control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
      SUBROUTINE MB4DPZ( JOB, N, THRESH, A, LDA, DE, LDDE, C, LDC, VW,
     $                   LDVW, ILO, LSCALE, RSCALE, DWORK, IWARN, INFO )
C
C     PURPOSE
C
C     To balance the 2*N-by-2*N complex skew-Hamiltonian/Hamiltonian
C     pencil aS - bH, with
C
C           (  A  D  )         (  C  V  )
C       S = (        ) and H = (        ),  A, C N-by-N,             (1)
C           (  E  A' )         (  W -C' )
C
C     where D and E are skew-Hermitian, V and W are Hermitian matrices,
C     and ' denotes conjugate transpose. This involves, first, permuting
C     aS - bH by a symplectic equivalence transformation to isolate
C     eigenvalues in the first 1:ILO-1 elements on the diagonal of A
C     and C; and second, applying a diagonal equivalence transformation
C     to make the pairs of rows and columns ILO:N and N+ILO:2*N as close
C     in 1-norm as possible. Both steps are optional. Balancing may
C     reduce the 1-norms of the matrices S and H.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     JOB     CHARACTER*1
C             Specifies the operations to be performed on S and H:
C             = 'N':  none:  simply set ILO = 1, LSCALE(I) = 1.0 and
C                     RSCALE(I) = 1.0 for i = 1,...,N.
C             = 'P':  permute only;
C             = 'S':  scale only;
C             = 'B':  both permute and scale.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of matrices A, D, E, C, V, and W.  N >= 0.
C
C     THRESH  (input) DOUBLE PRECISION
C             If JOB = 'S' or JOB = 'B', and THRESH >= 0, threshold
C             value for magnitude of the elements to be considered in
C             the scaling process: elements with magnitude less than or
C             equal to THRESH*MXNORM are ignored for scaling, where
C             MXNORM is the maximum of the 1-norms of the original
C             submatrices S(s,s) and H(s,s), with s = [ILO:N,N+ILO:2*N].
C             If THRESH < 0, the subroutine finds the scaling factors
C             for which some conditions, detailed below, are fulfilled.
C             A sequence of increasing strictly positive threshold
C             values is used.
C             If THRESH = -1, the condition is that
C                max( norm(H(s,s),1)/norm(S(s,s),1),
C                     norm(S(s,s),1)/norm(H(s,s),1) )                (1)
C             has the smallest value, for the threshold values used,
C             where S(s,s) and H(s,s) are the scaled submatrices.
C             If THRESH = -2, the norm ratio reduction (1) is tried, but
C             the subroutine may return IWARN = 1 and reset the scaling
C             factors to 1, if this seems suitable. See the description
C             of the argument IWARN and FURTHER COMMENTS.
C             If THRESH = -3, the condition is that
C                norm(H(s,s),1)*norm(S(s,s),1)                       (2)
C             has the smallest value for the scaled submatrices.
C             If THRESH = -4, the norm reduction in (2) is tried, but
C             the subroutine may return IWARN = 1 and reset the scaling
C             factors to 1, as for THRESH = -2 above.
C             If THRESH = -VALUE, with VALUE >= 10, the condition
C             numbers of the left and right scaling transformations will
C             be bounded by VALUE, i.e., the ratios between the largest
C             and smallest entries in [LSCALE(ILO:N); RSCALE(ILO:N)]
C             will be at most VALUE. VALUE should be a power of 10.
C             If JOB = 'N' or JOB = 'P', the value of THRESH is
C             irrelevant.
C
C     A       (input/output) COMPLEX*16 array, dimension (LDA,N)
C             On entry, the leading N-by-N part of this array must
C             contain the matrix A.
C             On exit, the leading N-by-N part of this array contains
C             the matrix A of the balanced skew-Hamiltonian matrix S.
C             In particular, the strictly lower triangular part of the
C             first ILO-1 columns of A is zero.
C
C     LDA     INTEGER
C             The leading dimension of the array A.  LDA >= MAX(1,N).
C
C     DE      (input/output) COMPLEX*16 array, dimension (LDDE, N+1)
C             On entry, the leading N-by-N lower triangular part of
C             this array must contain the lower triangular part of the
C             skew-Hermitian matrix E, and the N-by-N upper triangular
C             part of the submatrix in the columns 2 to N+1 of this
C             array must contain the upper triangular part of the
C             skew-Hermitian matrix D. The real parts of the entries on
C             the diagonal and the first superdiagonal of this array
C             should be zero.
C             On exit, the leading N-by-N lower triangular part of this
C             array contains the lower triangular part of the balanced
C             matrix E, and the N-by-N upper triangular part of the 
C             submatrix in the columns 2 to N+1 of this array contains
C             the upper triangular part of the balanced matrix D.
C             In particular, the lower triangular part of the first
C             ILO-1 columns of DE is zero.
C
C     LDDE    INTEGER
C             The leading dimension of the array DE.  LDDE >= MAX(1, N).
C
C     C       (input/output) COMPLEX*16 array, dimension (LDC, N)
C             On entry, the leading N-by-N part of this array must
C             contain the matrix C.
C             On exit, the leading N-by-N part of this array contains
C             the matrix C of the balanced Hamiltonian matrix H.
C             In particular, the strictly lower triangular part of the
C             first ILO-1 columns of C is zero.
C
C     LDC     INTEGER
C             The leading dimension of the array C.  LDC >= MAX(1, N).
C
C     VW      (input/output) COMPLEX*16 array, dimension (LDVW, N+1)
C             On entry, the leading N-by-N lower triangular part of
C             this array must contain the lower triangular part of the
C             Hermitian matrix W, and the N-by-N upper triangular
C             part of the submatrix in the columns 2 to N+1 of this
C             array must contain the upper triangular part of the
C             Hermitian matrix V. The imaginary parts of the entries on
C             the diagonal and the first superdiagonal of this array
C             should be zero.
C             On exit, the leading N-by-N lower triangular part of this
C             array contains the lower triangular part of the balanced
C             matrix W, and the N-by-N upper triangular part of the
C             submatrix in the columns 2 to N+1 of this array contains
C             the upper triangular part of the balanced matrix V. In
C             particular, the lower triangular part of the first ILO-1
C             columns of VW is zero.
