R part of this array must contain the matrix B.
C
C     LDB     INTEGER
C             The leading dimension of the array B.
C             LDB >= MAX(1,N*L),  if TRANS = 'N';
C             LDB >= MAX(1,M*K),  if TRANS = 'T' or TRANS = 'C'.
C
C     C       (input/output)  DOUBLE PRECISION array, dimension (LDC,R)
C             On entry with TRANS = 'N', the leading M*K-by-R part of
C             this array must contain the matrix C.
C             On entry with TRANS = 'T' or TRANS = 'C', the leading
C             N*L-by-R part of this array must contain the matrix C.
C             On exit with TRANS = 'N', the leading M*K-by-R part of
C             this array contains the updated matrix C.
C             On exit with TRANS = 'T' or TRANS = 'C', the leading
C             N*L-by-R part of this array contains the updated matrix C.
C
C     LDC     INTEGER
C             The leading dimension of the array C.
C             LDC >= MAX(1,M*K),  if TRANS = 'N';
C             LDC >= MAX(1,N*L),  if TRANS = 'T' or TRANS = 'C'.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0,  DWORK(1)  returns the optimal
C             value of LDWORK.
C             On exit, if  INFO = -19,  DWORK(1)  returns the minimum
C             value of LDWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.  LDWORK >= 1.
C             For optimum performance LDWORK should be larger.
C
C             If LDWORK = -1, then a workspace query is assumed;
C             the routine only calculates the optimal size of the
C             DWORK array, returns this value as the first entry of
C             the DWORK array, and no error message related to LDWORK
C             is issued by XERBLA.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     For point Toeplitz matrices or sufficiently large block Toeplitz
C     matrices, this algorithm uses convolution algorithms based on
C     the fast Hartley transforms [1]. Otherwise, TC is copied in
C     reversed order into the workspace such that C can be computed from
C     barely M matrix-by-matrix multiplications.
C
C     REFERENCES
C
C     [1] Van Loan, Charles.
C         Computational frameworks for the fast Fourier transform.
C         SIAM, 1992.
C
C     NUMERICAL ASPECTS
C
C     The algorithm requires O( (K*L+R*L+K*R)*(N+M)*log(N+M) + K*L*R )
C     floating point operations.
C
C     CONTRIBUTOR
C
C     D. Kressner, Technical Univ. Berlin, Germany, May 2001.
C
C     REVISIONS
C
C     V. Sima, Research Institute for Informatics, Bucharest, June 2001,
C     March 2004, May 2011.
C
C     KEYWORDS
C
C     Convolution, elementary matrix operations,
C     fast Hartley transform, Toeplitz matrix.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE, TWO, THREE, FOUR, THOM50
      PARAMETER         ( ZERO  = 0.0D0, ONE  = 1.0D0, TWO    = 2.0D0,
     $                    THREE = 3.0D0, FOUR = 4.0D0, THOM50 = .95D3 )
C     .. Scalar Arguments ..
      CHARACTER         LDBLK, TRANS
      INTEGER           INFO, K, L, LDB, LDC, LDTC, LDTR, LDWORK, M, N,
     $                  R
      DOUBLE PRECISION  ALPHA, BETA
C     .. Array Arguments ..
      DOUBLE PRECISION  B(LDB,*), C(LDC,*), DWORK(*), TC(LDTC,*),
     $                  TR(LDTR,*)
C     .. Local Scalars ..
      LOGICAL           FULLC, LMULT, LQUERY, LTRAN
      CHARACTER*1       WGHT
      INTEGER           DIMB, DIMC, I, ICP, ICQ, IERR, IR, J, JJ, KK,
     $                  LEN, LL, LN, METH, MK, NL, P, P1, P2, PB, PC,
     $                  PDW, PP, PT, Q1, Q2, R1, R2, S1, S2, SHFT, WPOS,
     $                  WRKOPT
      DOUBLE PRECISION  CF, COEF, PARAM, SCAL, SF, T1, T2, TH
C     .. External Functions ..
      LOGICAL           LSAME
      EXTERNAL          LSAME
C     .. External Subroutines ..
      EXTERNAL          DAXPY, DCOPY, DG01OD, DGEMM, DLACPY, DLASET,
     $                  DSCAL, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         ATAN, COS, DBLE, MAX, MIN, SIN
C
C     .. Executable Statements ..
