control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
      SUBROUTINE TG01HX( COMPQ, COMPZ, L, N, M, P, N1, LBE, A, LDA,
     $                   E, LDE, B, LDB, C, LDC, Q, LDQ, Z, LDZ, NR,
     $                   NRBLCK, RTAU, TOL, IWORK, DWORK, INFO )
C
C     PURPOSE
C
C     Given the descriptor system (A-lambda*E,B,C) with the system
C     matrices A, E and B of the form
C
C            ( A1 X1 )        ( E1 Y1 )        ( B1 )
C        A = (       ) ,  E = (       ) ,  B = (    ) ,
C            ( 0  X2 )        ( 0  Y2 )        ( 0  )
C
C     where
C          - B is an L-by-M matrix, with B1 an N1-by-M  submatrix
C          - A is an L-by-N matrix, with A1 an N1-by-N1 submatrix
C          - E is an L-by-N matrix, with E1 an N1-by-N1 submatrix
C              with LBE nonzero sub-diagonals,
C     this routine reduces the pair (A1-lambda*E1,B1) to the form
C
C     Qc'*[B1 A1-lambda*E1]*diag(I,Zc) =
C
C                              ( Bc Ac-lambda*Ec      *         )
C                              (                                ) ,
C                              ( 0     0         Anc-lambda*Enc )
C
C     where:
C     1) the pencil ( Bc Ac-lambda*Ec ) has full row rank NR for
C        all finite lambda and is in a staircase form with
C                           _      _          _        _
C                         ( A1,0   A1,1  ...  A1,k-1   A1,k  )
C                         (        _          _        _     )
C             ( Bc Ac ) = (  0     A2,1  ...  A2,k-1   A2,k  ) ,  (1)
C                         (              ...  _        _     )
C                         (  0       0   ...  Ak,k-1   Ak,k  )
C
C                           _          _        _
C                         ( E1,1  ...  E1,k-1   E1,k  )
C                         (            _        _     )
C               Ec      = (   0   ...  E2,k-1   E2,k  ) ,         (2)
C                         (       ...           _     )
C                         (   0   ...    0      Ek,k  )
C               _
C         where Ai,i-1 is an rtau(i)-by-rtau(i-1) full row rank
C                                       _
C         matrix (with rtau(0) = M) and Ei,i is an rtau(i)-by-rtau(i)
C         upper triangular matrix.
C
C      2) the pencil Anc-lambda*Enc is regular of order N1-NR with Enc
C         upper triangular; this pencil contains the uncontrollable
C         finite eigenvalues of the pencil (A1-lambda*E1).
C
C     The transformations are applied to the whole matrices A, E, B
C     and C. The left and/or right orthogonal transformations Qc and Zc
C     performed to reduce the pencil can be optionally accumulated
C     in the matrices Q and Z, respectively.
C
C     The reduced order descriptor system (Ac-lambda*Ec,Bc,Cc) has no
C     uncontrollable finite eigenvalues and has the same
C     transfer-function matrix as the original system (A-lambda*E,B,C).
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     COMPQ   CHARACTER*1
C             = 'N':  do not compute Q;
C             = 'I':  Q is initialized to the unit matrix, and the
C                     orthogonal matrix Q is returned;
C             = 'U':  Q must contain an orthogonal matrix Q1 on entry,
C                     and the product Q1*Q is returned.
C
C     COMPZ   CHARACTER*1
C             = 'N':  do not compute Z;
C             = 'I':  Z is initialized to the unit matrix, and the
C                     orthogonal matrix Z is returned;
C             = 'U':  Z must contain an orthogonal matrix Z1 on entry,
C                     and the product Z1*Z is returned.
C
C     Input/Output Parameters
C
C     L       (input) INTEGER
C             The number of descriptor state equations; also the number
C             of rows of matrices A, E and B.  L >= 0.
C
C     N       (input) INTEGER
C             The dimension of the descriptor state vector; also the
C             number of columns of matrices A, E and C.  N >= 0.
C
C     M       (input) INTEGER
C             The dimension of descriptor system input vector; also the
C             number of columns of matrix B.  M >= 0.
C
C     P       (input) INTEGER
C             The dimension of descriptor system output; also the
C             number of rows of matrix C.  P >= 0.
C
C     N1      (input) INTEGER
C             The order of subsystem (A1-lambda*E1,B1,C1) to be reduced.