C
C     LDVW    INTEGER
C             The leading dimension of the array VW.  LDVW >= MAX(1, N).
C
C     ILO     (output) INTEGER
C             ILO-1 is the number of deflated eigenvalues in the
C             balanced skew-Hamiltonian/Hamiltonian matrix pencil.
C             ILO is set to 1 if JOB = 'N' or JOB = 'S'.
C
C     LSCALE  (output) DOUBLE PRECISION array, dimension (N)
C             Details of the permutations of S and H and scaling applied
C             to A, D, C, and V from the left. For j = 1,...,ILO-1 let
C             P(j) = LSCALE(j). If P(j) <= N, then rows and columns P(j)
C             and P(j)+N are interchanged with rows and columns j and
C             j+N, respectively. If P(j) > N, then row and column P(j)-N
C             are interchanged with row and column j+N by a generalized
C             symplectic permutation. For j = ILO,...,N the j-th element
C             of LSCALE contains the factor of the scaling applied to
C             row j of the matrices A, D, C, and V.
C
C     RSCALE  (output) DOUBLE PRECISION array, dimension (N)
C             Details of the permutations of S and H and scaling applied
C             to A, E, C, and W from the right. For j = 1,...,ILO-1 let
C             P(j) = RSCALE(j). If P(j) <= N, then rows and columns P(j)
C             and P(j)+N are interchanged with rows and columns j and
C             j+N, respectively. If P(j) > N, then row and column P(j)-N
C             are interchanged with row and column j+N by a generalized
C             symplectic permutation. For j = ILO,...,N the j-th element
C             of RSCALE contains the factor of the scaling applied to
C             column j of the matrices A, E, C, and W.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK) where
C             LDWORK = 0,   if  JOB = 'N' or JOB = 'P', or N = 0;
C             LDWORK = 6*N, if (JOB = 'S' or JOB = 'B') and THRESH >= 0;
C             LDWORK = 8*N, if (JOB = 'S' or JOB = 'B') and THRESH <  0.
C             On exit, if JOB = 'S' or JOB = 'B', DWORK(1) and DWORK(2)
C             contain the initial 1-norms of S(s,s) and H(s,s), and
C             DWORK(3) and DWORK(4) contain their final 1-norms,
C             respectively. Moreover, DWORK(5) contains the THRESH value
C             used (irrelevant if IWARN = 1 or ILO = N).
C
C     Warning Indicator
C
C     IWARN   INTEGER
C             = 0:  no warning;
C             = 1:  scaling has been requested, for THRESH = -2 or
C                   THRESH = -4, but it most probably would not improve
C                   the accuracy of the computed solution for a related
C                   eigenproblem (since maximum norm increased
C                   significantly compared to the original pencil
C                   matrices and (very) high and/or small scaling
C                   factors occurred). The returned scaling factors have
C                   been reset to 1, but information about permutations,
C                   if requested, has been preserved.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit.
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     Balancing consists of applying a (symplectic) equivalence
C     transformation to isolate eigenvalues and/or to make the 1-norms
C     of each pair of rows and columns indexed by s of S and H nearly
C     equal. If THRESH < 0, a search is performed to find those scaling
C     factors giving the smallest norm ratio or product defined above
C     (see the description of the parameter THRESH).
C
C     Assuming JOB = 'S', let Dl and Dr be diagonal matrices containing
C     the vectors LSCALE and RSCALE, respectively. The returned matrices
C     are obtained using the equivalence transformation
C
C       ( Dl  0 ) ( A  D  ) ( Dr  0 )   ( Dl  0 ) ( C  V  ) ( Dr  0 )
C       (       ) (       ) (       ),  (       ) (       ) (       ).
C       ( 0  Dr ) ( E  A' ) ( 0  Dl )   ( 0  Dr ) ( W -C' ) ( 0  Dl )
C
C     For THRESH = 0, the routine returns essentially the same results
C     as the LAPACK subroutine ZGGBAL [1]. Setting THRESH < 0, usually
C     gives better results than ZGGBAL for badly scaled matrix pencils.
C
C     REFERENCES
C
C     [1] Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J.,
C         Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A.,
C         Ostrouchov, S., and Sorensen, D.
C         LAPACK Users' Guide: Second Edition.
C         SIAM, Philadelphia, 1995.
C
C     [2] Benner, P.
C         Symplectic balancing of Hamiltonian matrices.
C         SIAM J. Sci. Comput., 22 (5), pp. 1885-1904, 2001.
C
C     NUMERICAL ASPECTS
C
C     The transformations used preserve the skew-Hamiltonian/Hamiltonian
C     structure and do not introduce significant rounding errors.
C     No rounding errors appear if JOB = 'P'. If T is the global
C     transformation matrix applied to the right, then J'*T*J is the
C     global transformation matrix applied to the left, where
C     J = [ 0 I; -I 0 ], with blocks of order N.
C
C     FURTHER COMMENTS
C
C     If THRESH = -2, the increase of the maximum norm of the scaled
C     submatrices, compared to the maximum norm of the initial
C     submatrices, is bounded by MXGAIN = 100.
C     If THRESH = -2, or THRESH = -4, the maximum condition number of
C     the scaling transformations is bounded by MXCOND = 1/SQRT(EPS),
C     where EPS is the machine precision (see LAPACK Library routine
C     DLAMCH).
C
C     CONTRIBUTOR
C
C     V. Sima, Research Institute for Informatics, Bucharest, Dec. 2015.
C
C     REVISIONS
C
C     V. Sima, Jan. 2016, Jan. 2017, Feb. 2017.
C
C     KEYWORDS
C
C     Balancing, eigenvalue, equivalence transformation, matrix algebra,
C     matrix operations, symplectic equivalence transformation.
C
C  *********************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION   HALF, ONE, TEN, TWO, ZERO
      PARAMETER          ( HALF = 0.5D+0, ONE  = 1.0D+0, TEN = 1.0D+1,
     $                     TWO  = 2.0D+0, ZERO = 0.0D+0 )
      DOUBLE PRECISION   MXGAIN, SCLFAC
      PARAMETER          ( MXGAIN = 1.0D+2, SCLFAC = 1.0D+1 )
      CHARACTER          LOW, NSKEW, NTRAN, SKEW, UPP
      PARAMETER          ( LOW   = 'Lower',       NSKEW = 'Not Skew',
     $                     NTRAN = 'No transpose', SKEW = 'Skew',
     $                     UPP   = 'Upper' )
      COMPLEX*16         CZERO
      PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ) )
C     .. Scalar Arguments ..
