control_systems_torbox 0.2.1

Control systems toolbox
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
      SUBROUTINE MB01LD( UPLO, TRANS, M, N, ALPHA, BETA, R, LDR, A, LDA,
     $                   X, LDX, DWORK, LDWORK, INFO )
C
C     PURPOSE
C
C     To compute the matrix formula
C        _
C        R = alpha*R + beta*op( A )*X*op( A )',
C                                                 _
C     where alpha and beta are scalars, R, X, and R are skew-symmetric
C     matrices, A is a general matrix, and op( A ) is one of
C
C        op( A ) = A   or   op( A ) = A'.
C
C     The result is overwritten on R.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     UPLO    CHARACTER*1
C             Specifies which triangles of the skew-symmetric matrices R
C             and X are given, as follows:
C             = 'U':  the strictly upper triangular part is given;
C             = 'L':  the strictly lower triangular part is given.
C
C     TRANS   CHARACTER*1
C             Specifies the form of op( A ) to be used in the matrix
C             multiplication, as follows:
C             = 'N':  op( A ) = A;
C             = 'T':  op( A ) = A';
C             = 'C':  op( A ) = A'.
C
C     Input/Output Parameters
C
C     M       (input) INTEGER           _
C             The order of the matrices R and R and the number of rows
C             of the matrix op( A ).  M >= 0.
C
C     N       (input) INTEGER
C             The order of the matrix X and the number of columns of the
C             matrix op( A ).  N >= 0.
C
C     ALPHA   (input) DOUBLE PRECISION
C             The scalar alpha. When alpha is zero then R need not be
C             set before entry, except when R is identified with X in
C             the call.
C
C     BETA    (input) DOUBLE PRECISION
C             The scalar beta. When beta is zero or N <= 1, or M <= 1,
C             then A and X are not referenced.
C
C     R       (input/output) DOUBLE PRECISION array, dimension (LDR,M)
C             On entry with UPLO = 'U', the leading M-by-M strictly
C             upper triangular part of this array must contain the
C             strictly upper triangular part of the skew-symmetric
C             matrix R. The lower triangle is not referenced.
C             On entry with UPLO = 'L', the leading M-by-M strictly
C             lower triangular part of this array must contain the
C             strictly lower triangular part of the skew-symmetric
C             matrix R. The upper triangle is not referenced.
C             On exit, the leading M-by-M strictly upper triangular part
C             (if UPLO = 'U'), or strictly lower triangular part
C             (if UPLO = 'L'), of this array contains the corresponding
C                                                             _
C             strictly triangular part of the computed matrix R.
C
C     LDR     INTEGER
C             The leading dimension of the array R.  LDR >= MAX(1,M).
C
C     A       (input) DOUBLE PRECISION array, dimension (LDA,k)
C             where k is N when TRANS = 'N' and is M when TRANS = 'T' or
C             TRANS = 'C'.
C             On entry with TRANS = 'N', the leading M-by-N part of this
C             array must contain the matrix A.
C             On entry with TRANS = 'T' or TRANS = 'C', the leading
C             N-by-M part of this array must contain the matrix A.
C
C     LDA     INTEGER
C             The leading dimension of the array A.  LDA >= MAX(1,k),
C             where k is M when TRANS = 'N' and is N when TRANS = 'T' or
C             TRANS = 'C'.
C
C     X       (input or input/output) DOUBLE PRECISION array, dimension
C             (LDX,K), where K = N, if UPLO = 'U' or  LDWORK >= M*(N-1),
C                  or K = MAX(N,M), if UPLO = 'L' and LDWORK <  M*(N-1).
C             On entry, if UPLO = 'U', the leading N-by-N strictly upper
C             triangular part of this array must contain the strictly
C             upper triangular part of the skew-symmetric matrix X and
C             the lower triangular part of the array is not referenced.
C             On entry, if UPLO = 'L', the leading N-by-N strictly lower
C             triangular part of this array must contain the strictly
C             lower triangular part of the skew-symmetric matrix X and
C             the upper triangular part of the array is not referenced.
C             If LDWORK < M*(N-1), this array is overwritten with the
C             matrix op(A)*X, if UPLO = 'U', or X*op(A)', if UPLO = 'L'.
