control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
      SUBROUTINE SG03BS( TRANS, N, A, LDA, E, LDE, B, LDB, SCALE, DWORK,
     $                   ZWORK, INFO )
C
C     PURPOSE
C
C     To compute the Cholesky factor U of the matrix X, X = U**H * U or
C     X = U * U**H, which is the solution of the generalized d-stable
C     discrete-time Lyapunov equation
C
C         H            H                  2    H
C        A  * X * A - E  * X * E = - SCALE  * B  * B,                (1)
C
C     or the conjugate transposed equation
C
C                 H            H          2        H
C        A * X * A  - E * X * E  = - SCALE  * B * B ,                (2)
C
C     respectively, where A, E, B, and U are complex N-by-N matrices.
C     The Cholesky factor U of the solution is computed without first
C     finding X. The pencil A - lambda * E must be in complex
C     generalized Schur form (A and E are upper triangular and the
C     diagonal elements of E are non-negative real numbers). Moreover,
C     it must be d-stable, i.e., the moduli of its eigenvalues must be
C     less than one. B must be an upper triangular matrix with real
C     non-negative entries on its main diagonal.
C
C     The resulting matrix U is upper triangular. The entries on its
C     main diagonal are non-negative. SCALE is an output scale factor
C     set to avoid overflow in U.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     TRANS   CHARACTER*1
C             Specifies whether equation (1) or equation (2) is to be
C             solved:
C             = 'N':  Solve equation (1);
C             = 'C':  Solve equation (2).
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrices.  N >= 0.
C
C     A       (input/workspace) COMPLEX*16 array, dimension (LDA,N)
C             The leading N-by-N upper triangular part of this array
C             must contain the triangular matrix A. The lower triangular
C             part is used as workspace, but the diagonal is restored.
C
C     LDA     INTEGER
C             The leading dimension of the array A.  LDA >= MAX(1,N).
C
C     E       (input/workspace) COMPLEX*16 array, dimension (LDE,N)
C             The leading N-by-N upper triangular part of this array
C             must contain the triangular matrix E. If TRANS = 'N', the
C             strictly lower triangular part is used as workspace.
C
C     LDE     INTEGER
C             The leading dimension of the array E.  LDE >= MAX(1,N).
C
C     B       (input/output) COMPLEX*16 array, dimension (LDB,N)
C             On entry, the leading N-by-N upper triangular part of this
C             array must contain the matrix B.
C             On exit, the leading N-by-N upper triangular part of this
C             array contains the solution matrix U.
C
C     LDB     INTEGER
C             The leading dimension of the array B.  LDB >= MAX(1,N).
C
C     SCALE   (output) DOUBLE PRECISION
C             The scale factor set to avoid overflow in U.
C             0 < SCALE <= 1.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension LDWORK, where
C             LDWORK = 0,            if N <= 1;
C             LDWORK = MAX(N-1,10),  if N >  1.
C
C     ZWORK   COMPLEX*16, dimension MAX(3*N-3,0)
C
C     Error indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = 3:  the pencil A - lambda * E is not stable, i.e., there
C                   there are eigenvalues outside the open unit circle;
C             = 4:  the LAPACK routine ZSTEIN utilized to factorize M3
C                   failed to converge. This error is unlikely to occur.
C
C     METHOD
C
C     The method used by the routine is an extension of Hammarling's
C     algorithm [1] to generalized Lyapunov equations. The real case is
C     described in [2].
C
C     We present the method for solving equation (1). Equation (2) can
C     be treated in a similar fashion. For simplicity, assume SCALE = 1.
C
C     Since all matrices A, E, B, and U are upper triangular, we use the
C     following partitioning
C
C               ( A11   A12 )        ( E11   E12 )
C           A = (           ),   E = (           ),
C               (   0   A22 )        (   0   E22 )
C
C               ( B11   B12 )        ( U11   U12 )
C           B = (           ),   U = (           ),                  (3)
C               (   0   B22 )        (   0   U22 )
C
C     where the size of the (1,1)-blocks is 1-by-1.
C
C     We compute U11, U12**H and U22 in three steps.