      CHARACTER          JOB
      INTEGER            ILO, INFO, IWARN, LDA, LDC, LDDE, LDVW, N
      DOUBLE PRECISION   THRESH
C     .. Array Arguments ..
      DOUBLE PRECISION   DWORK(*), LSCALE(*), RSCALE(*)
      COMPLEX*16         A(LDA,*), C(LDC,*), DE(LDDE,*), VW(LDVW,*)
C     .. Local Scalars ..
      LOGICAL            EVNORM, LOOP, LPERM, LSCAL, STORMN
      INTEGER            I, ICAB, ILOOLD, IR, IRAB, IT, ITER, ITH, J,
     $                   JC, K, KOUNT, KS, KW1, KW2, KW3, KW4, KW5, KW6,
     $                   KW7, LRAB, LSFMAX, LSFMIN, NR, NRP2
      DOUBLE PRECISION   AB, ALPHA, BASL, BETA, CAB, CMAX, COEF, COEF2,
     $                   COEF5, COR, DENOM, EPS, EW, GAMMA, GAP, MINPRO,
     $                   MINRAT, MN, MX, MXCOND, MXNORM, MXS, NH, NH0,
     $                   NHS, NS, NS0, NSS, PGAMMA, PROD, RAB, RATIO,
     $                   SFMAX, SFMIN, SUM, T, TA, TC, TD, TE, TH, TH0,
     $                   THS, TV, TW
C     .. Local Arrays ..
      DOUBLE PRECISION   DUM(1)
C     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            IDAMAX, IZAMAX
      DOUBLE PRECISION   DDOT, DLAMCH, MA02IZ
      EXTERNAL           DDOT, DLAMCH, IDAMAX, IZAMAX, LSAME, MA02IZ
C     .. External Subroutines ..
      EXTERNAL           DAXPY, DCOPY, DSCAL, MA02NZ, XERBLA, ZDSCAL,
     $                   ZSWAP
C     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, DCONJG, DIMAG, INT, LOG10, MAX, MIN,
     $                   SIGN, SQRT
C
C     .. Executable Statements ..
C
C     Test the input parameters.
C
      INFO  = 0
      IWARN = 0
      LPERM = LSAME( JOB, 'P' ) .OR. LSAME( JOB, 'B' )
      LSCAL = LSAME( JOB, 'S' ) .OR. LSAME( JOB, 'B' )
C
      IF( .NOT.LPERM .AND. .NOT.LSCAL .AND. .NOT.LSAME( JOB, 'N' ) )
     $   THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA .LT.MAX( 1, N ) ) THEN
         INFO = -5
      ELSE IF( LDDE.LT.MAX( 1, N ) ) THEN
         INFO = -7
      ELSE IF( LDC .LT.MAX( 1, N ) ) THEN
         INFO = -9
      ELSE IF( LDVW.LT.MAX( 1, N ) ) THEN
         INFO = -11
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'MB4DPZ', -INFO )
         RETURN
      END IF
C
      ILO = 1
C
C     Quick return if possible.
C
      IF( N.EQ.0 )
     $   RETURN
      IF( ( .NOT.LPERM .AND. .NOT.LSCAL ) .OR. N.EQ.1 ) THEN
         DUM(1) = ONE
         CALL DCOPY( N, DUM, 0, LSCALE, 1 )
         CALL DCOPY( N, DUM, 0, RSCALE, 1 )
         IF( N.EQ.1 .AND. LSCAL ) THEN
            NS0 = MA02IZ( 'skew-Hamiltonian', '1-norm', N, A, LDA, DE,
     $                     LDDE, DWORK )
            NH0 = MA02IZ( 'Hamiltonian', '1-norm', N, C, LDC, VW, LDVW,
     $                     DWORK )
            DWORK(1) = NS0
            DWORK(2) = NH0
            DWORK(3) = NS0
            DWORK(4) = NH0
            DWORK(5) = THRESH
         END IF
         RETURN
      END IF
C
      IF( LPERM ) THEN
C
C        Permute the matrices S and H to isolate the eigenvalues.
C
         ILOOLD = 0
C        WHILE ( ILO.NE.ILOOLD )
   10    CONTINUE
         IF( ILO.NE.ILOOLD ) THEN
            ILOOLD = ILO
C
C           Scan columns ILO .. N.
C
            I = ILO
C           WHILE ( I.LE.N .AND. ILO.EQ.ILOOLD )
   20       CONTINUE
            IF( I.LE.N .AND. ILO.EQ.ILOOLD ) THEN
               DO 30  J = ILO, I-1
                  IF( A(J,I).NE.CZERO .OR. C(J,I).NE.CZERO ) THEN
                     I = I + 1
                     GOTO 20
                  END IF
   30          CONTINUE
               DO 40  J = I+1, N
                  IF( A(J,I).NE.CZERO .OR. C(J,I).NE.CZERO ) THEN
                     I = I + 1
                     GOTO 20
                  END IF
   40          CONTINUE
               DO 50  J = ILO, I-1
                  IF( DE(I,J).NE.CZERO .OR. VW(I,J).NE.CZERO ) THEN
                     I = I + 1
                     GOTO 20
                  END IF
   50          CONTINUE
               IF( DIMAG( DE(I,I) ).NE.ZERO ) THEN
                  I = I + 1
                  GOTO 20
               END IF
               IF( DBLE( VW(I,I) ).NE.ZERO ) THEN
                  I = I + 1
                  GOTO 20
               END IF
               DO 60  J = I+1, N
                  IF( DE(J,I).NE.CZERO .OR. VW(J,I).NE.CZERO ) THEN
                     I = I + 1
                     GOTO 20
                  END IF
   60          CONTINUE
C
C              Exchange columns/rows ILO <-> I.