C
C     LDX     INTEGER
C             The leading dimension of the array X.
C             LDX >= MAX(1,N),   if UPLO = 'L' or  LDWORK >= M*(N-1);
C             LDX >= MAX(1,N,M), if UPLO = 'U' and LDWORK <  M*(N-1).
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             This array is not referenced when beta = 0, or M <= 1, or
C             N <= 1.
C
C     LDWORK  The length of the array DWORK.
C             LDWORK >= N, if  beta <> 0, and M > 0, and N >  1;
C             LDWORK >= 0, if  beta =  0, or  M = 0, or  N <= 1.
C             For optimum performance, LDWORK >= M*(N-1), if  beta <> 0,
C             M > 1, and N > 1.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -k, the k-th argument had an illegal
C                   value.
C
C     METHOD
C
C     The matrix expression is efficiently evaluated taking the skew-
C     symmetry into account. If LDWORK >= M*(N-1), a BLAS 3 like
C     implementation is used. Specifically, let X = T - T', with T a
C     strictly upper or strictly lower triangular matrix, defined by
C
C        T = striu( X ),  if UPLO = 'U',
C        T = stril( X ),  if UPLO = 'L',
C
C     where striu and stril denote the strictly upper triangular part
C     and strictly lower triangular part of X, respectively. Then,
C
C        A*X*A' = ( A*T )*A' - A*( A*T )',  for TRANS = 'N',
C        A'*X*A = A'*( T*A ) - ( T*A )'*A,  for TRANS = 'T', or 'C',
C
C     which involve BLAS 3 operations DTRMM and the skew-symmetric
C     correspondent of DSYR2K (with a Fortran implementation available
C     in the SLICOT Library routine MB01KD).
C     If LDWORK < M*(N-1), a BLAS 2 implementation is used.
C
C     NUMERICAL ASPECTS
C
C     The algorithm requires approximately
C
C                   2         2
C        3/2 x M x N + 1/2 x M
C
C     operations.
C
C     CONTRIBUTORS
C
C     V. Sima, Research Institute for Informatics, Bucharest, Jan. 2010.
C     Based on the SLICOT Library routine MB01RU and the HAPACK Library
C     routine DSKUPD.
C
C     REVISIONS
C
C     V. Sima, Research Institute for Informatics, Bucharest, Oct. 2010.
C
C     KEYWORDS
C
C     Elementary matrix operations, matrix algebra, matrix operations.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         TRANS, UPLO
      INTEGER           INFO, LDA, LDR, LDWORK, LDX, M, N
      DOUBLE PRECISION  ALPHA, BETA
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), DWORK(*), R(LDR,*), X(LDX,*)
C     .. Local Scalars ..
      LOGICAL           LTRANS, NOTTRA, UPPER
      INTEGER           I, J, M2
C     .. External Functions ..
      LOGICAL           LSAME
      EXTERNAL          LSAME
C     .. External Subroutines ..
      EXTERNAL          DCOPY, DGEMV, DLACPY, DLASCL, DLASET, DSCAL,
     $                  DTRMM, MB01KD, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         MAX, MIN
C     .. Executable Statements ..
C
C     Test the input scalar arguments.
C
      INFO   = 0
      UPPER  = LSAME( UPLO,  'U' )
      NOTTRA = LSAME( TRANS, 'N' )
      LTRANS = LSAME( TRANS, 'T' ) .OR. LSAME( TRANS, 'C' )
C
      IF(      ( .NOT.UPPER  ).AND.( .NOT.LSAME( UPLO, 'L' ) ) )THEN
         INFO = -1
      ELSE IF( ( .NOT.NOTTRA ).AND.( .NOT.LTRANS ) )THEN
         INFO = -2
      ELSE IF( M.LT.0 ) THEN
         INFO = -3
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDR.LT.MAX( 1, M ) ) THEN
         INFO = -8
      ELSE IF( LDA.LT.1 .OR. ( LTRANS .AND. LDA.LT.N ) .OR.
     $                       ( NOTTRA .AND. LDA.LT.M ) ) THEN
         INFO = -10
      ELSE IF( LDX.LT.MAX( 1, N ) .OR.
