control_systems_torbox 0.2.1

Control systems toolbox
Documentation
      SUBROUTINE TB01MD( JOBU, UPLO, N, M, A, LDA, B, LDB, U, LDU,
     $                   DWORK, INFO )
C
C     PURPOSE
C
C     To reduce the pair (B,A) to upper or lower controller Hessenberg
C     form using (and optionally accumulating) unitary state-space
C     transformations.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     JOBU    CHARACTER*1
C             Indicates whether the user wishes to accumulate in a
C             matrix U the unitary state-space transformations for
C             reducing the system, as follows:
C             = 'N':  Do not form U;
C             = 'I':  U is initialized to the unit matrix and the
C                     unitary transformation matrix U is returned;
C             = 'U':  The given matrix U is updated by the unitary
C                     transformations used in the reduction.
C
C     UPLO    CHARACTER*1
C             Indicates whether the user wishes the pair (B,A) to be
C             reduced to upper or lower controller Hessenberg form as
C             follows:
C             = 'U':  Upper controller Hessenberg form;
C             = 'L':  Lower controller Hessenberg form.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The actual state dimension, i.e. the order of the
C             matrix A.  N >= 0.
C
C     M       (input) INTEGER
C             The actual input dimension, i.e. the number of columns of
C             the matrix B.  M >= 0.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading N-by-N part of this array must
C             contain the state transition matrix A to be transformed.
C             On exit, the leading N-by-N part of this array contains
C             the transformed state transition matrix U' * A * U.
C             The annihilated elements are set to zero.
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= MAX(1,N).
C
C     B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C             On entry, the leading N-by-M part of this array must
C             contain the input matrix B to be transformed.
C             On exit, the leading N-by-M part of this array contains
C             the transformed input matrix U' * B.
C             The annihilated elements are set to zero.
C
C     LDB     INTEGER
C             The leading dimension of array B.  LDB >= MAX(1,N).
C
C     U       (input/output) DOUBLE PRECISION array, dimension (LDU,*)
C             On entry, if JOBU = 'U', then the leading N-by-N part of
C             this array must contain a given matrix U (e.g. from a
C             previous call to another SLICOT routine), and on exit, the
C             leading N-by-N part of this array contains the product of
C             the input matrix U and the state-space transformation
C             matrix which reduces the given pair to controller
C             Hessenberg form.
C             On exit, if JOBU = 'I', then the leading N-by-N part of
C             this array contains the matrix of accumulated unitary
C             similarity transformations which reduces the given pair
C             to controller Hessenberg form.
C             If JOBU = 'N', the array U is not referenced and can be
C             supplied as a dummy array (i.e. set parameter LDU = 1 and
C             declare this array to be U(1,1) in the calling program).
C
C     LDU     INTEGER
C             The leading dimension of array U. If JOBU = 'U' or
C             JOBU = 'I', LDU >= MAX(1,N); if JOBU = 'N', LDU >= 1.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (MAX(N,M-1))
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     The routine computes a unitary state-space transformation U, which
C     reduces the pair (B,A) to one of the following controller
C     Hessenberg forms:
C
C                    |*  . . .  *|*  . . . . . .  *|
C                    |   .      .|.               .|
C                    |     .    .|.               .|
C                    |       .  .|.               .|
C       [U'B|U'AU] = |          *|.               .| N
C                    |           |*               .|
C                    |           |   .            .|
C                    |           |     .          .|
C                    |           |       .        .|
C                    |           |         * . .  *|
C                         M               N
C
C     if UPLO = 'U', or
C
C                    |*  . . *         |           |
C                    |.        .       |           |
C                    |.          .     |           |
C                    |.            .   |           |
C       [U'AU|U'B] = |.               *|           | N
C                    |.               .|*          |
C                    |.               .|.  .       |
C                    |.               .|.    .     |
C                    |.               .|.      .   |
C                    |*  . . . . . .  *|*  . . .  *|
C                            N               M
C     if UPLO = 'L'.
C
C     If M >= N, then the matrix U'B is trapezoidal and U'AU is full.
C     If M  = 0, but N > 0, the array A is unchanged on exit.
C
C     REFERENCES
C
C     [1] Van Dooren, P. and Verhaegen, M.H.G.
C         On the use of unitary state-space transformations.
C         In : Contemporary Mathematics on Linear Algebra and its Role
C         in Systems Theory, 47, AMS, Providence, 1985.
C
C     NUMERICAL ASPECTS
C
C     The algorithm requires O((N + M) x N**2) operations and is
C     backward stable (see [1]).
C
C     CONTRIBUTORS
C
C     Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Dec. 1996.
C     Supersedes Release 2.0 routine TB01AD by M. Vanbegin, and
C     P. Van Dooren, Philips Research Laboratory, Brussels, Belgium.
C
C     REVISIONS
C
C     February 1997, April 2021.
C
C     KEYWORDS
C
C     Controllability, controller Hessenberg form, orthogonal
C     transformation, unitary transformation.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         JOBU, UPLO
      INTEGER           INFO, LDA, LDB, LDU, M, N
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), DWORK(*), U(LDU,*)
C     .. Local Scalars ..