C
               LSCALE(ILO) = I
               RSCALE(ILO) = I
C
               IF( ILO.NE.I ) THEN
C
                  CALL ZSWAP( N, A(1,ILO), 1, A(1,I), 1 )
                  CALL ZSWAP( N-ILO+1, A(ILO,ILO), LDA, A(I,ILO), LDA )
C
                  CALL MA02NZ( LOW, NTRAN, SKEW, N, ILO, I, DE, LDDE )
                  CALL MA02NZ( UPP, NTRAN, SKEW, N, ILO, I, DE(1,2),
     $                         LDDE )
C
                  CALL ZSWAP( N, C(1,ILO), 1, C(1,I), 1 )
                  CALL ZSWAP( N-ILO+1, C(ILO,ILO), LDC, C(I,ILO), LDC )
C
                  CALL MA02NZ( LOW, NTRAN, NSKEW, N, ILO, I, VW, LDVW )
                  CALL MA02NZ( UPP, NTRAN, NSKEW, N, ILO, I, VW(1,2),
     $                         LDVW )
               END IF
               ILO = ILO + 1
            END IF
C           END WHILE 20
C
C           Scan columns N+ILO .. 2*N.
C
            I = ILO
C           WHILE ( I.LE.N .AND. ILO.EQ.ILOOLD )
   70       CONTINUE
            IF( I.LE.N .AND. ILO.EQ.ILOOLD ) THEN
               DO 80  J = ILO, I-1
                  IF( A(I,J).NE.CZERO .OR. C(I,J).NE.CZERO ) THEN
                     I = I + 1
                     GOTO 70
                  END IF
   80          CONTINUE
               DO 90  J = I+1, N
                  IF( A(I,J).NE.CZERO .OR. C(I,J).NE.CZERO ) THEN
                     I = I + 1
                     GOTO 70
                  END IF
   90          CONTINUE
               DO 100  J = ILO, I-1
                  IF( DE(J,I+1).NE.CZERO .OR. VW(J,I+1).NE.CZERO ) THEN
                     I = I + 1
                     GOTO 70
                  END IF
  100          CONTINUE
               IF( DIMAG( DE(I,I+1) ).NE.ZERO ) THEN
                  I = I + 1
                  GOTO 70
               END IF
               IF( DBLE( VW(I,I+1) ).NE.ZERO ) THEN
                  I = I + 1
                  GOTO 70
               END IF
               DO 110  J = I+1, N
                  IF( DE(I,J+1).NE.CZERO .OR. VW(I,J+1).NE.CZERO ) THEN
                     I = I + 1
                     GOTO 70
                  END IF
  110          CONTINUE
C
C              Exchange columns/rows I <-> I+N with a symplectic
C              generalized permutation.
C
               LSCALE(ILO) = N + I
               RSCALE(ILO) = N + I
C
               CALL ZSWAP( I-ILO, A(I,ILO), LDA, DE(I,ILO), LDDE )
               CALL ZDSCAL( I-ILO, -ONE, A(I,ILO), LDA )
               IF( N.GT.I ) THEN
                  CALL ZSWAP( N-I, A(I,I+1), LDA, DE(I+1,I), 1 )
                  DO 120 J = I+1, N
                     A( I,J) = DCONJG( A(I,J) )
                     DE(J,I) = DCMPLX( -DBLE( DE(J,I) ),
     $                                 DIMAG( DE(J,I) ) )
  120             CONTINUE
               END IF
               CALL ZSWAP( I-1, A(1,I), 1, DE(1,I+1), 1 )
               CALL ZDSCAL( I-1, -ONE, A(1,I), 1 )
               IF( N.GT.I ) THEN
                  CALL ZSWAP( N-I, A(I+1,I), 1, DE(I,I+2), LDDE )
                  DO 130 J = I+1, N
                     A( J,I)   = DCONJG( A(J,I) )
                     DE(I,J+1) = DCMPLX( -DBLE( DE(I,J+1) ),
     $                                   DIMAG( DE(I,J+1) ) )
  130             CONTINUE
               END IF
               A(I,I)    = DCONJG( A(I,I) )
               T         =  DE(I,I)
               DE(I,I)   = -DE(I,I+1)
               DE(I,I+1) = -T
C
               CALL ZSWAP( I-ILO, C(I,ILO), LDC, VW(I,ILO), LDVW )
               CALL ZDSCAL( I-ILO, -ONE, C(I,ILO), LDC )
               IF( N.GT.I ) THEN
                  CALL ZSWAP( N-I, C(I,I+1), LDC, VW(I+1,I), 1 )
                  DO 140 J = I+1, N
                     VW(J,I) = DCONJG( VW(J,I) )
                     C( I,J) = DCMPLX( -DBLE( C(I,J) ),
     $                                 DIMAG( C(I,J) ) )
  140             CONTINUE
               END IF
               CALL ZSWAP( I-1, C(1,I), 1, VW(1,I+1), 1 )
               CALL ZDSCAL( I-1, -ONE, C(1,I), 1 )
               IF( N.GT.I ) THEN
                  CALL ZSWAP( N-I, C(I+1,I), 1, VW(I,I+2), LDVW )
                  DO 150 J = I+1, N
                     VW(I,J+1) = DCONJG( VW(I,J+1) )
                     C( J,I)   = DCMPLX( -DBLE( C(J,I) ),
     $                                   DIMAG( C(J,I) ) )
  150             CONTINUE
               END IF
               C(I,I)    = -DCONJG( C(I,I) )
               T         =  VW(I,I)
               VW(I,I)   = -VW(I,I+1)
               VW(I,I+1) = -T
C
C              Exchange columns/rows ILO <-> I.
C
               IF( ILO.NE.I ) THEN
C
                  CALL ZSWAP( N, A(1,ILO), 1, A(1,I), 1 )
                  CALL ZSWAP( N-ILO+1, A(ILO,ILO), LDA, A(I,ILO), LDA )
C
                  CALL MA02NZ( LOW, NTRAN, SKEW, N, ILO, I, DE, LDDE )
                  CALL MA02NZ( UPP, NTRAN, SKEW, N, ILO, I, DE(1,2),
     $                         LDDE )
C
                  CALL ZSWAP( N, C(1,ILO), 1, C(1,I), 1 )
                  CALL ZSWAP( N-ILO+1, C(ILO,ILO), LDC, C(I,ILO), LDC )
C
                  CALL MA02NZ( LOW, NTRAN, NSKEW, N, ILO, I, VW, LDVW )
                  CALL MA02NZ( UPP, NTRAN, NSKEW, N, ILO, I, VW(1,2),
     $                         LDVW )
               END IF
               ILO = ILO + 1
            END IF
C           END WHILE 70
            GOTO 10
         END IF
C        END WHILE 10
C
         DO 160 I = ILO, N
            LSCALE( I ) = ONE
            RSCALE( I ) = ONE
  160    CONTINUE
         IF( .NOT.LSCAL )
     $      RETURN
      END IF
C
      NR = N - ILO + 1
C
C     Compute initial 1-norms and return if ILO = N.