C
C     Decode the scalar input parameters.
C
      INFO   = 0
      FULLC  = LSAME( LDBLK, 'C' )
      LTRAN  = LSAME( TRANS, 'T' ) .OR. LSAME( TRANS, 'C' )
      LMULT  = ALPHA.NE.ZERO
      MK     = M*K
      NL     = N*L
      LQUERY = LDWORK.EQ.-1
C
C     Check the scalar input parameters.
C
      IF ( .NOT.( FULLC .OR. LSAME( LDBLK, 'R' ) ) ) THEN
         INFO = -1
      ELSE IF ( .NOT.( LTRAN .OR. LSAME( TRANS, 'N' ) ) ) THEN
         INFO = -2
      ELSE IF ( K.LT.0 ) THEN
         INFO = -3
      ELSE IF ( L.LT.0 ) THEN
         INFO = -4
      ELSE IF ( M.LT.0 ) THEN
         INFO = -5
      ELSE IF ( N.LT.0 ) THEN
         INFO = -6
      ELSE IF ( R.LT.0 ) THEN
         INFO = -7
      ELSE IF ( LMULT .AND. FULLC .AND. LDTC.LT.MAX( 1, MK ) ) THEN
         INFO = -11
      ELSE IF ( LMULT .AND. .NOT.FULLC .AND.
     $          LDTC.LT.MAX( 1,( M - 1 )*K ) ) THEN
         INFO = -11
      ELSE IF ( LMULT .AND. LDTR.LT.MAX( 1, K ) ) THEN
         INFO = -13
      ELSE IF ( LMULT .AND. .NOT.LTRAN .AND. LDB.LT.MAX( 1, NL ) ) THEN
         INFO = -15
      ELSE IF ( LMULT .AND. LTRAN .AND. LDB.LT.MAX( 1, MK ) ) THEN
         INFO = -15
      ELSE IF ( .NOT.LTRAN .AND. LDC.LT.MAX( 1, MK ) ) THEN
         INFO = -17
      ELSE IF ( LTRAN .AND. LDC.LT.MAX( 1, NL ) ) THEN
         INFO = -17
      ELSE IF ( LDWORK.LT.1 .AND. .NOT.LQUERY ) THEN
         DWORK(1) = ONE
         INFO = -19
      END IF
C
C     Return if there were illegal values.
C
      IF ( INFO.NE.0 ) THEN
         CALL XERBLA( 'MB02KD', -INFO )
         RETURN
      END IF
C
C     The parameter PARAM is the watershed between conventional
C     multiplication and convolution. This is of course depending
C     on the used computer architecture. The lower this value is set
C     the more likely the routine will use convolution to compute
C     op( T )*B. Note that if there is enough workspace available,
C     convolution is always used for point Toeplitz matrices.
C
      PARAM = THOM50
C
C     Decide which method to choose, based on the block sizes and
C     the available workspace.
C
      LEN = 1
      P   = 0
C
   10 CONTINUE
      IF ( LEN.LT.M+N-1 ) THEN
         LEN = LEN*2
         P = P + 1
         GO TO 10
      END IF
C
      COEF = THREE*DBLE( M*N )*DBLE( K*L )*DBLE( R ) /
     $             DBLE( LEN*( K*L + L*R + K*R ) )
C
      IF ( FULLC ) THEN
         P1 = MK*L
         SHFT = 0
      ELSE
         P1 = ( M - 1 )*K*L
         SHFT = 1
      END IF
      IF ( K*L.EQ.1 .AND. MIN( M, N ).GT.1 ) THEN
         WRKOPT = LEN*( 2 + R ) - P
         METH   = 3
      ELSE IF ( ( LEN.LT.M*N ) .AND. ( COEF.GE.PARAM ) ) THEN
         WRKOPT = LEN*( K*L + K*R + L*R + 1 ) - P
         METH   = 3
      ELSE
         METH   = 2
         WRKOPT = P1
      END IF
      WRKOPT = MAX( 1, WRKOPT )
C
      IF( LQUERY ) THEN
         DWORK(1) = WRKOPT
         RETURN
      END IF
C
C     Scale C beforehand.