C
C     Step I:
C
C        From (1) and (3) we get the 1-by-1 equation
C
C              H     H                 H     H                  H
C           A11 * U11 * U11 * A11 - E11 * U11 * U11 * E11 = -B11 * B11.
C
C        For brevity, details are omitted here. The technique for
C        computing U11 is similar to those applied to standard Lyapunov
C        equations in Hammarling's algorithm ([1], section 5).
C
C        Furthermore, the auxiliary scalars M1 and M2 defined as follows
C
C           M1 = A11 / E11 ,   M2 = B11 / E11 / U11 ,
C
C        are computed in a numerically reliable way.
C
C     Step II:
C
C        We solve for U12**H the linear system of equations, with
C        scaling to prevent overflow,
C
C                     H      H      H
C           ( M1 * A22  - E22  ) U12  =
C
C                       H              H           H
C           = - M2 * B12  + U11 * ( E12  - M1 * A12  ) .
C
C     Step III:
C
C        One can show that
C
C              H      H                  H      H
C           A22  * U22  * U22 * A22 - E22  * U22  * U22 * E22  =
C
C                H              H
C           - B22  * B22 - y * y                                     (4)
C
C        holds, where y is defined as follows
C
C                    H           H      H      H
C           y = ( B12   U11 * A12  + A22  * U12  ) * M3EV,
C
C        where M3EV is a matrix which fulfils
C
C                ( I - M2*M2     -M2*M1**H )              H
C           M3 = (                         ) = M3EV * M3EV .
C                (    -M1*M2  I - M1*M1**H )
C
C        M3 is positive semidefinite and its rank is equal to 1.
C        Therefore, a matrix M3EV can be found by solving the Hermitian
C        eigenvalue problem for M3 such that y consists of one column.
C
C        If B22_tilde is the square triangular matrix arising from the
C        QR-factorization
C
C               ( B22_tilde )     ( B22  )
C           Q * (           )  =  (      ),
C               (     0     )     ( y**H )
C
C        then
C
C                H              H                H
C           - B22  * B22 - y * y   =  - B22_tilde  * B22_tilde.
C
C        Replacing the right hand side in (4) by the term
C        - B22_tilde**H * B22_tilde leads to a generalized Lyapunov
C        equation like (1), but of dimension N-1.
C
C     The solution U of the equation (1) can be obtained by recursive
C     application of the steps I to III.
C
C     REFERENCES
C
C     [1] Hammarling, S.J.
C         Numerical solution of the stable, non-negative definite
C         Lyapunov equation.
C         IMA J. Num. Anal., 2, pp. 303-323, 1982.
C
C     [2] Penzl, T.
C         Numerical solution of generalized Lyapunov equations.
C         Advances in Comp. Math., vol. 8, pp. 33-48, 1998.
C
C     NUMERICAL ASPECTS
C
C     The routine requires 2*N**3 flops. Note that we count a single
C     floating point arithmetic operation as one flop.
C
C     FURTHER COMMENTS
C
C     The Lyapunov equation may be very ill-conditioned. In particular,
C     if the pencil A - lambda * E has a pair of almost reciprocal
C     eigenvalues, then the Lyapunov equation will be ill-conditioned.
C     Perturbed values were used to solve the equation.
C     A condition estimate can be obtained from the routine SG03AD.
C
C     CONTRIBUTOR
C
C     V. Sima, June 2021.
C
C     REVISIONS
C
C     V. Sima, July 2021, Oct. 2021, Nov. 2021.
C
C     KEYWORDS
C
C     Lyapunov equation
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  MONE, ONE, ZERO
      PARAMETER         ( MONE = -1.0D+0, ONE = 1.0D+0, ZERO = 0.0D+0 )
      COMPLEX*16        CONE
      PARAMETER         ( CONE = ( 1.0D+0, 0.0D+0 ) )
C     .. Scalar Arguments ..
      CHARACTER         TRANS
      DOUBLE PRECISION  SCALE
      INTEGER           INFO, LDA, LDB, LDE, N
C     .. Array Arguments ..
      DOUBLE PRECISION  DWORK(*)
      COMPLEX*16        A(LDA,*), B(LDB,*), E(LDE,*), ZWORK(*)
C     .. Local Scalars ..