C             MIN(L,N) >= N1 >= 0.
C
C     LBE     (input) INTEGER
C             The number of nonzero sub-diagonals of submatrix E1.
C             MAX(0,N1-1) >= LBE >= 0.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading L-by-N part of this array must
C             contain the L-by-N state matrix A in the partitioned
C             form
C                      ( A1 X1 )
C                  A = (       ) ,
C                      ( 0  X2 )
C
C             where A1 is N1-by-N1.
C             On exit, the leading L-by-N part of this array contains
C             the transformed state matrix,
C
C                                  ( Ac  *   * )
C                       Qc'*A*Zc = ( 0  Anc  * ) ,
C                                  ( 0   0   * )
C
C             where Ac is NR-by-NR and Anc is (N1-NR)-by-(N1-NR).
C             The matrix ( Bc Ac ) is in the controllability
C             staircase form (1).
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= MAX(1,L).
C
C     E       (input/output) DOUBLE PRECISION array, dimension (LDE,N)
C             On entry, the leading L-by-N part of this array must
C             contain the L-by-N descriptor matrix E in the partitioned
C             form
C                      ( E1 Y1 )
C                  E = (       ) ,
C                      ( 0  Y2 )
C
C             where E1 is N1-by-N1 matrix with LBE nonzero
C             sub-diagonals.
C             On exit, the leading L-by-N part of this array contains
C             the transformed descriptor matrix
C
C                                  ( Ec  *   * )
C                       Qc'*E*Zc = ( 0  Enc  * ) ,
C                                  ( 0   0   * )
C
C             where Ec is NR-by-NR and Enc is (N1-NR)-by-(N1-NR).
C             Both Ec and Enc are upper triangular and Enc is
C             nonsingular.
C
C     LDE     INTEGER
C             The leading dimension of array E.  LDE >= MAX(1,L).
C
C     B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C             On entry, the leading L-by-M part of this array must
C             contain the L-by-M input matrix B in the partitioned
C             form
C                      ( B1 )
C                  B = (    ) ,
C                      ( 0  )
C
C             where B1 is N1-by-M.
C             On exit, the leading L-by-M part of this array contains
C             the transformed input matrix
C
C                               ( Bc )
C                       Qc'*B = (    ) ,
C                               ( 0  )
C
C             where Bc is NR-by-M.
C             The matrix ( Bc Ac ) is in the controllability
C             staircase form (1).
C
C     LDB     INTEGER
C             The leading dimension of array B.  LDB >= MAX(1,L).
C
C     C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C             On entry, the leading P-by-N part of this array must
C             contain the state/output matrix C.
C             On exit, the leading P-by-N part of this array contains
C             the transformed matrix C*Zc.
C
C     LDC     INTEGER
C             The leading dimension of array C.  LDC >= MAX(1,P).
C
C     Q       (input/output) DOUBLE PRECISION array, dimension (LDQ,L)
C             If COMPQ = 'N': Q is not referenced.
C             If COMPQ = 'I': on entry, Q need not be set;
C                             on exit, the leading L-by-L part of this
C                             array contains the orthogonal matrix Qc,
C                             where Qc' is the product of transformations
C                             which are applied to A, E, and B on
C                             the left.
C             If COMPQ = 'U': on entry, the leading L-by-L part of this
C                             array must contain an orthogonal matrix Q;
C                             on exit, the leading L-by-L part of this
C                             array contains the orthogonal matrix
C                             Q*Qc.
C
C     LDQ     INTEGER
C             The leading dimension of array Q.
C             LDQ >= 1,        if COMPQ = 'N';
C             LDQ >= MAX(1,L), if COMPQ = 'U' or 'I'.
C
C     Z       (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
C             If COMPZ = 'N': Z is not referenced.
C             If COMPZ = 'I': on entry, Z need not be set;
C                             on exit, the leading N-by-N part of this
C                             array contains the orthogonal matrix Zc,
C                             which is the product of transformations
C                             applied to A, E, and C on the right.
C             If COMPZ = 'U': on entry, the leading N-by-N part of this
C                             array must contain an orthogonal matrix Z;
C                             on exit, the leading N-by-N part of this
C                             array contains the orthogonal matrix
C                             Z*Zc.
C
C     LDZ     INTEGER
C             The leading dimension of array Z.