C
      NS0 = MA02IZ( 'skew-Hamiltonian', '1-norm', NR, A(ILO,ILO), LDA,
     $               DE(ILO,ILO), LDDE, DWORK )
      NH0 = MA02IZ( 'Hamiltonian', '1-norm', NR, C(ILO,ILO), LDC,
     $               VW(ILO,ILO), LDVW, DWORK )
C
      IF( ILO.EQ.N ) THEN
         DWORK(1) = NS0
         DWORK(2) = NH0
         DWORK(3) = NS0
         DWORK(4) = NH0
         DWORK(5) = THRESH
         RETURN
      END IF
C
C     Balance the submatrices in rows ILO to N.
C
C     Initialize balancing and allocate work storage.
C
      KW1 = N
      KW2 = KW1 + N
      KW3 = KW2 + N
      KW4 = KW3 + N
      KW5 = KW4 + N
      DUM(1) = ZERO
C
C     Prepare for scaling.
C
      SFMIN  = DLAMCH( 'Safe minimum' )
      SFMAX  = ONE / SFMIN
      BASL   = LOG10( SCLFAC )
      LSFMIN = INT( LOG10( SFMIN ) / BASL + ONE )
      LSFMAX = INT( LOG10( SFMAX ) / BASL )
      MXNORM = MAX( NS0, NH0 )
      LOOP   = THRESH.LT.ZERO
C
      IF( LOOP ) THEN
C
C        Compute relative threshold.
C
         NS  = NS0
         NSS = NS0
         NH  = NH0
         NHS = NH0
C
         ITH = THRESH
         MXS = MXNORM
         MX  = ZERO
         MN  = SFMAX
         IF( ITH.GE.-2 ) THEN
            IF( NS.LT.NH ) THEN
               RATIO = MIN( NH/NS, SFMAX )
            ELSE
               RATIO = MIN( NS/NH, SFMAX )
            END IF
            MINRAT = RATIO
         ELSE IF( ITH.LE.-10 ) THEN
            MXCOND = -THRESH
         ELSE
            DENOM  = MAX( ONE, MXNORM )
            PROD   = ( NS/DENOM )*( NH/DENOM )
            MINPRO = PROD
         END IF
         STORMN = .FALSE.
         EVNORM = .FALSE.
C
C        Find maximum order of magnitude of the differences in sizes of
C        the nonzero entries, not considering diag(A) and diag(C).
C
         DO 180 J = ILO, N
            DO 170 I = ILO, N
               IF( I.NE.J ) THEN
                  AB = ABS( A(I,J) )
                  IF( AB.NE.ZERO )
     $               MN = MIN( MN, AB )
                  MX = MAX( MX, AB )
               END IF
  170       CONTINUE
  180    CONTINUE
C
         DO 200 J = ILO, N
            DO 190 I = ILO, N
               AB = ABS( DE(I,J) )
               IF( AB.NE.ZERO )
     $            MN = MIN( MN, AB )
               MX = MAX( MX, AB )
               AB = ABS( DE(I,J+1) )
               IF( AB.NE.ZERO )
     $            MN = MIN( MN, AB )
               MX = MAX( MX, AB )
  190       CONTINUE
  200    CONTINUE
C
         DO 220 J = ILO, N
            DO 210 I = ILO, N
               IF( I.NE.J ) THEN
                  AB = ABS( C(I,J) )
                  IF( AB.NE.ZERO )
     $               MN = MIN( MN, AB )
                  MX = MAX( MX, AB )
               END IF
  210       CONTINUE
  220    CONTINUE
C
         DO 240 J = ILO, N
            DO 230 I = ILO, N
               AB = ABS( VW(I,J) )
               IF( AB.NE.ZERO )
     $            MN = MIN( MN, AB )
               MX = MAX( MX, AB )
               AB = ABS( VW(I,J+1) )
               IF( AB.NE.ZERO )
     $            MN = MIN( MN, AB )
               MX = MAX( MX, AB )
  230       CONTINUE
  240    CONTINUE
C
         IF( MX*SFMIN.LE.MN ) THEN
            GAP = MX/MN
         ELSE
            GAP = SFMAX
         END IF
         EPS  = DLAMCH( 'Precision' )
         ITER = MIN( INT( LOG10( GAP ) ), -INT( LOG10( EPS ) ) ) + 1
         TH   = MAX( MN, MX*EPS )/MAX( MXNORM, SFMIN )
         THS  = TH
         KW6  = KW5 + N + ILO
         KW7  = KW6 + N
         CALL DCOPY( NR, LSCALE(ILO), 1, DWORK(KW6), 1 )
         CALL DCOPY( NR, RSCALE(ILO), 1, DWORK(KW7), 1 )
C
C        Set the maximum condition number of the transformations.
C
         IF( ITH.GT.-10 )
     $      MXCOND = ONE/SQRT( EPS )
      ELSE
         TH     = MXNORM*THRESH
         ITER   = 1
         EVNORM = .TRUE.
      END IF
      TH0 = TH
C
      COEF  = HALF / DBLE( 2*NR )
      COEF2 = COEF*COEF
      COEF5 = HALF*COEF2
      NRP2  = NR + 2
      BETA  = ZERO
C
C     If THRESH < 0, use a loop to reduce the norm ratio.
C
      DO 490 K = 1, ITER
C
C        Compute right side vector in resulting linear equations.