C
      IF ( BETA.EQ.ZERO ) THEN
         IF ( LTRAN ) THEN
            CALL DLASET( 'All', NL, R, ZERO, ZERO, C, LDC )
         ELSE
            CALL DLASET( 'All', MK, R, ZERO, ZERO, C, LDC )
         END IF
      ELSE IF ( BETA.NE.ONE ) THEN
         IF ( LTRAN ) THEN
C
            DO 20  I = 1, R
               CALL DSCAL( NL, BETA, C(1,I), 1 )
   20       CONTINUE
C
         ELSE
C
            DO 30  I = 1, R
               CALL DSCAL( MK, BETA, C(1,I), 1 )
   30       CONTINUE
C
         END IF
      END IF
C
C     Quick return if possible.
C
      IF ( .NOT.LMULT .OR. MIN( MK, NL, R ).EQ.0 ) THEN
         DWORK(1) = ONE
         RETURN
      END IF
C
      IF ( LDWORK.LT.WRKOPT )  METH = METH - 1
      IF ( LDWORK.LT.P1 )      METH = 1
C
C     Start computations.
C
      IF ( METH.EQ.1 .AND. .NOT.LTRAN ) THEN
C
C        Method 1 is the most unlucky way to multiply Toeplitz matrices
C        with vectors. Due to the memory restrictions it is not
C        possible to flip TC.
C
         PC = 1
C
         DO 50 I = 1, M
            PT = ( I - 1 - SHFT )*K + 1
            PB = 1
C
            DO 40 J = SHFT + 1, I
               CALL DGEMM( 'No Transpose', 'No Transpose', K, R, L,
     $                     ALPHA, TC(PT,1), LDTC, B(PB,1), LDB, ONE,
     $                     C(PC,1), LDC )
               PT = PT - K
               PB = PB + L
   40       CONTINUE
C
            IF ( N.GT.I-SHFT ) THEN
               CALL DGEMM( 'No Transpose', 'No Transpose', K, R,
     $                     (N-I+SHFT)*L, ALPHA, TR, LDTR, B(PB,1), LDB,
     $                     ONE, C(PC,1), LDC )
            END IF
            PC = PC + K
   50    CONTINUE
C
      ELSE IF ( METH.EQ.1 .AND. LTRAN ) THEN
C
         PB = 1
C
         DO 70 I = 1, M
            PT = ( I - 1 - SHFT )*K + 1
            PC = 1
C
            DO 60 J = SHFT + 1, I
               CALL DGEMM( 'Transpose', 'No Transpose', L, R, K, ALPHA,
     $                     TC(PT,1), LDTC, B(PB,1), LDB, ONE, C(PC,1),
     $                     LDC )
               PT = PT - K
               PC = PC + L
   60       CONTINUE
C
            IF ( N.GT.I-SHFT ) THEN
               CALL DGEMM( 'Transpose', 'No Transpose', (N-I+SHFT)*L,
     $                     R, K, ALPHA, TR, LDTR, B(PB,1), LDB, ONE,
     $                     C(PC,1), LDC )
            END IF
            PB = PB + K
   70    CONTINUE
C
      ELSE IF ( METH.EQ.2 .AND. .NOT.LTRAN ) THEN
C
C        In method 2 TC is flipped resulting in less calls to the BLAS
C        routine DGEMM. Actually this seems often to be the best way to
C        multiply with Toeplitz matrices except the point Toeplitz
C        case.