C             LDZ >= 1,        if COMPZ = 'N';
C             LDZ >= MAX(1,N), if COMPZ = 'U' or 'I'.
C
C     NR      (output) INTEGER
C             The order of the reduced matrices Ac and Ec, and the
C             number of rows of the reduced matrix Bc; also the order of
C             the controllable part of the pair (B, A-lambda*E).
C
C     NRBLCK  (output) INTEGER                      _
C             The number k, of full row rank blocks Ai,i in the
C             staircase form of the pencil (Bc Ac-lambda*Ec) (see (1)
C             and (2)).
C
C     RTAU    (output) INTEGER array, dimension (N1)
C             RTAU(i), for i = 1, ..., NRBLCK, is the row dimension of
C                                     _
C             the full row rank block Ai,i-1 in the staircase form (1).
C
C     Tolerances
C
C     TOL     DOUBLE PRECISION
C             The tolerance to be used in rank determinations when
C             transforming (A-lambda*E, B). If the user sets TOL > 0,
C             then the given value of TOL is used as a lower bound for
C             reciprocal condition numbers in rank determinations; a
C             (sub)matrix whose estimated condition number is less than
C             1/TOL is considered to be of full rank.  If the user sets
C             TOL <= 0, then an implicitly computed, default tolerance,
C             defined by  TOLDEF = L*N*EPS,  is used instead, where
C             EPS is the machine precision (see LAPACK Library routine
C             DLAMCH).  TOL < 1.
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (M)
C
C     DWORK   DOUBLE PRECISION array, dimension (MAX(N,L,2*M))
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     The subroutine is based on the reduction algorithm of [1].
C
C     REFERENCES
C
C     [1] Varga, A.
C         Computation of Irreducible Generalized State-Space
C         Realizations.
C         Kybernetika, vol. 26, pp. 89-106, 1990.
C
C     NUMERICAL ASPECTS
C
C     The algorithm is numerically backward stable and requires
C     0( N*N1**2 )  floating point operations.
C
C     CONTRIBUTOR
C
C     A. Varga, German Aerospace Center, DLR Oberpfaffenhofen.
C     March 1999. Based on the RASP routine RPDS05.
C
C     REVISIONS
C
C     V. Sima, Research Institute for Informatics, Bucharest, July 1999,
C     May 2003, Nov. 2003.
C     A. Varga, German Aerospace Center, Oberpfaffenhofen, Nov. 2003.
C     V. Sima, Jan. 2010, following Bujanovic and Drmac's suggestion.
C     V. Sima, Apr. 2017, Mar. 2019.
C
C     KEYWORDS
C
C     Controllability, minimal realization, orthogonal canonical form,
C     orthogonal transformation.
C
C     ******************************************************************
C
C     .. Parameters ..
      INTEGER            IMAX, IMIN
      PARAMETER          ( IMAX = 1, IMIN = 2 )
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D0, ZERO = 0.0D0 )
C     .. Scalar Arguments ..
      CHARACTER          COMPQ, COMPZ
      INTEGER            INFO, L, LBE, LDA, LDB, LDC, LDE, LDQ, LDZ, M,
     $                   N, N1, NR, NRBLCK, P
      DOUBLE PRECISION   TOL
C     .. Array Arguments ..
      INTEGER            IWORK( * ), RTAU( * )
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), C( LDC, * ),
     $                   DWORK( * ), E( LDE, * ), Q( LDQ, * ),
     $                   Z( LDZ, * )
C     .. Local Scalars ..
      LOGICAL            ILQ, ILZ, WITHC
      INTEGER            I, IC, ICOL, ICOMPQ, ICOMPZ, IROW, ISMAX,
     $                   ISMIN, J, K, MN, NF, NR1, RANK, TAUIM1
      DOUBLE PRECISION   C1, C2, CO, NRMA, RCOND, S1, S2, SI, SMAX,
     $                   SMAXPR, SMIN, SMINPR, SVLMAX, T, TOLZ, TT
C     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            IDAMAX
      DOUBLE PRECISION   DLAMCH, DLANGE, DNRM2
      EXTERNAL           DLAMCH, DLANGE, DNRM2, IDAMAX, LSAME
C     .. External Subroutines ..
      EXTERNAL           DLACPY, DLAIC1, DLARF, DLARFG, DLARTG, DLASET,
     $                   DROT, DSWAP, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, MAX, MIN, SQRT
C
C     .. Executable Statements ..