     $       ( LDX.LT.M .AND. UPPER .AND. LDWORK.LT.M*( N - 1 ) ) ) THEN
         INFO = -12
      ELSE IF( LDWORK.LT.0 .OR. ( BETA.NE.ZERO .AND. M.GT.1 .AND. N.GT.1
     $      .AND. LDWORK.LT.N ) ) THEN
         INFO = -14
      END IF
C
      IF ( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'MB01LD', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF ( M.LE.0 )
     $   RETURN
C
      M2 = MIN( 2, M )
      IF ( BETA.EQ.ZERO .OR. N.LE.1 ) THEN
         IF ( UPPER ) THEN
            I = 1
            J = M2
         ELSE
            I = M2
            J = 1
         END IF
C
         IF ( ALPHA.EQ.ZERO ) THEN
C
C           Special case alpha = 0.
C
            CALL DLASET( UPLO, M-1, M-1, ZERO, ZERO, R(I,J), LDR )
         ELSE
C
C           Special case beta = 0 or N <= 1.
C
            IF ( ALPHA.NE.ONE )
     $         CALL DLASCL( UPLO, 0, 0, ONE, ALPHA, M-1, M-1, R(I,J),
     $                      LDR, INFO )
         END IF
         RETURN
      END IF
C
C     General case: beta <> 0.
C
      IF ( LDWORK.GE.M*( N - 1 ) ) THEN
C
C        Use a BLAS 3 like implementation.
C        Compute W = A*T or W = T*A in DWORK, and apply the updating
C        formula (see METHOD section). Note that column 1 (if
C        UPLO = 'U') or column N (if UPLO = 'L') is zero in the first
C        case, and it is not stored; similarly, row N (if UPLO = 'U') or
C        row 1 (if UPLO = 'L') is zero in the second case, and it is not
C        stored.
C        Workspace: need M*(N-1).
C
         IF ( UPPER ) THEN
            I = 1
            J = M2
         ELSE
            I = M2
            J = 1
         END IF
C
         IF( NOTTRA ) THEN
C
            CALL DLACPY( 'Full', M, N-1, A(1,I), LDA, DWORK, M )
            CALL DTRMM(  'Right', UPLO, 'NoTranspose', 'Non-unit', M,
     $                   N-1, ONE, X(I,J), LDX, DWORK, M )
            CALL MB01KD( UPLO, TRANS, M, N-1, BETA, DWORK, M, A(1,J),
     $                   LDA, ALPHA, R, LDR, INFO )
C
         ELSE
C
            CALL DLACPY( 'Full', N-1, M, A(J,1), LDA, DWORK, N-1 )
            CALL DTRMM(  'Left', UPLO, 'NoTranspose', 'Non-unit', N-1,
     $                   M, ONE, X(I,J), LDX, DWORK, N-1 )
            CALL MB01KD( UPLO, TRANS, M, N-1, BETA, A(I,1), LDA, DWORK,
     $                   N-1, ALPHA, R, LDR, INFO )
C
         END IF
C
      ELSE
C
C        Use a BLAS 2 implementation.
C
C
         IF ( NOTTRA ) THEN
C
C           Compute A*X*A'.
C
            IF ( UPPER ) THEN
C
C              Compute A*X in X (M-by-N).
C
               DO 10 J = 1, N-1
                  CALL DCOPY( J-1, X(1,J), 1, DWORK, 1 )
                  DWORK(J) = ZERO
                  CALL DCOPY( N-J, X(J,J+1), LDX, DWORK(J+1), 1 )
                  CALL DSCAL( N-J, -ONE, DWORK(J+1), 1 )
                  CALL DGEMV( TRANS, M, N, ONE, A, LDA, DWORK, 1, ZERO,
     $                        X(1,J), 1 )
   10          CONTINUE
C
               CALL DCOPY( N-1, X(1,N), 1, DWORK, 1 )
               CALL DGEMV( TRANS, M, N-1, ONE, A, LDA, DWORK, 1, ZERO,
     $                     X(1,N), 1 )
C
C              Compute alpha*striu( R ) + beta*striu( X*A' ) in the
C              strictly upper triangular part of R.