C
         CALL DCOPY( 6*N, DUM, 0, DWORK, 1 )
         CALL DCOPY(  NR, DUM, 0, LSCALE(ILO), 1 )
         CALL DCOPY(  NR, DUM, 0, RSCALE(ILO), 1 )
         DO 260 I = ILO, N
            DO 250 J = ILO, N
               TA = ABS( A(I,J) )
               TC = ABS( C(I,J) )
               IF( J.GT.I ) THEN
                  TD = ABS( DE(I,J+1) )
                  TE = ABS( DE(J,I) )
                  TV = ABS( VW(I,J+1) )
                  TW = ABS( VW(J,I) )
               ELSE
                  TD = ABS( DE(J,I+1) )
                  TE = ABS( DE(I,J) )
                  TV = ABS( VW(J,I+1) )
                  TW = ABS( VW(I,J) )
               END IF
               IF( TA.GT.TH ) THEN
                  TA = LOG10( TA ) / BASL
               ELSE
                  TA = ZERO
               END IF
               IF( TC.GT.TH ) THEN
                  TC = LOG10( TC ) / BASL
               ELSE
                  TC = ZERO
               END IF
               IF( TD.GT.TH ) THEN
                  TD = LOG10( TD ) / BASL
               ELSE
                  TD = ZERO
               END IF
               IF( TE.GT.TH ) THEN
                  TE = LOG10( TE ) / BASL
               ELSE
                  TE = ZERO
               END IF
               IF( TV.GT.TH ) THEN
                  TV = LOG10( TV ) / BASL
               ELSE
                  TV = ZERO
               END IF
               IF( TW.GT.TH ) THEN
                  TW = LOG10( TW ) / BASL
               ELSE
                  TW = ZERO
               END IF
               DWORK(I+KW4) = DWORK(I+KW4) - TA - TC - TD - TV
               DWORK(J+KW5) = DWORK(J+KW5) - TA - TC - TE - TW
  250       CONTINUE
  260    CONTINUE
C
         IT = 1
C
C        Start generalized conjugate gradient iteration.
C
  270    CONTINUE
C
         GAMMA = ( DDOT( NR, DWORK(ILO+KW4), 1, DWORK(ILO+KW4), 1 ) +
     $             DDOT( NR, DWORK(ILO+KW5), 1, DWORK(ILO+KW5), 1 ) )*
     $           TWO
C
         EW = ZERO
         DO 280 I = ILO, N
            EW = EW + DWORK(I+KW4) + DWORK(I+KW5)
  280    CONTINUE
C
         GAMMA = COEF*GAMMA - TWO*COEF2*EW**2
         IF( GAMMA.EQ.ZERO )
     $      GO TO 350
         IF( IT.NE.1 )
     $      BETA = GAMMA / PGAMMA
         T = -TWO*COEF5*EW
C
         CALL DSCAL( NR, BETA, DWORK(ILO), 1 )
         CALL DSCAL( NR, BETA, DWORK(ILO+KW1), 1 )
C
         CALL DAXPY( NR, COEF, DWORK(ILO+KW4), 1, DWORK(ILO+KW1), 1 )
         CALL DAXPY( NR, COEF, DWORK(ILO+KW5), 1, DWORK(ILO), 1 )
C
         DO 290 J = ILO, N
            DWORK(J)     = DWORK(J)     + T
            DWORK(J+KW1) = DWORK(J+KW1) + T
  290    CONTINUE
C
C        Apply matrix to vector.
C
         DO 310 I = ILO, N
            KOUNT = 0
            SUM   = ZERO
            DO 300 J = ILO, N
               KS = KOUNT
               IF( A(I,J).NE.CZERO )
     $            KOUNT = KOUNT + 1
               IF( C(I,J).NE.CZERO )
     $            KOUNT = KOUNT + 1
               SUM = SUM + DBLE( KOUNT - KS )*DWORK(J)
C
               KS  = KOUNT
               IF( J.GE.I ) THEN
                  IF( DE(I,J+1).NE.CZERO )
     $               KOUNT = KOUNT + 1
                  IF( VW(I,J+1).NE.CZERO )
     $               KOUNT = KOUNT + 1
               ELSE
                  IF( DE(J,I+1).NE.CZERO )
     $               KOUNT = KOUNT + 1
                  IF( VW(J,I+1).NE.CZERO )
     $               KOUNT = KOUNT + 1
               END IF
               SUM = SUM + DBLE( KOUNT - KS )*DWORK(J+KW1)
  300       CONTINUE
            DWORK(I+KW2) = DBLE( KOUNT )*DWORK(I+KW1) + SUM
  310    CONTINUE
C
         DO 330 J = ILO, N
            KOUNT = 0
            SUM   = ZERO
            DO 320 I = ILO, N
               KS = KOUNT
               IF( A(I,J).NE.CZERO )
     $            KOUNT = KOUNT + 1
               IF( C(I,J).NE.CZERO )
     $            KOUNT = KOUNT + 1
               SUM = SUM + DBLE( KOUNT - KS )*DWORK(I+KW1)
C
               KS  = KOUNT
               IF( J.GE.I ) THEN
                  IF( DE(J,I).NE.CZERO )
     $               KOUNT = KOUNT + 1
                  IF( VW(J,I).NE.CZERO )
     $               KOUNT = KOUNT + 1
               ELSE
                  IF( DE(I,J).NE.CZERO )
     $               KOUNT = KOUNT + 1
                  IF( VW(I,J).NE.CZERO )
     $               KOUNT = KOUNT + 1
               END IF
               SUM = SUM + DBLE( KOUNT - KS )*DWORK(I)
  320       CONTINUE
            DWORK(J+KW3) = DBLE( KOUNT )*DWORK(J) + SUM
  330    CONTINUE
C
         SUM = ( DDOT( NR, DWORK(ILO+KW1), 1, DWORK(ILO+KW2), 1 ) +
     $           DDOT( NR, DWORK(ILO),     1, DWORK(ILO+KW3), 1 ) )*TWO
         ALPHA = GAMMA / SUM
C
C        Determine correction to current iteration.
C
         CMAX = ZERO
         DO 340 I = ILO, N
            COR = ALPHA*DWORK(I+KW1)
            IF( ABS( COR ).GT.CMAX )
     $         CMAX = ABS( COR )
            LSCALE(I) = LSCALE(I) + COR
            COR = ALPHA*DWORK(I)
            IF( ABS( COR ).GT.CMAX )
     $         CMAX = ABS( COR )
            RSCALE(I) = RSCALE(I) + COR
  340    CONTINUE
C
         IF( CMAX.GE.HALF ) THEN
C
            CALL DAXPY( N, -ALPHA, DWORK(ILO+KW2), 1, DWORK(ILO+KW4), 1)
            CALL DAXPY( N, -ALPHA, DWORK(ILO+KW3), 1, DWORK(ILO+KW5), 1)
C
            PGAMMA = GAMMA
            IT = IT + 1
            IF( IT.LE.NRP2 )
     $         GO TO 270
         END IF
C
C        End generalized conjugate gradient iteration.