C
C     Decode COMPQ.
C
      IF( LSAME( COMPQ, 'N' ) ) THEN
         ILQ = .FALSE.
         ICOMPQ = 1
      ELSE IF( LSAME( COMPQ, 'U' ) ) THEN
         ILQ = .TRUE.
         ICOMPQ = 2
      ELSE IF( LSAME( COMPQ, 'I' ) ) THEN
         ILQ = .TRUE.
         ICOMPQ = 3
      ELSE
         ICOMPQ = 0
      END IF
C
C     Decode COMPZ.
C
      IF( LSAME( COMPZ, 'N' ) ) THEN
         ILZ = .FALSE.
         ICOMPZ = 1
      ELSE IF( LSAME( COMPZ, 'U' ) ) THEN
         ILZ = .TRUE.
         ICOMPZ = 2
      ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
         ILZ = .TRUE.
         ICOMPZ = 3
      ELSE
         ICOMPZ = 0
      END IF
C
C     Test the input scalar parameters.
C
      INFO = 0
      IF( ICOMPQ.LE.0 ) THEN
         INFO = -1
      ELSE IF( ICOMPZ.LE.0 ) THEN
         INFO = -2
      ELSE IF( L.LT.0 ) THEN
         INFO = -3
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( M.LT.0 ) THEN
         INFO = -5
      ELSE IF( P.LT.0 ) THEN
         INFO = -6
      ELSE IF( N1.LT.0 .OR. N1.GT.MIN( L, N ) ) THEN
         INFO = -7
      ELSE IF( LBE.LT.0 .OR. LBE.GT.MAX( 0, N1-1 ) ) THEN
         INFO = -8
      ELSE IF( LDA.LT.MAX( 1, L ) ) THEN
         INFO = -10
      ELSE IF( LDE.LT.MAX( 1, L ) ) THEN
         INFO = -12
      ELSE IF( LDB.LT.MAX( 1, L ) ) THEN
         INFO = -14
      ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
         INFO = -16
      ELSE IF( ( ILQ .AND. LDQ.LT.L ) .OR. LDQ.LT.1 ) THEN
         INFO = -18
      ELSE IF( ( ILZ .AND. LDZ.LT.N ) .OR. LDZ.LT.1 ) THEN
         INFO = -20
      ELSE IF( TOL.GE.ONE ) THEN
         INFO = -24
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'TG01HX', -INFO )
         RETURN
      END IF
C
C     Initialize Q and Z if necessary.
C
      IF( ICOMPQ.EQ.3 )
     $   CALL DLASET( 'Full', L, L, ZERO, ONE, Q, LDQ )
      IF( ICOMPZ.EQ.3 )
     $   CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDZ )
C
C     Initialize output variables.
C
      NR = 0
      NRBLCK = 0
C
C     Quick return if possible.
C
      IF( M.EQ.0 .OR. N1.EQ.0 ) THEN
         RETURN
      END IF
C
      TOLZ   = SQRT( DLAMCH( 'Epsilon' ) )
      WITHC  = P.GT.0
      SVLMAX = ZERO
      NRMA   = DLANGE( 'F', L, N, A, LDA, DWORK )
      RCOND  = TOL
      IF ( RCOND.LE.ZERO ) THEN
C
C        Use the default tolerance in controllability determination.
C
         RCOND = DBLE( L*N )*DLAMCH( 'EPSILON' )
      END IF
C
C     Reduce E to upper triangular form if necessary.
C
      IF( LBE.GT.0 ) THEN
         DO 10 I = 1, N1-1
C
C           Generate elementary reflector H(i) to annihilate
C           E(i+1:i+lbe,i).
C
            K = MIN( LBE, N1-I ) + 1
            CALL DLARFG( K, E(I,I), E(I+1,I), 1, TT )
            T = E(I,I)
            E(I,I) = ONE
C
C           Apply H(i) to E(i:n1,i+1:n) from the left.
C
            CALL DLARF( 'Left', K, N-I, E(I,I), 1, TT,
     $                  E(I,I+1), LDE, DWORK )
C
C           Apply H(i) to A(i:n1,1:n) from the left.
C
            CALL DLARF( 'Left', K, N, E(I,I), 1, TT,
     $                  A(I,1), LDA, DWORK )
C
C           Apply H(i) to B(i:n1,1:m) from the left.