C
         PT = ( M - 1 - SHFT )*K + 1
C
         DO 80  I = 1, ( M - SHFT )*K*L, K*L
            CALL DLACPY( 'All', K, L, TC(PT,1), LDTC, DWORK(I), K )
            PT = PT - K
   80    CONTINUE
C
         PT = ( M - 1 )*K*L + 1
         PC = 1
C
         DO 90  I = 1, M
            CALL DGEMM( 'No Transpose', 'No Transpose', K, R,
     $                  MIN( I-SHFT, N )*L, ALPHA, DWORK(PT), K, B, LDB,
     $                  ONE, C(PC,1), LDC )
            IF ( N.GT.I-SHFT ) THEN
               CALL DGEMM( 'No Transpose', 'No Transpose', K, R,
     $                     (N-I+SHFT)*L, ALPHA, TR, LDTR,
     $                     B((I-SHFT)*L+1,1), LDB, ONE, C(PC,1), LDC )
            END IF
            PC = PC + K
            PT = PT - K*L
   90    CONTINUE
C
      ELSE IF ( METH.EQ.2 .AND. LTRAN ) THEN
C
         PT = ( M - 1 - SHFT )*K + 1
C
         DO 100  I = 1, ( M - SHFT )*K*L, K*L
            CALL DLACPY( 'All', K, L, TC(PT,1), LDTC, DWORK(I), K )
            PT = PT - K
  100    CONTINUE
C
         PT = ( M - 1 )*K*L + 1
         PB = 1
C
         DO 110  I = 1, M
            CALL DGEMM( 'Tranpose', 'No Transpose', MIN( I-SHFT, N )*L,
     $                  R, K, ALPHA, DWORK(PT), K, B(PB,1), LDB, ONE,
     $                  C, LDC )
            IF ( N.GT.I-SHFT ) THEN
               CALL DGEMM( 'Transpose', 'No Transpose', (N-I+SHFT)*L, R,
     $                     K, ALPHA, TR, LDTR, B(PB,1), LDB, ONE,
     $                     C((I-SHFT)*L+1,1), LDC )
            END IF
            PB = PB + K
            PT = PT - K*L
  110    CONTINUE
C
      ELSE IF ( METH.EQ.3 ) THEN
C
C        In method 3 the matrix-vector product is computed by a suitable
C        block convolution via fast Hartley transforms similar to the
C        SLICOT routine DE01PD.
C
C        Step 1: Copy input data into the workspace arrays.
C
         PDW = 1
         IF ( LTRAN ) THEN
            DIMB = K
            DIMC = L
         ELSE
            DIMB = L
            DIMC = K
         END IF
         PB = LEN*K*L
         PC = LEN*( K*L + DIMB*R )
         IF ( LTRAN ) THEN
            IF ( FULLC ) THEN
               CALL DLACPY( 'All', K, L, TC, LDTC, DWORK, LEN*K )
            END IF
C
            DO 120  I = 1, N - 1 + SHFT
               CALL DLACPY( 'All', K, L, TR(1,(I-1)*L+1), LDTR,
     $                      DWORK((I-SHFT)*K+1), LEN*K )
  120       CONTINUE
C
            PDW = N*K + 1
            R1  = ( LEN - M - N + 1 )*K
            CALL DLASET( 'All', R1, L, ZERO, ZERO, DWORK(PDW), LEN*K )
            PDW = PDW + R1
C
            DO 130  I = ( M - 1 - SHFT )*K + 1, K - SHFT*K + 1, -K
               CALL DLACPY( 'All', K, L, TC(I,1), LDTC,
     $                      DWORK(PDW), LEN*K )
               PDW = PDW + K
  130       CONTINUE
C
            PDW = PB + 1
            CALL DLACPY( 'All', MK, R, B, LDB, DWORK(PDW), LEN*K )
            PDW = PDW + MK
            CALL DLASET( 'All', (LEN-M)*K, R, ZERO, ZERO, DWORK(PDW),
     $                   LEN*K )
         ELSE
            IF ( .NOT.FULLC ) THEN
               CALL DLACPY( 'All', K, L, TR, LDTR, DWORK, LEN*K )
            END IF
            CALL DLACPY( 'All', (M-SHFT)*K, L, TC, LDTC,
     $                   DWORK(SHFT*K+1), LEN*K )
            PDW = MK + 1
            R1  = ( LEN - M - N + 1 )*K
            CALL DLASET( 'All', R1, L, ZERO, ZERO, DWORK(PDW), LEN*K )
            PDW = PDW + R1
C
            DO 140  I = ( N - 2 + SHFT )*L + 1, SHFT*L + 1, -L
               CALL DLACPY( 'All', K, L, TR(1,I), LDTR, DWORK(PDW),
     $                      LEN*K )
               PDW = PDW + K
  140       CONTINUE
C
            PDW = PB + 1
            CALL DLACPY( 'All', NL, R, B, LDB, DWORK(PDW), LEN*L )
            PDW = PDW + NL
            CALL DLASET( 'All', (LEN-N)*L, R, ZERO, ZERO, DWORK(PDW),
     $                   LEN*L )
         END IF
C
C        Take point Toeplitz matrices into extra consideration.