C
               DO 20 I = 1, M-1
                  CALL DCOPY( N, X(I,1), LDX, DWORK, 1 )
                  CALL DGEMV( TRANS, M-I, N, BETA, A(I+1,1), LDA, DWORK,
     $                        1, ALPHA, R(I,I+1), LDR )
   20          CONTINUE
C
            ELSE
C
C              Compute X*A' in X (N-by-M).
C
               DO 30 I = 1, N-1
                  CALL DCOPY( I-1, X(I,1), LDX, DWORK, 1 )
                  DWORK(I) = ZERO
                  CALL DCOPY( N-I, X(I+1,I), 1, DWORK(I+1), 1 )
                  CALL DSCAL( N-I, -ONE, DWORK(I+1), 1 )
                  CALL DGEMV( TRANS, M, N, ONE, A, LDA, DWORK, 1, ZERO,
     $                        X(I,1), LDX )
   30          CONTINUE
C
               CALL DCOPY( N-1, X(N,1), LDX, DWORK, 1 )
               CALL DGEMV( TRANS, M, N-1, ONE, A, LDA, DWORK, 1, ZERO,
     $                     X(N,1), LDX )
C
C              Compute alpha*stril( R ) + beta*stril( A*X ) in the
C              strictly lower triangular part of R.
C
               DO 40 J = 1, M-1
                  CALL DCOPY( N, X(1,J), 1, DWORK, 1 )
                  CALL DGEMV( TRANS, M-J, N, BETA, A(J+1,1), LDA, DWORK,
     $                        1, ALPHA, R(J+1,J), 1 )
   40          CONTINUE
C
            END IF
C
         ELSE
C
C           Compute A'*X*A.
C
            IF ( UPPER ) THEN
C
C              Compute A'*X in X (M-by-N).
C
               DO 50 J = 1, N-1
                  CALL DCOPY( J-1, X(1,J), 1, DWORK, 1 )
                  DWORK(J) = ZERO
                  CALL DCOPY( N-J, X(J,J+1), LDX, DWORK(J+1), 1 )
                  CALL DSCAL( N-J, -ONE, DWORK(J+1), 1 )
                  CALL DGEMV( TRANS, N, M, ONE, A, LDA, DWORK, 1, ZERO,
     $                        X(1,J), 1 )
   50          CONTINUE
C
               CALL DCOPY( N-1, X(1,N), 1, DWORK, 1 )
               CALL DGEMV( TRANS, N-1, M, ONE, A, LDA, DWORK, 1, ZERO,
     $                     X(1,N), 1 )
C
C              Compute alpha*striu( R ) + beta*striu( X*A ) in the
C              strictly upper triangular part of R.
C
               DO 60 I = 1, M-1
                  CALL DCOPY( N, X(I,1), LDX, DWORK, 1 )
                  CALL DGEMV( TRANS, N, M-I, BETA, A(1,I+1), LDA, DWORK,
     $                        1, ALPHA, R(I,I+1), LDR )
   60          CONTINUE
C
            ELSE
C
C              Compute X*A in X (N-by-M).
C
               DO 70 I = 1, N-1
                  CALL DCOPY( I-1, X(I,1), LDX, DWORK, 1 )
                  DWORK(I) = ZERO
                  CALL DCOPY( N-I, X(I+1,I), 1, DWORK(I+1), 1 )
                  CALL DSCAL( N-I, -ONE, DWORK(I+1), 1 )
                  CALL DGEMV( TRANS, N, M, ONE, A, LDA, DWORK, 1, ZERO,
     $                        X(I,1), LDX )
   70          CONTINUE
C
               CALL DCOPY( N-1, X(N,1), LDX, DWORK, 1 )
               CALL DGEMV( TRANS, N-1, M, ONE, A, LDA, DWORK, 1, ZERO,
     $                     X(N,1), LDX )
C
C              Compute alpha*stril( R ) + beta*stril( A'*X ) in the
C              strictly lower triangular part of R.
C
               DO 80 J = 1, M-1
                  CALL DCOPY( N, X(1,J), 1, DWORK, 1 )
                  CALL DGEMV( TRANS, N, M-J, BETA, A(1,J+1), LDA, DWORK,
     $                        1, ALPHA, R(J+1,J), 1 )
   80          CONTINUE
C
            END IF
         END IF
      END IF
C
      RETURN
C *** Last line of MB01LD ***
      END