C
  350    CONTINUE
C
C        Compute diagonal scaling matrices.
C
         DO 360 I = ILO, N
            IRAB = IZAMAX( NR, A(I,ILO), LDA )
            RAB  = ABS( A(I,ILO+IRAB-1) )
            IRAB = IZAMAX( NR, C(I,ILO), LDC )
            RAB  = MAX( RAB, ABS( C(I,ILO+IRAB-1) ) )
            IRAB = IZAMAX( I, DE(1,I+1), 1 )
            RAB  = MAX( RAB, ABS( DE(IRAB,I+1) ) )
            IF( N.GT.I ) THEN
               IRAB = IZAMAX( N-I, DE(I,I+2), LDDE )
               RAB  = MAX( RAB, ABS( DE(I,I+IRAB+1) ) )
            END IF
            IRAB = IZAMAX( I, VW(1,I+1), 1 )
            RAB  = MAX( RAB, ABS( VW(IRAB,I+1) ) )
            IF( N.GT.I ) THEN
               IRAB = IZAMAX( N-I, VW(I,I+2), LDVW )
               RAB  = MAX( RAB, ABS( VW(I,I+IRAB+1) ) )
            END IF
C
            LRAB = INT( LOG10( RAB+SFMIN ) / BASL + ONE )
            IR   = LSCALE(I) + SIGN( HALF, LSCALE(I) )
            IR   = MIN( MAX( IR, LSFMIN ), LSFMAX, LSFMAX-LRAB )
            LSCALE(I) = SCLFAC**IR
C
            ICAB = IZAMAX( N, A(1,I), 1 )
            CAB  = ABS( A(ICAB,I) )
            ICAB = IZAMAX( N, C(1,I), 1 )
            CAB  = MAX( CAB, ABS( C(ICAB,I) ) )
            ICAB = IZAMAX( I, DE(I,1), LDDE )
            CAB  = MAX( CAB, ABS( DE(I,ICAB) ) )
            IF( N.GT.I ) THEN
               ICAB = IZAMAX( N-I, DE(I+1,I), 1 )
               CAB  = MAX( CAB, ABS( DE(I+ICAB,I) ) )
            END IF
            ICAB = IZAMAX( I, VW(I,1), LDVW )
            CAB  = MAX( CAB, ABS( VW(I,ICAB) ) )
            IF( N.GT.I ) THEN
               ICAB = IZAMAX( N-I, VW(I+1,I), 1 )
               CAB  = MAX( CAB, ABS( VW(I+ICAB,I) ) )
            END IF
C
            LRAB = INT( LOG10( CAB+SFMIN ) / BASL + ONE )
            JC = RSCALE(I) + SIGN( HALF, RSCALE(I) )
            JC = MIN( MAX( JC, LSFMIN ), LSFMAX, LSFMAX-LRAB )
            RSCALE(I) = SCLFAC**JC
  360    CONTINUE
C
         DO 370 I = ILO, N
            IF( LSCALE(I).NE.ONE .OR. RSCALE(I).NE.ONE )
     $         GO TO 380
  370    CONTINUE
C
C        Finish the procedure for all scaling factors equal to 1.
C
         NSS = NS0
         NHS = NH0
         THS = TH0
         GO TO 550
C
  380    CONTINUE
C
         IF( LOOP ) THEN
            IF( ITH.LE.-10 ) THEN
C
C              Compute the reciprocal condition number of the left and
C              right transformations. Continue the loop if it is too
C              small.
C
               IR = IDAMAX( NR, LSCALE(ILO), 1 )
               JC = IDAMAX( NR, RSCALE(ILO), 1 )
               T  = MAX( LSCALE(ILO+IR-1), RSCALE(ILO+JC-1) )
               MN = T
               DO 390 I = ILO, N
                  IF( LSCALE(I).LT.MN )
     $               MN = LSCALE(I)
  390          CONTINUE
               DO 400 I = ILO, N
                  IF( RSCALE(I).LT.MN )
     $               MN = RSCALE(I)
  400          CONTINUE
               T = MN/T
               IF( T.LT.ONE/MXCOND ) THEN
                  TH = TH*TEN
                  GO TO 490
               ELSE
                  THS    = TH
                  EVNORM = .TRUE.
                  GO TO 520
               END IF
            END IF
C
C           Compute the 1-norms of the scaled submatrices,
C           without actually scaling them.
C
            NS = ZERO
            DO 420 J = ILO, N
               T = ZERO
               DO 410 I = ILO, N
                  T = T + ABS( A(I,J) )*LSCALE(I)*RSCALE(J)
                  IF( I.LT.J ) THEN
                     T = T + ABS( DE(J,I) )*RSCALE(I)*RSCALE(J)
                  ELSE
                     T = T + ABS( DE(I,J) )*RSCALE(I)*RSCALE(J)
                  END IF
  410          CONTINUE
               IF( T.GT.NS )
     $            NS = T
  420       CONTINUE
C
            DO 440 J = ILO, N
               T = ZERO
               DO 430 I = ILO, N
                  T = T + ABS( A(J,I) )*LSCALE(J)*RSCALE(I)
                  IF( I.LE.J ) THEN
                     T = T + ABS( DE(I,J+1) )*LSCALE(I)*LSCALE(J)
                  ELSE
                     T = T + ABS( DE(J,I+1) )*LSCALE(I)*LSCALE(J)
                  END IF
  430          CONTINUE
               IF( T.GT.NS )
     $            NS = T
  440       CONTINUE
C
            NH = ZERO
            DO 460 J = ILO, N
               T = ZERO
               DO 450 I = ILO, N
                  T = T + ABS( C(I,J) )*LSCALE(I)*RSCALE(J)
                  IF( I.LT.J ) THEN
                     T = T + ABS( VW(J,I) )*RSCALE(I)*RSCALE(J)
                  ELSE
                     T = T + ABS( VW(I,J) )*RSCALE(I)*RSCALE(J)
                  END IF
  450          CONTINUE
               IF( T.GT.NH )
     $            NH = T
  460       CONTINUE
C
            DO 480 J = ILO, N
               T = ZERO
               DO 470 I = ILO, N
                  T = T + ABS( C(J,I) )*LSCALE(J)*RSCALE(I)
                  IF( I.LE.J ) THEN
                     T = T + ABS( VW(I,J+1) )*LSCALE(I)*LSCALE(J)
                  ELSE
                     T = T + ABS( VW(J,I+1) )*LSCALE(I)*LSCALE(J)
                  END IF
  470          CONTINUE
               IF( T.GT.NH )
     $            NH = T
  480       CONTINUE
C
            IF( ITH.GE.-4 .AND. ITH.LT.-2 ) THEN
               PROD = ( NS/DENOM )*( NH/DENOM )
               IF( MINPRO.GT.PROD ) THEN
                  MINPRO = PROD
                  STORMN = .TRUE.