      COMPLEX*16        M1, R, S, X, Z
      DOUBLE PRECISION  BIGNUM, C, DELTA1, EPS, M2, SCALE1, SMLNUM, T,
     $                  UII
      INTEGER           APT, I, J, KL, KL1, UPT, WPT
      LOGICAL           NOTRNS
C     .. Local Arrays ..
      COMPLEX*16        M3(2,2), M3C(2,1)
      DOUBLE PRECISION  D(2), ES(2), W(2)
      INTEGER           IWORK(7)
C     .. External Functions ..
      DOUBLE PRECISION  DLAMCH
      LOGICAL           LSAME
      EXTERNAL          DLAMCH, LSAME
C     .. External Subroutines ..
      EXTERNAL          DLABAD, MA02EZ, XERBLA, ZAXPY, ZCOPY, ZDSCAL,
     $                  ZLACGV, ZLARFG, ZLARTG, ZLASCL, ZLATRS, ZROT,
     $                  ZSCAL, ZSTEIN, ZTRMV
C     .. Intrinsic Functions ..
      INTRINSIC         ABS, DBLE, DCMPLX, DCONJG, MAX, SQRT
C     .. Executable Statements ..
C
C     Decode input parameter.
C
      NOTRNS = LSAME( TRANS, 'N' )
C
C     Check the scalar input parameters.
C
      IF ( .NOT.( NOTRNS .OR. LSAME( TRANS, 'C' ) ) ) THEN
         INFO = -1
      ELSEIF ( N.LT.0 ) THEN
         INFO = -2
      ELSEIF ( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -4
      ELSEIF ( LDE.LT.MAX( 1, N ) ) THEN
         INFO = -6
      ELSEIF ( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -8
      ELSE
         INFO = 0
      END IF
      IF ( INFO.NE.0 ) THEN
         CALL XERBLA( 'SG03BS', -INFO )
         RETURN
      END IF
C
      SCALE = ONE
C
C     Quick return if possible.
C
      IF ( N.EQ.0 )
     $    RETURN
C
C     Set constants to control overflow.
C
      EPS    = DLAMCH( 'P' )
      SMLNUM = DLAMCH( 'S' )/EPS
      BIGNUM = ONE/SMLNUM
      CALL DLABAD( SMLNUM, BIGNUM )
C
C     Set workspace pointers.
C
      UPT = 1
      WPT = N
      APT = 2*N - 1
C
C     Set constant input for ZSTEIN.
C
      IWORK(2) = 1
      IWORK(3) = 0
      IWORK(4) = 2
      IWORK(5) = 0
      W(1)     = ONE
      W(2)     = ZERO
C
      IF ( NOTRNS ) THEN
C
C        Solve equation (1).
C
C        Store the last N-1 diagonal elements of A.
C        Fill-in the strictly lower triangular part of E with the
C        conjugate transpose of the strictly upper triangular part.
C
         IF ( N.GT.1 )
     $      CALL ZCOPY( N-1, A(2,2), LDA+1, ZWORK(APT), 1 )
         CALL MA02EZ( 'Upper', 'Conj', 'NoSkew', N, E, LDE )
C
C        Main Loop. Compute the row elements U(KL,KL:N).
C
         DO 60 KL = 1, N
C
C           STEP I: Compute U(KL,KL) and the auxiliary scalars M1 and
C                   M2. (For the moment the result U(KL,KL) is stored
C                   in UII).
C
            DELTA1 = DBLE( E(KL,KL) )
            T      =  ABS( A(KL,KL) )
            M2     =  MAX( DELTA1, T )
            DELTA1 = DELTA1/M2
            T      =      T/M2
            IF ( DELTA1.LE.T ) THEN
               INFO = 3
               RETURN
            END IF
            DELTA1 = SQRT( ONE - T )*SQRT( ONE + T )*M2
            T = DBLE( B(KL,KL) )*SMLNUM
            IF ( T.GT.DELTA1 ) THEN
               SCALE1 = DELTA1/T
               SCALE  = SCALE1*SCALE
               CALL ZLASCL( 'Upper', 0, 0, ONE, SCALE1, N, N, B, LDB,
     $                      INFO )
            END IF
C
            UII = DBLE( B(KL,KL) )/DELTA1
C
            IF ( KL.LT.N ) THEN
C
               M1 = A(KL,KL)/DBLE( E(KL,KL) )
               M2 =   DELTA1/DBLE( E(KL,KL) )
C
C              STEP II: Compute U(KL,KL+1:N) by solving a linear system
C                       of equations. (For the moment the result is
C                       stored in the workspace.)