C
            CALL DLARF( 'Left', K, M, E(I,I), 1, TT,
     $                  B(I,1), LDB, DWORK )
            IF( ILQ ) THEN
C
C              Apply H(i) to Q(1:l,i:n1) from the right.
C
               CALL DLARF( 'Right', L, K, E(I,I), 1, TT,
     $                     Q(1,I), LDQ, DWORK )
            END IF
            E(I,I) = T
   10    CONTINUE
         CALL DLASET( 'Lower', N1-1, N1-1, ZERO, ZERO, E(2,1), LDE )
      END IF
C
      ISMIN = 1
      ISMAX = ISMIN + M
      IC = -M
      TAUIM1 = M
      NF = N1
C
   20 CONTINUE
      NRBLCK = NRBLCK + 1
      RANK = 0
      IF( NF.GT.0 ) THEN
C
C        IROW will point to the current pivot line in B,
C        ICOL+1 will point to the first active columns of A.
C
         ICOL = IC + TAUIM1
         IROW = NR
         NR1 = NR + 1
         IF( NR.GT.0 ) THEN
            CALL DLACPY( 'Full', NF, TAUIM1, A(NR1,IC+1), LDA,
     $                   B(NR1,1), LDB )
            IF( SVLMAX.EQ.ZERO )
     $          SVLMAX = NRMA
         END IF
C
C        Perform QR-decomposition with column pivoting on the current B
C        while keeping E upper triangular.
C        The current B is at first iteration B and for subsequent
C        iterations the NF-by-TAUIM1 matrix delimited by rows
C        NR + 1 to N1 and columns IC + 1 to IC + TAUIM1 of A.
C        The rank of current B is computed in RANK.
C
         IF( TAUIM1.GT.1 ) THEN
C
C           Compute column norms.
C
            DO 30 J = 1, TAUIM1
               DWORK(J) = DNRM2( NF, B(NR1,J), 1 )
               DWORK(M+J) = DWORK(J)
               IWORK(J) = J
   30       CONTINUE
         END IF
C
         MN = MIN( NF, TAUIM1 )
C
   40    CONTINUE
         IF( RANK.LT.MN ) THEN
            J = RANK + 1
            IROW = IROW + 1
C
C           Pivot if necessary.
C
            IF( J.NE.TAUIM1 ) THEN
               K = ( J - 1 ) + IDAMAX( TAUIM1-J+1, DWORK(J), 1 )
               IF( K.NE.J ) THEN
                  CALL DSWAP( NF, B(NR1,J), 1, B(NR1,K), 1 )
                  I = IWORK(K)
                  IWORK(K) = IWORK(J)
                  IWORK(J) = I
                  DWORK(K) = DWORK(J)
                  DWORK(M+K) = DWORK(M+J)
               END IF
            END IF
C
C           Zero elements below the current diagonal element of B.
C
            DO 50 I = N1-1, IROW, -1
C
C              Rotate rows I and I+1 to zero B(I+1,J).
C
               T = B(I,J)
               CALL DLARTG( T, B(I+1,J), CO, SI, B(I,J) )
               B(I+1,J) = ZERO
               CALL DROT( N-I+1, E(I,I), LDE, E(I+1,I), LDE, CO, SI )
               IF( J.LT.TAUIM1 )
     $             CALL DROT( TAUIM1-J, B(I,J+1), LDB,
     $                        B(I+1,J+1), LDB, CO, SI )
               CALL DROT( N-ICOL, A(I,ICOL+1), LDA,
     $                    A(I+1,ICOL+1), LDA, CO, SI )
               IF( ILQ ) CALL DROT( L, Q(1,I), 1, Q(1,I+1), 1, CO, SI )
C
C              Rotate columns I, I+1 to zero E(I+1,I).
C
               T = E(I+1,I+1)
               CALL DLARTG( T, E(I+1,I), CO, SI, E(I+1,I+1) )
               E(I+1,I) = ZERO
               CALL DROT( I, E(1,I+1), 1, E(1,I), 1, CO, SI )
               CALL DROT( N1, A(1,I+1), 1, A(1,I), 1, CO, SI )
               IF( ILZ ) CALL DROT( N, Z(1,I+1), 1, Z(1,I), 1, CO, SI )
               IF( WITHC )
     $            CALL DROT( P, C(1,I+1), 1, C(1,I), 1, CO, SI )
   50       CONTINUE
C
            IF( RANK.EQ.0 ) THEN
C
C              Initialize; exit if the matrix is negligible (RANK = 0).