                  CALL DCOPY( NR, LSCALE(ILO), 1, DWORK(KW6), 1 )
                  CALL DCOPY( NR, RSCALE(ILO), 1, DWORK(KW7), 1 )
                  NSS = NS
                  NHS = NH
                  THS = TH
               END IF
            ELSE IF( ITH.GE.-2 ) THEN
               IF( NS.LT.NH ) THEN
                  RATIO = MIN( NH/NS, SFMAX )
               ELSE
                  RATIO = MIN( NS/NH, SFMAX )
               END IF
               IF( MINRAT.GT.RATIO ) THEN
                  MINRAT = RATIO
                  STORMN = .TRUE.
                  CALL DCOPY( NR, LSCALE(ILO), 1, DWORK(KW6), 1 )
                  CALL DCOPY( NR, RSCALE(ILO), 1, DWORK(KW7), 1 )
                  MXS = MAX( NS, NH )
                  NSS = NS
                  NHS = NH
                  THS = TH
               END IF
            END IF
            TH = TH*TEN
         END IF
  490 CONTINUE
C
C     Prepare for scaling.
C
      IF( LOOP ) THEN
         IF( ITH.LE.-10 ) THEN
C
C           Could not find enough well conditioned transformations
C           for THRESH <= -10. Set scaling factors to 1 and return.
C
            DUM(1) = ONE
            CALL DCOPY( NR, DUM(1), 0, LSCALE(ILO), 1 )
            CALL DCOPY( NR, DUM(1), 0, RSCALE(ILO), 1 )
            IWARN = 1
            GO TO 550
         END IF
C
C        Check if scaling might reduce the accuracy when solving related
C        eigenproblems, and set the scaling factors to 1 in this case,
C        if THRESH = -2 or THRESH = -4.
C
         IF( ( MXNORM.LT.MXS .AND. MXNORM.LT.MXS/MXGAIN .AND. ITH.EQ.-2)
     $         .OR. ITH.EQ.-4 ) THEN
            IR = IDAMAX( NR, DWORK(KW6), 1 )
            JC = IDAMAX( NR, DWORK(KW7), 1 )
            T  = MAX( DWORK(KW6+IR-1), DWORK(KW7+JC-1) )
            MN = T
            DO 500 I = KW6, KW6+NR-1
               IF( DWORK(I).LT.MN )
     $            MN = DWORK(I)
  500       CONTINUE
            DO 510 I = KW7, KW7+NR-1
               IF( DWORK(I).LT.MN )
     $            MN = DWORK(I)
  510       CONTINUE
            T = MN/T
            IF( T.LT.ONE/MXCOND ) THEN
               DUM(1) = ONE
               CALL DCOPY( NR, DUM(1), 0, LSCALE(ILO), 1 )
               CALL DCOPY( NR, DUM(1), 0, RSCALE(ILO), 1 )
               IWARN = 1
               NSS = NS0
               NHS = NH0
               THS = TH0
               GO TO 550
            END IF
         END IF
         IF( STORMN ) THEN
            CALL DCOPY( NR, DWORK(KW6), 1, LSCALE(ILO), 1 )
            CALL DCOPY( NR, DWORK(KW7), 1, RSCALE(ILO), 1 )
         ELSE
            NSS = NS
            NHS = NH
            THS = TH
         END IF
      END IF
C
  520 CONTINUE
C
C     Row scaling.
C
      DO 530 I = ILO, N
         CALL ZDSCAL(    NR, LSCALE(I), A(I,ILO),  LDA  )
         CALL ZDSCAL(    NR, LSCALE(I), C(I,ILO),  LDC  )
         CALL ZDSCAL(     I, LSCALE(I), DE(1,I+1), 1    )
         CALL ZDSCAL( N-I+1, LSCALE(I), DE(I,I+1), LDDE )
         CALL ZDSCAL(     I, LSCALE(I), VW(1,I+1), 1    )
         CALL ZDSCAL( N-I+1, LSCALE(I), VW(I,I+1), LDVW )
  530 CONTINUE
C
C     Column scaling.
C
      DO 540 J = ILO, N
         CALL ZDSCAL(     N, RSCALE(J), A(1,J),  1    )
         CALL ZDSCAL(     N, RSCALE(J), C(1,J),  1    )
         CALL ZDSCAL(     J, RSCALE(J), DE(J,1), LDDE )
         CALL ZDSCAL( N-J+1, RSCALE(J), DE(J,J), 1    )
         CALL ZDSCAL(     J, RSCALE(J), VW(J,1), LDVW )
         CALL ZDSCAL( N-J+1, RSCALE(J), VW(J,J), 1    )
  540 CONTINUE
C
C     Set DWORK(1:5).
C
  550 CONTINUE
      IF( EVNORM ) THEN
         NSS = MA02IZ( 'skew-Hamiltonian', '1-norm', NR, A(ILO,ILO),
     $                  LDA, DE(ILO,ILO), LDDE, DWORK )
         NHS = MA02IZ( 'Hamiltonian', '1-norm', NR, C(ILO,ILO), LDC,
     $                 VW(ILO,ILO), LDVW, DWORK )
      END IF
C
      DWORK(1) = NS0
      DWORK(2) = NH0
      DWORK(3) = NSS
      DWORK(4) = NHS
      IF( LOOP ) THEN
         DWORK(5) = THS/MAX( MXNORM, SFMIN )
      ELSE
         DWORK(5) = THRESH
      END IF
C
      RETURN
C *** Last line of MB4DPZ ***
      END