C
C              Fill-in the lower triangular part of A22 with the
C              conjugate transpose of the upper triangular part.
C
               CALL MA02EZ( 'Upper', 'Conj', 'General', N-KL+1,
     $                      A(KL,KL), LDA )
C
C              Form right hand side of the system of equations.
C
               KL1 = KL + 1
               CALL ZCOPY( N-KL, E(KL1,KL), 1, ZWORK(UPT), 1 )
               CALL ZAXPY( N-KL, -M1, A(KL1,KL), 1, ZWORK(UPT), 1 )
               I = UPT
C
               DO 10 J = KL1, N
                  ZWORK(I) = DCMPLX( UII )*ZWORK(I) -
     $                       DCMPLX( M2  )*DCONJG( B(KL,J) )
                  I = I + 1
   10          CONTINUE
C
C              Form the coefficient matrix.
C
               DO 30 J = KL1, N
                  DO 20 I = J, N
                     A(I,J) = M1*A(I,J) - E(I,J)
   20             CONTINUE
   30          CONTINUE
C
C              Solve the system, with scaling to prevent overflow.
C
               CALL ZLATRS( 'Lower', 'NoConj', 'NoDiag', 'NoNorm', N-KL,
     $                      A(KL1,KL1), LDA, ZWORK(UPT), SCALE1, DWORK,
     $                      INFO )
               IF ( SCALE1.NE.ONE ) THEN
                  SCALE = SCALE1*SCALE
                  UII   = SCALE1*UII
                  CALL ZLASCL( 'Upper', 0, 0, ONE, SCALE1, N, N, B, LDB,
     $                         INFO )
               END IF
C
C              Restore the diagonal of A22.
C
               A(KL,KL) = DCONJG( A(KL,KL) )
               CALL ZCOPY( N-KL, ZWORK(APT+KL-1), 1, A(KL1,KL1), LDA+1 )
C
C              STEP III: Form the right hand side matrix
C                        B(KL+1:N,KL+1:N) of the (smaller) Lyapunov
C                        equation to be solved during the next pass of
C                        the main loop.
C
C              Compute auxiliary matrices M3 and Y. The factorization
C              M3 = M3C * M3C**H is found by solving the special
C              symmetric eigenvalue problem. (D is the diagonal of M3.)
C
               M3(1,2) = -M2*DCONJG( M1 )
C
               X = M3(1,2)
               CALL ZLARFG( 1, X, M3(1,2), 1, Z )
               D(1)  = ABS( M1 )**2
               D(2)  = M2**2
               ES(1) = DBLE( X )
C
               CALL ZSTEIN( 2, D, ES, 1, W, IWORK(2), IWORK(4), M3C, 2,
     $                      DWORK, IWORK(6), IWORK, INFO )
               IF ( INFO.NE.0 ) THEN
                  INFO = 4
                  RETURN
               END IF
               M3C(1,1) = ( CONE - Z )*M3C(1,1)
C
C              Compute auxiliary vector Y in ZWORK(WPT).
C
               CALL ZCOPY(  N-KL, ZWORK(UPT), 1, ZWORK(WPT), 1 )
               CALL ZTRMV(  'Upper', 'Conj', 'NonUnit', N-KL,
     $                      A(KL1,KL1), LDA, ZWORK(WPT), 1 )
               CALL ZAXPY(  N-KL, DCMPLX( UII ), A(KL1,KL), 1,
     $                      ZWORK(WPT), 1 )
               CALL ZSCAL(  N-KL, M3C(2,1), ZWORK(WPT), 1 )
               CALL ZLACGV( N-KL, ZWORK(WPT), 1 )
               CALL ZAXPY(  N-KL, DCONJG( M3C(1,1) ), B(KL,KL1), LDB,
     $                      ZWORK(WPT), 1 )
C
C              Overwrite B(KL+1:N,KL+1:N) with the triangular matrix
C              from the QR-factorization of the (N-KL+1)-by-(N-KL)
C              matrix
C
C                       (  B(KL+1:N,KL+1:N)  )
C                       (                    ) .