C
         IF ( K*L.EQ.1 ) THEN
            WGHT = 'N'
            CALL DG01OD( 'OutputScrambled', WGHT, LEN, DWORK,
     $                   DWORK(PC+1), IERR )
C
            DO 170  I = PB, PB + LEN*R - 1, LEN
               CALL DG01OD( 'OutputScrambled', WGHT, LEN, DWORK(I+1),
     $                      DWORK(PC+1), IERR )
               SCAL = ALPHA / DBLE( LEN )
               DWORK(I+1) = SCAL*DWORK(I+1)*DWORK(1)
               DWORK(I+2) = SCAL*DWORK(I+2)*DWORK(2)
               SCAL = SCAL / TWO
C
               LN = 1
C
               DO 160 LL = 1, P - 1
                  LN = 2*LN
                  R1 = 2*LN
C
                  DO 150 P1 = LN + 1, LN + LN/2
                     T1 = DWORK(P1) + DWORK(R1)
                     T2 = DWORK(P1) - DWORK(R1)
                     TH = T2*DWORK(I+P1)
                     DWORK(I+P1) = SCAL*( T1*DWORK(I+P1)
     $                                  + T2*DWORK(I+R1) )
                     DWORK(I+R1) = SCAL*( T1*DWORK(I+R1) - TH )
                     R1 = R1 - 1
  150             CONTINUE
C
  160          CONTINUE
C
               CALL DG01OD( 'InputScrambled', WGHT, LEN, DWORK(I+1),
     $                      DWORK(PC+1), IERR )
  170       CONTINUE
C
            PC = PB
            GOTO 420
         END IF
C
C        Step 2: Compute the weights for the Hartley transforms.
C
         PDW = PC
         R1  = 1
         LN  = 1
         TH  = FOUR*ATAN( ONE ) / DBLE( LEN )
C
         DO 190  LL = 1, P - 2
            LN = 2*LN
            TH = TWO*TH
            CF = COS( TH )
            SF = SIN( TH )
            DWORK(PDW+R1)   = CF
            DWORK(PDW+R1+1) = SF
            R1 = R1 + 2
C
            DO 180  I = 1, LN-2, 2
               DWORK(PDW+R1)   = CF*DWORK(PDW+I) - SF*DWORK(PDW+I+1)
               DWORK(PDW+R1+1) = SF*DWORK(PDW+I) + CF*DWORK(PDW+I+1)
               R1 = R1 + 2
  180       CONTINUE
C
  190    CONTINUE
C
         P1 = 3
         Q1 = R1 - 2
C
         DO 210  LL = P - 2, 1, -1
C
            DO 200  I = P1, Q1, 4
               DWORK(PDW+R1)   = DWORK(PDW+I)
               DWORK(PDW+R1+1) = DWORK(PDW+I+1)
               R1 = R1 + 2
  200       CONTINUE
C
            P1 = Q1 + 4
            Q1 = R1 - 2
  210    CONTINUE
C
C        Step 3: Compute the Hartley transforms with scrambled output.
C
         J  = 0
         KK = K
C
C        WHILE   J < (L*LEN*K + R*LEN*DIMB),
C
  220    CONTINUE
C
            LN   = LEN
            WPOS = PDW+1
C
            DO 270  PP = P - 1, 1, -1
               LN = LN / 2
               P2 = 1
               Q2 = LN*KK + 1
               R2 = ( LN/2 )*KK + 1
               S2 = R2 + Q2 - 1
C
               DO 260  I = 0, LEN/( 2*LN ) - 1
C
                  DO 230  IR = 0, KK - 1
                     T1 = DWORK(Q2+IR+J)
                     DWORK(Q2+IR+J) = DWORK(P2+IR+J) - T1
                     DWORK(P2+IR+J) = DWORK(P2+IR+J) + T1
                     T1 = DWORK(S2+IR+J)
                     DWORK(S2+IR+J) = DWORK(R2+IR+J) - T1
                     DWORK(R2+IR+J) = DWORK(R2+IR+J) + T1
  230             CONTINUE
C
                  P1 = P2 + KK
                  Q1 = P1 + LN*KK
                  R1 = Q1 - 2*KK
                  S1 = R1 + LN*KK
C
                  DO 250  JJ = WPOS, WPOS + LN - 3, 2
                     CF = DWORK(JJ)
                     SF = DWORK(JJ+1)
C
                     DO 240  IR = 0, KK-1
                        T1 = DWORK(P1+IR+J) - DWORK(Q1+IR+J)
                        T2 = DWORK(R1+IR+J) - DWORK(S1+IR+J)
                        DWORK(P1+IR+J) = DWORK(P1+IR+J) +
     $                                   DWORK(Q1+IR+J)
                        DWORK(R1+IR+J) = DWORK(R1+IR+J) +