      LOGICAL           LJOBA, LJOBI,  LUPLO
      INTEGER           II, J, M1, N1, NJ, PAR1, PAR2, PAR3, PAR4, PAR5,
     $                  PAR6
      DOUBLE PRECISION  DZ
C     .. External Functions ..
      LOGICAL           LSAME
      EXTERNAL          LSAME
C     .. External Subroutines ..
      EXTERNAL          DLARFG, DLASET, DLATZM, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         MAX, MIN
C     .. Executable Statements ..
C
      INFO = 0
      LUPLO = LSAME( UPLO, 'U' )
      LJOBI = LSAME( JOBU, 'I' )
      LJOBA = LJOBI.OR.LSAME( JOBU, 'U' )
C
C     Test the input scalar arguments.
C
      IF( .NOT.LJOBA .AND. .NOT.LSAME( JOBU, 'N' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.LUPLO .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( M.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -6
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -8
      ELSE IF( .NOT.LJOBA .AND. LDU.LT.1 .OR.
     $              LJOBA .AND. LDU.LT.MAX( 1, N ) ) THEN
         INFO = -10
      END IF
C
      IF ( INFO.NE.0 ) THEN
C
C        Error return
C
         CALL XERBLA( 'TB01MD', -INFO )
         RETURN
      END IF
C
      IF ( LJOBI ) THEN
C
C        Initialize U to the identity matrix.
C
         CALL DLASET( 'Full', N, N, ZERO, ONE, U, LDU )
      END IF
C
C     Quick return if possible.
C
      IF ( N.EQ.0 .OR. M.EQ.0 )
     $   RETURN
C
      M1 = M + 1
      N1 = N - 1
C
C     Perform transformations involving both B and A.
C
      DO 20 J = 1, MIN( M, N1 )
         NJ = N - J
         IF ( LUPLO ) THEN
            PAR1 = J
            PAR2 = J
            PAR3 = J + 1
            PAR4 = M
            PAR5 = N
         ELSE
            PAR1 = M - J + 1
            PAR2 = NJ + 1
            PAR3 = 1
            PAR4 = M - J
            PAR5 = NJ
         END IF
C
         CALL DLARFG( NJ+1, B(PAR2,PAR1), B(PAR3,PAR1), 1, DZ )
C
C        Update A.
C
         CALL DLATZM( 'Left', NJ+1, N, B(PAR3,PAR1), 1, DZ, A(PAR2,1),
     $                A(PAR3,1), LDA, DWORK )
         CALL DLATZM( 'Right', N, NJ+1, B(PAR3,PAR1), 1, DZ, A(1,PAR2),
     $                A(1,PAR3), LDA, DWORK )
C
         IF ( LJOBA ) THEN
C
C           Update U.
C
            CALL DLATZM( 'Right', N, NJ+1, B(PAR3,PAR1), 1, DZ,
     $                   U(1,PAR2), U(1,PAR3), LDU, DWORK )
         END IF
C
         IF ( J.NE.M ) THEN
C
C           Update B
C
            CALL DLATZM( 'Left', NJ+1, PAR4-PAR3+1, B(PAR3,PAR1), 1, DZ,
     $                   B(PAR2,PAR3), B(PAR3,PAR3), LDB, DWORK )
         END IF
C
         DO 10 II = PAR3, PAR5
            B(II,PAR1) = ZERO
   10    CONTINUE
C
   20 CONTINUE
C
      DO 40 J = M1, N1
C
C        Perform next transformations only involving A.
C
         NJ = N - J
         IF ( LUPLO ) THEN
            PAR1 = J - M
            PAR2 = J
            PAR3 = J + 1
            PAR4 = N
            PAR5 = J - M + 1
            PAR6 = N
         ELSE
            PAR1 = N + M1 - J
            PAR2 = NJ + 1
            PAR3 = 1
            PAR4 = NJ
            PAR5 = 1
            PAR6 = N + M - J
         END IF
C
         CALL DLARFG( NJ+1, A(PAR2,PAR1), A(PAR3,PAR1), 1, DZ )
C
C        Update A.
C
         CALL DLATZM( 'Left', NJ+1, PAR6-PAR5+1, A(PAR3,PAR1), 1, DZ,
     $                A(PAR2,PAR5), A(PAR3,PAR5), LDA, DWORK )
         CALL DLATZM( 'Right', N, NJ+1, A(PAR3,PAR1), 1, DZ,
     $                A(1,PAR2), A(1,PAR3), LDA, DWORK )
C
         IF ( LJOBA ) THEN
C
C           Update U.
C
            CALL DLATZM( 'Right', N, NJ+1, A(PAR3,PAR1), 1, DZ,
     $                   U(1,PAR2), U(1,PAR3), LDU, DWORK )
         END IF
C
         DO 30 II = PAR3, PAR4
            A(II,PAR1) = ZERO
   30    CONTINUE
C
   40 CONTINUE
C
      RETURN
C *** Last line of TB01MD ***
      END