C                       (       Y**H         )
C
               DO 40 I = 1, N-KL
                  X = B(KL+I,KL+I)
                  Z = ZWORK(WPT+I-1)
                  CALL ZLARTG( X, Z, C, S, R )
                  B(KL+I,KL+I) = R
                  IF ( I.LT.N-KL )
     $               CALL ZROT(  N-KL-I, B(KL+I,KL1+I), LDB,
     $                           ZWORK(WPT+I), 1, C, S )
   40          CONTINUE
C
C              Make main diagonal elements of B(KL+1:N,KL+1:N) positive.
C
               DO 50 I = KL1, N
                  IF ( DBLE( B(I,I) ).LT.ZERO )
     $               CALL ZDSCAL( N-I+1, MONE, B(I,I), LDB )
   50          CONTINUE
C
C              Overwrite right hand side with the part of the solution
C              computed in step II.
C
               CALL ZLACGV( N-KL, ZWORK(UPT), 1 )
               CALL ZCOPY(  N-KL, ZWORK(UPT), 1, B(KL,KL1), LDB )
C
            END IF
C
C           Overwrite right hand side with the part of the solution
C           computed in step I.
C
            B(KL,KL) = UII
C
   60    CONTINUE
C
      ELSE
C
C        Solve equation (2).
C
C        Store the first N-1 diagonal elements of A.
C
         IF ( N.GT.1 )
     $      CALL ZCOPY( N-1, A, LDA+1, ZWORK(APT), 1 )
C
C        Main Loop. Compute the column elements U(1:KL,KL).
C
         DO 110 KL = N, 1, -1
C
C           STEP I: Compute U(KL,KL) and the auxiliary scalars M1 and
C                   M2. (For the moment the result U(KL,KL) is stored
C                   in UII).
C
            DELTA1 = DBLE( E(KL,KL) )
            T      =  ABS( A(KL,KL) )
            M2     =  MAX( DELTA1, T )
            DELTA1 = DELTA1/M2
            T      =      T/M2
            IF ( DELTA1.LE.T ) THEN
               INFO = 3
               RETURN
            END IF
            DELTA1 = SQRT( ONE - T )*SQRT( ONE + T )*M2
            T = DBLE( B(KL,KL) )*SMLNUM
            IF ( T.GT.DELTA1 ) THEN
               SCALE1 = DELTA1/T
               SCALE  = SCALE1*SCALE
               CALL ZLASCL( 'Upper', 0, 0, ONE, SCALE1, N, N, B, LDB,
     $                      INFO )
            END IF
C
            UII = DBLE( B(KL,KL) )/DELTA1
C
            IF ( KL.GT.1 ) THEN
C
               M1 = DCONJG( A(KL,KL) )/DBLE( E(KL,KL) )
               M2 =             DELTA1/DBLE( E(KL,KL) )
C
C              STEP II: Compute U(1:KL,KL) by solving a linear system
C                       of equations. (For the moment the result is
C                       stored in the workspace.)
C
C              Fill-in the strictly lower triangular part of A22 with
C              the transpose of the strictly upper triangular part.
C
               KL1 = KL - 1
               CALL MA02EZ( 'Upper', 'Trans', 'General', KL1, A, LDA )
C
C              Form right hand side of the system of equations.
C
               CALL ZCOPY(  KL1, E(1,KL), 1, ZWORK(UPT), 1 )
               CALL ZAXPY(  KL1, -M1, A(1,KL), 1, ZWORK(UPT), 1 )
               CALL ZDSCAL( KL1, UII, ZWORK(UPT), 1 )
               CALL ZAXPY(  KL1, -DCMPLX( M2 ), B(1,KL), 1, ZWORK(UPT),
     $                      1 )
C
C              Form the coefficient matrix.