     $                                   DWORK(S1+IR+J)
                        DWORK(Q1+IR+J) =  CF*T1 + SF*T2
                        DWORK(S1+IR+J) = -CF*T2 + SF*T1
  240                CONTINUE
C
                     P1 = P1 + KK
                     Q1 = Q1 + KK
                     R1 = R1 - KK
                     S1 = S1 - KK
  250             CONTINUE
C
                  P2 = P2 + 2*KK*LN
                  Q2 = Q2 + 2*KK*LN
                  R2 = R2 + 2*KK*LN
                  S2 = S2 + 2*KK*LN
  260          CONTINUE
C
               WPOS = WPOS + LN - 2
  270       CONTINUE
C
            DO 290 ICP = KK + 1, LEN*KK, 2*KK
               ICQ = ICP - KK
C
               DO 280 IR = 0, KK - 1
                  T1 = DWORK(ICP+IR+J)
                  DWORK(ICP+IR+J) = DWORK(ICQ+IR+J) - T1
                  DWORK(ICQ+IR+J) = DWORK(ICQ+IR+J) + T1
  280          CONTINUE
C
  290       CONTINUE
C
            J = J + LEN*KK
            IF ( J.EQ.L*LEN*K ) THEN
               KK = DIMB
            END IF
         IF ( J.LT.PC )   GOTO 220
C        END WHILE 220
C
C        Step 4: Compute a Hadamard like product.
C
         CALL DCOPY( LEN-P, DWORK(PDW+1), 1,DWORK(PDW+1+R*LEN*DIMC), 1 )
         PDW  = PDW + R*LEN*DIMC
         SCAL = ALPHA / DBLE( LEN )
         P1 = 1
         R1 = LEN*K*L + 1
         S1 = R1 + LEN*DIMB*R
         IF ( LTRAN ) THEN
            KK = L
            LL = K
         ELSE
            KK = K
            LL = L
         END IF
         CALL DGEMM( TRANS, 'No Transpose', KK, R, LL, SCAL, DWORK(P1),
     $               LEN*K, DWORK(R1), LEN*DIMB, ZERO, DWORK(S1),
     $               LEN*DIMC )
         P1 = P1 + K
         R1 = R1 + DIMB
         S1 = S1 + DIMC
         CALL DGEMM( TRANS, 'No Transpose', KK, R, LL, SCAL, DWORK(P1),
     $               LEN*K, DWORK(R1), LEN*DIMB, ZERO, DWORK(S1),
     $               LEN*DIMC )
         SCAL = SCAL / TWO
         LN = 1
C
         DO 330 PP = 1, P - 1
            LN = 2*LN
            P2 = ( 2*LN - 1 )*K + 1
            R1 = PB + LN*DIMB + 1
            R2 = PB + ( 2*LN - 1 )*DIMB + 1
            S1 = PC + LN*DIMC + 1
            S2 = PC + ( 2*LN - 1 )*DIMC + 1
C
            DO 320  P1 = LN*K + 1, ( LN + LN/2 )*K, K
C
               DO 310 J = 0, LEN*K*( L - 1 ), LEN*K
C
                  DO 300  I = P1, P1 + K - 1
                     T1 = DWORK(P2)
                     DWORK(P2)  = DWORK(J+I) - T1
                     DWORK(J+I) = DWORK(J+I) + T1
                     P2 = P2 + 1
  300             CONTINUE
C
                  P2 = P2 + ( LEN - 1 )*K
  310          CONTINUE
C
               P2 = P2 - LEN*K*L
               CALL DGEMM( TRANS, 'No Transpose', KK, R, LL, SCAL,
     $                     DWORK(P1), LEN*K, DWORK(R1), LEN*DIMB,
     $                     ZERO, DWORK(S1), LEN*DIMC )
               CALL DGEMM( TRANS, 'No Transpose', KK, R, LL, SCAL,
     $                     DWORK(P2), LEN*K, DWORK(R2), LEN*DIMB, ONE,
     $                     DWORK(S1), LEN*DIMC )
               CALL DGEMM( TRANS, 'No Transpose', KK, R, LL, SCAL,
     $                     DWORK(P1), LEN*K, DWORK(R2), LEN*DIMB, ZERO,
     $                     DWORK(S2), LEN*DIMC )
               CALL DGEMM( TRANS, 'No Transpose', KK, R, LL, -SCAL,
     $                     DWORK(P2), LEN*K, DWORK(R1), LEN*DIMB, ONE,
     $                     DWORK(S2), LEN*DIMC )
               P2 = P2 - K
               R1 = R1 + DIMB
               R2 = R2 - DIMB
               S1 = S1 + DIMC
               S2 = S2 - DIMC
  320       CONTINUE
C
  330    CONTINUE
C
C        Step 5: Hartley transform with scrambled input.