C
               SMAX = ABS( B(NR1,1) )
               IF ( SMAX.LE.RCOND ) GO TO 80
               SMIN = SMAX
               SMAXPR = SMAX
               SMINPR = SMIN
               C1 = ONE
               C2 = ONE
            ELSE
C
C              One step of incremental condition estimation.
C
               CALL DLAIC1( IMIN, RANK, DWORK(ISMIN), SMIN,
     $                      B(NR1,J), B(IROW,J), SMINPR, S1, C1 )
               CALL DLAIC1( IMAX, RANK, DWORK(ISMAX), SMAX,
     $                      B(NR1,J), B(IROW,J), SMAXPR, S2, C2 )
            END IF
C
C           Check the rank; finish the loop if rank loss occurs.
C
            IF( SVLMAX*RCOND.LE.SMAXPR ) THEN
               IF( SVLMAX*RCOND.LE.SMINPR ) THEN
                  IF( SMAXPR*RCOND.LT.SMINPR ) THEN
C
C                    Finish the loop if last row.
C
                     IF( IROW.EQ.N1 ) THEN
                        RANK = RANK + 1
                        GO TO 80
                     END IF
C
C                    Update partial column norms.
C
                     DO 60 I = J + 1, TAUIM1
                        IF( DWORK(I).NE.ZERO ) THEN
                           T = ABS( B(IROW,I) )/DWORK(I)
                           T = MAX( ( ONE + T )*( ONE - T ), ZERO)
                           TT = T*( DWORK(I)/DWORK(M+I) )**2
                           IF( TT.GT.TOLZ ) THEN
                              DWORK(I) = DWORK(I)*SQRT( T )
                           ELSE
                              DWORK(I) = DNRM2( NF-J, B(IROW+1,I), 1 )
                              DWORK(M+I) = DWORK(I)
                           END IF
                        END IF
   60                CONTINUE
C
                     DO 70 I = 1, RANK
                        DWORK(ISMIN+I-1) = S1*DWORK(ISMIN+I-1)
                        DWORK(ISMAX+I-1) = S2*DWORK(ISMAX+I-1)
   70                CONTINUE
C
                     DWORK(ISMIN+RANK) = C1
                     DWORK(ISMAX+RANK) = C2
                     SMIN = SMINPR
                     SMAX = SMAXPR
                     RANK = RANK + 1
                     GO TO 40
                  END IF
               END IF
            END IF
            IF( NR.GT.0 ) THEN
               CALL DLASET( 'Full', N1-IROW+1, TAUIM1-J+1, ZERO, ZERO,
     $                      B(IROW,J), LDB )
            END IF
            GO TO 80
         END IF
      END IF
C
   80 IF( RANK.GT.0 ) THEN
         RTAU(NRBLCK) = RANK
C
C        Back permute interchanged columns.
C
         IF( TAUIM1.GT.1 ) THEN
            DO 100 J = 1, TAUIM1
               IF( IWORK(J).GT.0 ) THEN
                  K = IWORK(J)
                  IWORK(J) = -K
   90             CONTINUE
                  IF( K.NE.J ) THEN
                     CALL DSWAP( RANK, B(NR1,J), 1, B(NR1,K), 1 )
                     IWORK(K) = -IWORK(K)
                     K = -IWORK(K)
                     GO TO 90
                  END IF
               END IF
  100       CONTINUE
         END IF
      END IF
      IF( NR.GT.0 )
     $   CALL DLACPY( 'Full', NF, TAUIM1, B(NR1,1), LDB,
     $                A(NR1,IC+1), LDA )
      IF( RANK.GT.0 ) THEN
         NR = NR + RANK
         NF = NF - RANK
         IC = IC + TAUIM1
         TAUIM1 = RANK
         GO TO 20
      ELSE
         NRBLCK = NRBLCK - 1
      END IF
C
      IF( NRBLCK.GT.0 ) RANK = RTAU(1)
      IF( RANK.LT.N1 )
     $   CALL DLASET( 'Full', N1-RANK, M, ZERO, ZERO, B(RANK+1,1), LDB )
C
      RETURN
C *** Last line of TG01HX ***
      END