C
               DO 80 J = 1, KL1
                  DO 70 I = 1, J
                     A(I,J) = M1*A(I,J) - E(I,J)
   70             CONTINUE
   80          CONTINUE
C
C              Solve the system, with scaling to prevent overflow.
C
               CALL ZLATRS( 'Upper', 'NoConj', 'NoDiag', 'NoNorm', KL1,
     $                      A, LDA, ZWORK(UPT), SCALE1, DWORK, INFO )
               IF ( SCALE1.NE.ONE ) THEN
                  SCALE = SCALE1*SCALE
                  UII   = SCALE1*UII
                  CALL ZLASCL( 'Upper', 0, 0, ONE, SCALE1, N, N, B, LDB,
     $                         INFO )
               END IF
C
C              Restore the upper triangular part of A22.
C
               CALL MA02EZ( 'Lower', 'Trans', 'General', KL1, A, LDA )
               CALL ZCOPY(  KL1, ZWORK(APT), 1, A, LDA+1 )
C
C              STEP III: Form the right hand side matrix
C                        B(1:KL-1,1:KL-1) of the (smaller) Lyapunov
C                        equation to be solved during the next pass of
C                        the main loop.
C
C              Compute auxiliary matrices M3 and Y. The factorization
C              M3 = M3C * M3C**H is found by solving the special
C              symmetric eigenvalue problem. (D is the diagonal of M3.)
C
               M3(1,2) = -M2*DCONJG( M1 )
C
               X = M3(1,2)
               CALL ZLARFG( 1, X, M3(1,2), 1, Z )
               D(1)  = ABS( M1 )**2
               D(2)  = M2**2
               ES(1) = DBLE( X )
C
               CALL ZSTEIN( 2, D, ES, 1, W, IWORK(2), IWORK(4), M3C, 2,
     $                      DWORK, IWORK(6), IWORK, INFO )
               IF ( INFO.NE.0 ) THEN
                  INFO = 4
                  RETURN
               END IF
               M3C(1,1) = ( CONE - Z )*M3C(1,1)
C
C              Compute auxiliary vector Y in B(1:KL,KL).
C
               CALL ZSCAL(  KL1, M3C(1,1), B(1,KL), 1 )
               CALL ZCOPY(  KL1, ZWORK(UPT), 1, ZWORK(WPT), 1 )
               CALL ZTRMV(  'Upper', 'NoTrans', 'NonUnit', KL1, A, LDA,
     $                      ZWORK(WPT), 1 )
               CALL ZAXPY(  KL1, DCMPLX( UII ), A(1,KL), 1, ZWORK(WPT),
     $                      1 )
               CALL ZAXPY(  KL1, M3C(2,1), ZWORK(WPT), 1, B(1,KL), 1 )
C
C              Overwrite B(1:KL-1,1:KL-1) with the triangular matrix
C              from the RQ-factorization of the (KL-1)-by-KL matrix
C
C                       (                        )
C                       (  B(1:KL-1,1:KL-1)   Y  ) .
C                       (                        )
C
               DO 90 I = KL1, 1, -1
                  X = B(I,I)
                  Z = B(I,KL)
                  CALL ZLARTG( X, Z, C, S, R )
                  B(I,I) = R
                  IF ( I.GT.1 )
     $               CALL ZROT( I-1, B(1,I), 1, B(1,KL), 1,  C, S )
   90          CONTINUE
C
C              Make main diagonal elements of B(1:KL-1,1:KL-1) positive.
C
               DO 100 I = 1, KL1
                  IF ( DBLE( B(I,I) ).LT.ZERO )
     $               CALL ZDSCAL( I, MONE, B(1,I), 1 )
  100          CONTINUE
C
C              Overwrite right hand side with the part of the solution
C              computed in step II.
C
               CALL ZCOPY( KL1, ZWORK(UPT), 1, B(1,KL), 1 )
C
            END IF
C
C           Overwrite right hand side with the part of the solution
C           computed in step I.
C
            B(KL,KL) = UII
C
  110    CONTINUE
C
      END IF
C
      RETURN
C *** Last line of SG03BS ***
      END