C
         DO 410 J = PC, PC + LEN*DIMC*R, LEN*DIMC
C
           DO 350 ICP = DIMC + 1, LEN*DIMC, 2*DIMC
               ICQ = ICP - DIMC
C
               DO 340 IR = 0, DIMC - 1
                  T1 = DWORK(ICP+IR+J)
                  DWORK(ICP+IR+J) = DWORK(ICQ+IR+J) - T1
                  DWORK(ICQ+IR+J) = DWORK(ICQ+IR+J) + T1
  340          CONTINUE
C
  350       CONTINUE
C
            LN   = 1
            WPOS = PDW + LEN - 2*P + 1
C
            DO 400 PP = 1, P - 1
               LN = 2*LN
               P2 = 1
               Q2 = LN*DIMC + 1
               R2 = ( LN/2 )*DIMC + 1
               S2 = R2 + Q2 - 1
C
               DO 390 I = 0, LEN/( 2*LN ) - 1
C
                  DO 360 IR = 0, DIMC - 1
                     T1 = DWORK(Q2+IR +J)
                     DWORK(Q2+IR+J) = DWORK(P2+IR+J) - T1
                     DWORK(P2+IR+J) = DWORK(P2+IR+J) + T1
                     T1 = DWORK(S2+IR+J)
                     DWORK(S2+IR+J) = DWORK(R2+IR+J) - T1
                     DWORK(R2+IR+J) = DWORK(R2+IR+J) + T1
  360             CONTINUE
C
                  P1 = P2 + DIMC
                  Q1 = P1 + LN*DIMC
                  R1 = Q1 - 2*DIMC
                  S1 = R1 + LN*DIMC
C
                  DO 380 JJ = WPOS, WPOS + LN - 3, 2
                     CF = DWORK(JJ)
                     SF = DWORK(JJ+1)
C
                     DO 370 IR = 0, DIMC - 1
                        T1 =  CF*DWORK(Q1+IR+J) + SF*DWORK(S1+IR+J)
                        T2 = -CF*DWORK(S1+IR+J) + SF*DWORK(Q1+IR+J)
                        DWORK(Q1+IR+J) = DWORK(P1+IR+J) - T1
                        DWORK(P1+IR+J) = DWORK(P1+IR+J) + T1
                        DWORK(S1+IR+J) = DWORK(R1+IR+J) - T2
                        DWORK(R1+IR+J) = DWORK(R1+IR+J) + T2
  370                CONTINUE
C
                     P1 = P1 + DIMC
                     Q1 = Q1 + DIMC
                     R1 = R1 - DIMC
                     S1 = S1 - DIMC
  380             CONTINUE
C
                  P2 = P2 + 2*DIMC*LN
                  Q2 = Q2 + 2*DIMC*LN
                  R2 = R2 + 2*DIMC*LN
                  S2 = S2 + 2*DIMC*LN
  390          CONTINUE
C
               WPOS = WPOS - 2*LN + 2
  400       CONTINUE
C
  410    CONTINUE
C
C        Step 6: Copy data from workspace to output.
C
  420    CONTINUE
C
         IF ( LTRAN ) THEN
            I = NL
         ELSE
            I = MK
         END IF
C
         DO 430  J = 0, R - 1
            CALL DAXPY( I, ONE, DWORK(PC+(J*LEN*DIMC) + 1), 1,
     $                  C(1,J+1), 1 )
  430    CONTINUE
C
      END IF
      DWORK(1) = DBLE( WRKOPT )
      RETURN
C
C *** Last line of MB02KD ***
      END